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Abstract. Extreme weather events can have large impacts
on society and, in many regions, are expected to change in
frequency and intensity with climate change. Owing to the
relatively short observational record, climate models are use-
ful tools as they allow for generation of a larger sample of
extreme events, to attribute recent events to anthropogenic
climate change, and to project changes in such events into
the future. The modelling system known as weather@home,
consisting of a global climate model (GCM) with a nested re-
gional climate model (RCM) and driven by sea surface tem-
peratures, allows one to generate a very large ensemble with
the help of volunteer distributed computing. This is a key
tool to understanding many aspects of extreme events. Here,
a new version of the weather@home system (weather@home
2) with a higher-resolution RCM over Europe is documented
and a broad validation of the climate is performed. The new
model includes a more recent land-surface scheme in both
GCM and RCM, where subgrid-scale land-surface hetero-
geneity is newly represented using tiles, and an increase in
RCM resolution from 50 to 25 km. The GCM performs simi-
larly to the previous version, with some improvements in the
representation of mean climate. The European RCM temper-
ature biases are overall reduced, in particular the warm bias
over eastern Europe, but large biases remain. Precipitation is
improved over the Alps in summer, with mixed changes in
other regions and seasons. The model is shown to represent
the main classes of regional extreme events reasonably well
and shows a good sensitivity to its drivers. In particular, given
the improvements in this version of the weather@home sys-

tem, it is likely that more reliable statements can be made
with regards to impact statements, especially at more local-
ized scales.

1 Introduction

Anthropogenic climate change due to increased greenhouse
gas concentrations in the atmosphere poses numerous threats
to society (IPCC, 2013). In particular, the frequency, inten-
sity, and duration of extreme events such as heat waves,
droughts, and flooding may have already changed due to cli-
mate change (Frich et al., 2002; Fischer and Knutti, 2015),
a trend that is expected to continue in the future (Senevi-
ratne et al., 2012). The growing field of extreme event attribu-
tion attempts to answer the question whether and to what ex-
tent anthropogenic climate change altered the frequency and
intensity of observed extreme events. Answering this ques-
tion is now becoming possible for many events (National
Academies of Sciences, Engineering, and Medicine, 2016),
and is done by quantifying the role of anthropogenic climate
change versus natural climate variability for events that have
occurred in the past (e.g. Otto et al., 2012; Stott et al., 2016).
Another field of research investigates how extreme events
may change in the future, thereby concentrating on future
climate projections (e.g. Mitchell et al., 2016c).

Owing to their rarity, extreme weather events and their
characteristics can be difficult to assess. Indeed, only a few
such events may be available in observational records. There-
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fore, model-based approaches consisting of large ensembles
that allow for the statistics of rare events to be analysed are
an essential complement to observational products. In partic-
ular, large ensembles of global climate models (GCMs) allow
derivation of multiple sequences of weather patterns and a
substantial number of associated extreme events. Dynamical
downscaling of these GCM simulations by regional climate
models (RCMs, Giorgi, 2006) can provide more spatially de-
tailed information, which can be very valuable for the inves-
tigation of localized impacts of extreme weather events.

One such modelling system is weather@home (Massey
et al., 2015). Consisting of a GCM with prescribed sea sur-
face temperatures (SSTs) and sea ice and a nested RCM over
a region of interest, it leverages the computing power of vol-
unteers around the world to generate very large ensembles of
GCM–RCM simulations. This is particularly useful for the
investigation of extreme weather events, and weather@home
has been used successfully for the attribution of many ex-
treme weather events (e.g. Pall et al., 2011; Otto et al., 2012)
as well as their impacts, such as flooding-related property
damages (Schaller et al., 2016) and heat-related mortality
(Mitchell et al., 2016b).

Model performance is however a common limita-
tion inherent to modelling approaches. Like any model,
weather@home exhibits biases in certain variables (Massey
et al., 2015). In particular, a substantial warm and dry bias
was found in summer over eastern Europe, similar to many
RCMs (Jacob et al., 2007). The increase in capabilities of
home computers, on which weather@home simulations are
being run, makes it possible to increase the model resolution
and include newer model developments, with the aim of re-
ducing these biases.

Although identifying the causes of GCM and RCM biases
is not straightforward, previous studies suggest that the land
surface may play an important role (e.g. Davin et al., 2016),
in particular for summer climate. Several studies have iden-
tified the tendency for RCMs to display an excessive sum-
mer drying over Europe (Christensen et al., 2007; Kotlarski
et al., 2014). The resulting dry summer soil moisture bias
in turn feeds back onto the atmosphere through the under-
estimation of evapotranspiration (or latent heat flux) and the
simultaneous overestimation of the sensible heat flux at the
surface (e.g. Seneviratne et al., 2010). These fluxes may di-
rectly affect temperature (via the sensible heat flux) and pre-
cipitation (via moisture input to the atmosphere, e.g. Eltahir
and Bras, 1996). In addition, they can lead to indirect effects
modulated by the boundary layer, thereby affecting cloud
cover (e.g. Ek and Holtslag, 2004) and precipitation (e.g.
Findell and Eltahir, 2003; Taylor et al., 2011; Guillod et al.,
2015). Although weather@home biases could be due to at-
mospherically driven lack of precipitation, improvements to
land-surface schemes in RCMs and GCMs have been shown
to substantially improve the simulated surface climate (e.g.
Davin et al., 2011, 2016), suggesting that at least part of the
biases may be attributable to deficiencies in the representa-

tion of the land surface. Besides model formulation, other
aspects of the land surface such as soil parameters may sig-
nificantly impact surface climate (e.g. Guillod et al., 2013).

A new version of weather@home (called weather@home
2) was therefore developed by including a more recent ver-
sion of the MOSES land-surface model (see Sect. 2.2). In this
paper, we describe and validate the GCM globally and the
RCM over the European domain, with a focus on the simu-
lation of mean climate, daily extremes, and the reliability of
the model response to forcings.

The paper is structured as follows: in Sect. 2, we describe
weather@home and the new developments that lead to its
second version, as well as the modelling simulations and ob-
servational data used in this paper. The GCM (HadAM3P) is
validated in Sect. 3, with a focus on mean biases in temper-
ature, precipitation, and atmospheric circulation. Section 4
provides a detailed validation of the RCM (HadRM3P) over
Europe, including analyses of the model biases in mean and
extremes as well as its reliability. Section 5 draws some con-
clusions on the suitability of the modelling system to inves-
tigate extreme weather events.

2 Model description and experiments

2.1 weather@home

The climate modelling system known as weather@home
(Massey et al., 2015) is part of the climateprediction.net cli-
mate modelling project (Allen, 1999). It consists of an at-
mospheric GCM, HadAM3P, that is downscaled to a higher
resolution over a limited domain by its RCM equivalent,
HadRM3P. The downscaling is only coupled one-way, so that
the RCM can not impact on the GCM. Both models share es-
sentially the same physics and are based on the atmospheric
component of the coupled climate model of the UK Met Of-
fice Hadley Centre, HadCM3 (Gordon et al., 2000), with a
number of improvements described in Massey et al. (2015).
These include increasing the GCM horizontal resolution to
1.875◦× 1.25◦ (in longitude and latitude, respectively) and
introducing better representations of large-scale and convec-
tive clouds. The formulation of the RCM, HadRM3P, differs
from HadAM3P only in terms of horizontal resolution, time
step (reduced from 15 to 5 min), and resolution-dependent
physical parameters. In general, HadRM3P is run on a ro-
tated grid, allowing it to simulate the area of interest over
an equatorial domain (in the rotated coordinate system) at
quasi-uniform horizontal resolutions of 0.44 or 0.22◦. It has
been run over many regions worldwide, including all of those
defined by the CORDEX (Coordinated Regional Climate
Downscaling Experiment) initiative (Giorgi et al., 2009), al-
though any domain can be specified. HadRM3P is run along-
side a given HadAM3P simulation, the latter providing the
lateral boundary conditions at the regional domain edges at
6-hourly intervals.
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Both models are forced with sea surface temperature
(SST) and sea ice, atmospheric composition, SO2 emissions
(including volcanoes), and solar forcing, as well as initial
conditions for all model variables. The HadAM3P GCM
has been shown to represent the atmospheric dynamics well
compared with many state-of-the-art GCMs (Mitchell et al.,
2016a).

The strength of weather@home resides in its ability to run
very large ensembles of simulations, of the order of thou-
sands to tens of thousands. To achieve this, volunteer dis-
tributed computing via the Berkeley Open Infrastructure for
Network Computing (BOINC, Anderson, 2004) is used. In-
dividual simulations are sent to volunteers around the world,
who run the HadAM3P–HadRM3P simulations and upload
the results onto a server. A large number of simulations can
thereby be performed in parallel which are particularly rel-
evant when examining extreme events, rare by definition,
and requiring large numbers of simulated years to define
their statistics robustly. The weather@home project has led
to many high-impact analyses, notably in the field of extreme
event attribution, where sets of simulations with observed or
corresponding “natural” conditions (without anthropogenic
climate change) can be compared to assess the role of hu-
man influences on extreme events (e.g. Schaller et al., 2016;
Mitchell et al., 2016b; Haustein et al., 2016).

While the weather@home project initially focused on a
European region (e.g. Massey et al., 2015) and North Amer-
ican region (the Pacific North-west, Li et al., 2015; Mote
et al., 2016), it has also been successfully used in Australia
and New Zealand (Black et al., 2016), Africa (Marthews
et al., 2015), and is currently also being deployed over a num-
ber of additional regions.

2.2 Model developments for version 2 of
weather@home

A few modifications have been incorporated in version 2
of weather@home (hereafter w@h2) relative to the orig-
inal weather@home (hereafter w@h1, described in detail
by Massey et al., 2015). More specifically, a more re-
cent land-surface scheme was introduced in both HadAM3P
and HadRM3P, and the standard horizontal resolution of
HadRM3P was increased.

In both model versions, HadRM3P is run over the Eu-
ropean CORDEX domain (Fig. 1). Currently, HadRM3P in
w@h1 has always been run at a horizontal resolution of
0.44◦ (about 50 km; see Fig. 1b) over Europe, while in w@h2
the resolution has been increased to 0.22◦ (about 25 km;
see Fig. 1a). As mentioned in Sect. 2.1, any domain and
resolution can in principle be specified – the resolutions
mentioned here refer to the standard configurations used in
weather@home as well as in the simulations analysed in this
study (see Sect. 2.3).

The main development included in w@h2 is an improved
representation of the land surface. In w@h2, land-surface

model (LSM) MOSES 1 used in w@h1 (Cox et al., 1999)
was replaced by a more sophisticated version, MOSES 2 (Es-
sery et al., 2003). MOSES is a third-generation LSM, incor-
porating the direct physiological effect of CO2 on photosyn-
thesis and stomatal conductance (Sellers et al., 1997). The
total land evapotranspiration includes interception evapora-
tion from the canopy, plant transpiration, bare soil evapora-
tion, and snow sublimation. Five vegetation types and four
non-vegetated surface types are considered. The soil is rep-
resented by four layers spanning a total depth of 3 m, with
the hydrology following Richards’ equation (see Cox et al.,
1999, for further details).

The main difference between the two LSM versions is the
explicit consideration of land-surface heterogeneities within
each grid cell via the introduction of a tiling scheme in
MOSES 2 (Essery et al., 2003). Indeed, in MOSES 1 only
one surface type is considered in each grid cell. The intro-
duction of tiles in MOSES 2 allows consideration of each
of the nine surface types mentioned above, and computation
of surface fluxes for each surface type, of which the area-
weighted average is returned to the atmospheric component
of the model.

Another improved representation of the land surface intro-
duced into w@h2 is the TRIFFID dynamic vegetation model
(Top-Down Representation of Interactive Foliage and Flora
Including Dynamics, Cox, 2001). The vegetation distribu-
tion (i.e. fraction of surface types within each grid cell) in
MOSES 2 can be either prescribed to observed values or
computed interactively by TRIFFID. In w@h2, TRIFFID has
been implemented in the regional but not global model. Al-
though for most applications TRIFFID is switched off and
both models are similar in that respect, a side-effect is that
the prognostic snow albedo cannot be turned on in the global
model, while it is turned on by default in the regional model.

In addition to the tiling scheme, a number of smaller im-
provements have been implemented in MOSES 2, notably
in the representation of snow processes (Essery and Clark,
2003).

Finally, the definition of the region over which the RCM
is run is more flexible in w@h2 than in w@h1. While in
w@h1 one application was built and deployed for each re-
gion separately, w@h2 consists of a single executable that
can be used for any region, the latter being defined via input
parameters. This simplifies the extension of weather@home
to many regions, although the creation of an initial condition
file remains necessary for any newly created region.

2.3 Modelling experiments

A large ensemble of w@h2 consisting of more than 100 sim-
ulations per year from 1900 to 2006 is analysed. First, a
restart file from a century-long HadAM3P simulation with
MOSES 1 has been reconfigured for MOSES 2. This initial
condition file is then used in a spin-up ensemble consisting
of 12-month simulations (from December to November, with
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Figure 1. HadRM3P domain (excluding the sponge layer) and topography with the subdomains used in the analysis. (a) The w@h1, 0.44◦

domain; (b) the w@h2, 0.22◦ domain. The subdomains are those defined in the PRUDENCE project (Christensen and Christensen, 2007):
the Alps (AL), the British Isles (BI), eastern Europe (EA), France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe
(ME), and Scandinavia (SC).

multiple simulations for each year), providing spun-up ini-
tial conditions on 1 December each year. The simulations
analysed in this paper are then initialized on 1 December
each year from the end state of the spin-up ensemble and
are run for 13 months. The effect of the relatively short spin-
up for soil variables on simulated temperature and precipi-
tation is discussed in Sect. 3.1 for HadAM3P and Sect. 4.1
for HadRM3P. The correspondence between simulated and
real years comes from using observed sea surface temper-
ature and sea ice as the lower boundary condition and ob-
served concentrations of greenhouse gases, SO2 emissions,
and influence of volcanoes and solar radiation.

The sea surface temperature and sea ice are prescribed
from observed estimates in the HadISST dataset (Rayner
et al., 2003) version 2.1.0.0 (see Titchner and Rayner, 2014,
for sea ice), a pre-release version directly provided by the
UK Met Office Hadley Centre. The other input variables of
greenhouse gas concentrations (CO2, CH4, N2O, O3, and
halocarbon gases), SO2 emissions, volcanic activity, and so-
lar forcing are prescribed to historical values as in Massey
et al. (2015) with the data also provided by the Met Office
Hadley Centre.

To assess whether the model developments described in
Sect. 2.2 lead to an improved representation of climate in
w@h2 compared to w@h1, we also use the w@h1 ensemble
from Massey et al. (2015), consisting of about 20 members
per year from 1961 to 1990. It should be noted that the differ-
ence between these two model ensembles may not only result
from the models themselves, but also from (i) differences in
the prescribed SSTs and sea ice, the analysed w@h1 ensem-

ble being based on version 1 of the HadISST dataset (Rayner
et al., 2003), and (ii) horizontal resolution, this latter point
applying only to the RCM.

2.4 Observational data

We use gridded observation-based climate products for the
model validation. Global temperature and precipitation over
land (excluding Antarctica) are taken from version 3.23 of
the Climate Research Unit time series dataset (CRU–TS;
Harris et al., 2014), covering 1901–2014, which we interpo-
late to the model grid using a first-order conservative scheme.
Global atmospheric fields (geopotential height) are taken
from the Japanese 55-year Reanalysis (JRA-55) project car-
ried out by the Japan Meteorological Agency (Kobayashi
et al., 2015) and are bilinearly interpolated to the model grid.
For the validation of HadRM3P, we use the E–OBS dataset
(Haylock et al., 2008) version 12.0, which provides daily
temperature and precipitation data on the model grid from
1950 to the present. To validate the land-surface fluxes in
HadRM3P, we use two datasets available over the common
time period 1984–2006: the satellite-based Surface Radiation
Balance (SRB) version 3.1 dataset (Stackhouse et al., 2004;
Zhang et al., 2015) is used for surface radiation fluxes, and
the FLUXNET-MTE product (Jung et al., 2009, 2011) is used
for surface sensible and latent heat fluxes. These two datasets
are bilinearly interpolated to the rotated RCM grid.
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3 Global model validation

In this section, we investigate the performance of HadAM3P
in w@h2. First, seasonal mean biases in surface air temper-
ature, precipitation, and geopotential height at 500 hPa (as
a proxy for the background state of atmospheric flow) are
shown and compared to those in w@h1 over a 30-year pe-
riod from 1961 to 1990 (Sect. 3.1; w@h2 biases look very
similar when the whole time period, from 1900 to 2006, is
considered) and are complemented by biases in variability.
Then, time series of global land temperature and precipita-
tion are shown and discussed in Sect. 3.2.

3.1 Seasonal mean biases

Figure 2 shows the ensemble mean seasonal biases in sur-
face air temperature in w@h1 (left; a, d, g, j) and in w@h2
(centre; b, e, h, k) relative to CRU-TS, as well as the dif-
ference between the absolute bias values (right; c, f, i, l;
these are expressed so that negative values, in green, indi-
cate an improvement in w@h2 compared to w@h1). Over-
all, the bias patterns are similar in both model versions, with
the largest biases found in the Northern Hemisphere win-
ter (December to February, DJF) and summer (June to Au-
gust, JJA). The difference between the biases in the two mod-
els is most prominent in JJA, with significant improvements
over Africa, the southern US, and parts of central Russia.
Conversely, the biases in that season are higher in w@h2
in the north of North America, eastern Russia, and west-
ern Russia and Europe. The improved land-surface scheme
in HadAM3P therefore does not improve the representation
of summer temperature averages over Europe (Fig. 2i). In
DJF, the difference between the two models is smaller, with
w@h2 performing slightly better than w@h1 in the whole
Southern Hemisphere but slightly poorer over eastern North
America, northern Africa and India. In the Northern Hemi-
sphere spring (March to May, MAM), biases are larger in
w@h2 over the eastern US, Canada, and parts of Asia, but
reduced over Europe, western and northern Russia, Alaska,
and India. The difference between the two models is small
in September to November (SON), with improvements in the
Southern Hemisphere and mixed differences in the North-
ern Hemisphere. Table 1 summarizes the biases globally, ex-
pressed as area-weighted root mean squared biases. Globally,
the performance is very similar in both models, with a small
improvement for all seasons in w@h2 compared to w@h1.
For most regions, the performance of HadAM3P is similar to
state-of-the-art coupled climate models from CMIP5 (Flato
et al., 2013), although a fair comparison is difficult given that
in w@h2 the ocean state is prescribed to observations, while
in CMIP5 models it is computed interactively by an ocean
model coupled to the atmospheric model.

Since variability is very relevant for attribution (Uhe et al.,
2016), we also compute biases in the standard deviation of
monthly averaged temperature (Supplement Fig. S1). While

Table 1. Global root mean squared biases by season for HadAM3P
in w@h1 and w@h2. Individual grid cells are weighted by their
area.

DJF MAM JJA SON

Air temperature (◦C)
w@h1 3.01 1.78 2.25 1.84
w@h2 2.99 1.76 2.22 1.77

Precipitation (mm day−1)
w@h1 1.47 1.72 1.81 1.45
w@h2 1.47 1.61 1.75 1.43

biases in temperature variability are similar in both model
versions, w@h2 tends to improve the representation of sum-
mer and autumn monthly variability at mid-latitudes.

The precipitation biases, shown in Fig. 3, highlight some
improvements in w@h2 relative to w@h1. In particular, bi-
ases are reduced in the rainy season over the Amazon (DJF
and MAM) and Africa. These improvements are confirmed
by Table 1, with constant or improved biases at the global
scale in all seasons. Nonetheless, these improvements are
rather small in amplitude and the main biases in w@h1 are
still present in w@h2 (Fig. 3a–k). Quite striking are the large
dry biases over and around Indonesia in all seasons. Since
absolute precipitation biases are dominated by regions with
large amounts of rainfall, we also show these biases in rel-
ative terms in Supplement Fig. S2. Apart from the dry ar-
eas, which by definition tend to show large relative changes,
Fig. S2 highlights the summer dry bias over Eurasia. Differ-
ences between w@h1 and w@h2 (Fig. S2c, f, i, l) highlight
substantial improvement in w@h2 over East Asia in DJF,
as well as over northern Africa in most seasons. Like with
temperature, the model performs similarly to typical CMIP5
models (Flato et al., 2013, but note that, as for temperature,
this comparison may not be fair given the prescribed SSTs in
w@h2 as opposed to the interactive ocean in CMIP5). Biases
in variability (Supplement Fig. S3) exhibit similar patterns to
biases in mean.

Critical for many extreme events is the state of the atmo-
spheric circulation, features of which are known to be poorly
reproduced in current-generation climate models (Anstey
et al., 2013; Harvey et al., 2014). For instance, strong anticy-
clonic air advecting from low latitudes can cause persistent,
stable systems over western Europe during summer, leading
to extremely hot and dry conditions (e.g. Pfahl and Wernli,
2012). Here, we use seasonal-mean geopotential height at
500 hPa as a proxy for the background atmospheric wave ac-
tivity (Fig. 4). For a more detailed analysis of the dynamics
in w@h1, see Mitchell et al. (2016a, b).

Figure 4 shows that the largest anomalies in the Northern
Hemisphere with respect to the reanalysis are during win-
ter. The bias patterns are similar in both models, w@h1 and
w@h2. This is unsurprising, because capturing mid-latitude
jet variability is linked with model resolution (Berckmans
et al., 2013), and while the regional model of w@h2 has
increased horizontal resolution compared with w@h1, there
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Figure 2. Biases in surface air temperature for the GCM HadAM3P in w@h1 (left; a, d, g, j) and w@h2 (middle; b, e, h, k), and the
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Figure 3. Same as Fig. 2 but for precipitation, in mmday−1.

is no two-way feedback with the global model, so any in-
crease in model resolution will not improve the global atmo-
spheric dynamics. Consequently, no improvement in captur-
ing geopotential height is seen in the Northern Hemisphere.
The only major difference between the two model versions

is seen in the Southern Hemisphere, in particular over the
JJA and SON seasons. However, this is most likely not due
to the model version, but rather to the use of different SST
datasets. Indeed, HadISST2 (used in w@h2) exhibits lower
SSTs in the Southern Hemisphere compared to HadISST1
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Figure 4. Same as Fig. 2 but for geopotential height at 500 hPa with respect to the JRA-55 reanalysis.

used in w@h1 (not shown). Winter geopotential height vari-
ability underestimation as well as summer variability over
Europe are improved in w@h2 (Supplement Fig. S4), but the
improvements are overall small – likely also due to the use
of the same GCM resolution in both models.

Finally, to assess whether the 1-year spin-up was sufficient
to allow the soil variables to be spun up, Supplement Fig. S5
shows the difference between ensemble mean soil moisture
(for each soil layer) in December between the 1st month and
the 13th month of the analysed simulations (i.e. 13th and 25th
month of simulation, respectively), scaled by the standard de-
viation of the second one. Apart from northern Africa, the
differences are confined to the third (central Asia) and fourth
(many regions) layers. This suggests that a longer spin-up
may be required in future experiments with w@h2. Fortu-
nately, however, the upper 1 m of the soil, corresponding to
the root zone in most regions and therefore most critical for
evapotranspiration, appears relatively well spun-up over Eu-
rope. Nonetheless, the soil moisture state in deeper layers
may in some cases impact soil moisture dynamics in the root
zone and, thereby, affect land–atmosphere exchange and sur-
face climate. It is not possible to further assess whether an
additional year would lead to further changes, as these are
not available, and soil temperature is not examined here as
this variable has not been saved in our simulations. The im-
pact on temperature biases is shown in Supplement Fig. S6

and the largest impact is found in DJF, but is unlikely due to
soil moisture as it spans all latitudes. The most striking differ-
ence is a reduction of the JJA bias over south-eastern Europe
and the central US, which may be driven by increased soil
moisture in these regions with soil moisture-limited evapo-
transpiration regimes (Seneviratne et al., 2010) and possibly
by effects of soil temperature. An impact is also found in
MAM. This suggests that a longer spin-up might potentially
further reduce the summer temperature warm model bias. For
precipitation (Supplement Fig. S7), the impact is small glob-
ally, in all seasons except DJF and, in other seasons, over the
Sahara (note that % biases are very sensitive to small changes
in this region). DJF impacts are found throughout latitudes
and are thus unlikely to be a soil moisture spin-up issue, but
may result from changes in circulation induced by temper-
ature changes. These results highlight that a longer spin-up
may be required in future uses of w@h2, which will be im-
plemented for future w@h2 experiments.

3.2 Global land time series

Given the use of the model for attribution, another interest-
ing question is whether the model is able to simulate the re-
sponse to external forcings, such as CO2, aerosols, and volca-
noes. In this section, we focus on the global mean response
over land and show time series of global land yearly aver-
ages in temperature and precipitation (Fig. 5 for anomalies
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Figure 5. Global land annual mean time series of (a) temperature and (b) precipitation in HadAM3P in w@h2 and CRU-TS, expressed as
anomalies relative to 1961–1990. The median, inter-quartile range, and 5–95 % range of the w@h2 ensemble members are shown for each
year. Antarctica is not included, as in CRU-TS. The fraction of years with observed values lying outside of the 5–95 % range of the w@h2
ensemble members is shown in the lower right of each plot. Time series with actual values (i.e. not anomalies) are shown in Supplement
Fig. S8.

relative to 1961–1990; see Fig. S8 for raw values). The in-
terquartile (25–75%) and 5–95% ranges of the w@h2 en-
semble members for each year provide an estimate of the
unpredictable (chaotic) component of atmospheric variabil-
ity, while variations between years depict the response to the
model forcings (including SSTs and sea ice). For tempera-
ture, years with strong positive or negative anomalies often
match between the observations and the model, and CRU-TS
mostly lies within the 90 % confidence interval of the w@h2
ensemble (71% of the years, suggesting that variability at the
global scale might be slightly underestimated). The global
trend also seems well captured, such as the faster warming
since the 1980s. Although this may not be surprising since
others have found that prescribing SSTs may strongly force
trends over land (e.g. Shin and Sardeshmukh, 2011), we note
that regional trends computed from various ensemble mem-
bers suggest a large range of trends despite the prescrip-
tion of SSTs (see Sect. 4.4). The actual temperature values
(Fig. S8a) are very similar to the anomalies (Fig. 5a). For
precipitation (Fig. 5b), some discrepancy is found between
about 1915 and 1945, when the model simulates too much
rainfall, but observational error is also likely larger in this
period. Although CRU-TS appears to lie more often outside
the w@h2 ensemble for precipitation than for temperature
(observed values are within the 5–95 % range from w@h2 in
only 58 % of the years), some of the spikes (e.g. mid 1950s,
early 1970s, late 1990s) and troughs (e.g. mid 1960s, early
1990s) are found in both model and observations, suggesting

that HadAM3P is able to reproduce some of the sensitivity
of precipitation to drivers such as SSTs. It should be noted,
however, that unlike for temperature, the long-term precip-
itation average is substantially lower in the model than in
observations (Fig. S8b), indicating larger biases at the global
scale.

Similar time series plots for the 26 SREX regions (Senevi-
ratne et al., 2012) are shown in Figs. S9–S12. Overall, vari-
ability from year to year is well captured by the model,
suggesting a good model sensitivity to SSTs, greenhouse
gases, and other drivers. Some regions show a strong de-
pendence of temperature and precipitation on the underly-
ing SST patterns, especially over the tropics (most regions
in South America, Africa, and South and Southeast Asia), as
opposed to other regions where most of the model spread ap-
pears to be due to internal variability within the atmosphere
only. These time series suggest that the model’s response to
external factors is reliable in most regions of the globe.

4 Regional model validation

We now move to the validation of the HadRM3P re-
gional climate model within w@h2. As for the validation
of HadAM3P in the previous section, we analyse seasonal
mean biases in surface air temperature and precipitation and
compare these to those in w@h1 over a 30-year period from
1961 to 1990 (Sect. 4.1). These biases are analysed in detail
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Figure 6. Biases in surface air temperature for the HadRM3P RCM in w@h1 (left; a, d, g, j) and w@h2 (middle; b, e, h, k), and the difference
in absolute biases (right; c, f, i, l, expressed as w@h2 minus w@h1, i.e. negative values indicate an improvement). Each row corresponds to
a season (from top to bottom: DJF, MAM, JJA, SON). The biases are computed at the respective model resolution, while the absolute bias
difference is computed on the 0.44◦ grid. Biases are computed with respect to the E-OBS dataset and are expressed in ◦C.

for the sub-regions shown in Fig. 1, with a focus on the mean
biases for regional averages and the geographical distribution
of temperature and precipitation within each sub-region. The
origin of the mean biases is also investigated in Sect. 4.2. We
then look at the ability of the model to represent extremes by
means of quantile–quantile plots in Sect. 4.3. The sensitiv-
ity of the model to forcings for sub-regions within the Euro-
pean domain is then investigated using reliability diagrams
(Sect. 4.4).

4.1 Mean biases

HadRM3P mean biases in temperature (Fig. 6, with respect
to the E-OBS dataset) are similar to those of HadAM3P, in-
cluding the warm bias in summer. This particular bias, how-
ever, is substantially reduced in w@h2 relative to w@h1,
over most of central and south-eastern Europe in HadRM3P
(by 1–2 ◦C, Fig. 6i). This contrasts with results from the
HadAM3P GCM, for which this bias worsens in this re-
gion and season (Sect. 3.1 and Fig. 2i). We note that in
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Figure 7. Spatial root mean squared biases in surface air temperature by region and season with respect to the E-OBS dataset. The regions are
shown in Fig. 1. Green (orange) bars are for w@h2 (w@h1); filled (hatched) bars are in comparison with E-OBS at 0.22◦ (0.44◦) resolution
(for w@h1, 0.22 is done by bilinear interpolation; for w@h2, 0.44 is done by aggregation).

w@h1 the summer temperature bias was larger in HadRM3P
than in HadAM3P (Fig. 10 in Massey et al., 2015), while
in w@h2 the biases are more consistent between the global
and regional models. Hence, the improvement in HadRM3P
in w@h2 compared to w@h1 comes from not increasing the
global model bias.

This improvement could be a result of the higher horizon-
tal resolution in w@h2 (0.22◦, versus 0.44◦ in w@h1), which
could explain why this bias is reduced in HadRM3P but not
in HadAM3P. The improved representation of the land sur-
face with the introduction of MOSES 2 may also contribute
to this improvement, consistent with other studies (e.g. Davin
et al., 2016). Feedbacks between the land surface and the
atmosphere have indeed been shown to be key to summer
temperature in these regions, in particular for hot extremes
(e.g. Quesada et al., 2012). The origin of the biases is inves-

tigated in greater detail in Sect. 4.2. Probably as a side-effect
of this bias reduction, the warm bias extends further north in
w@h2, inducing a slight degradation of model performance
over Scandinavia and western Russia. Other changes with the
introduction of w@h2 include the vanishing of a small warm
bias over central and eastern Europe in SON but the appear-
ance of a new small warm bias over eastern Europe (Ukraine,
Bielorussia) in DJF and MAM.

Table 2 shows the biases in regional averages for the
eight regions from the PRUDENCE project (Christensen and
Christensen, 2007) shown in Fig. 1. As a complement, Fig. 7
summarizes the temperature biases at the grid cell level for
the sub-regions expressed as the spatial root mean squared
biases (RMSBs) in each region. Given that the two regional
models are run at different resolutions and that the E-OBS
dataset is available on both model grids, RMSB is computed
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Figure 8. Same as Fig. 6 but for precipitation, in mmday−1. See Supplement Fig. S13 for these biases in relative terms.

at both resolutions for each model in order to allow for a fair
comparison, by bilinearly interpolating w@h1 data to 0.22◦

and aggregating w@h2 data to 0.44◦. The improvement in
JJA is found at both resolutions in all regions except Scan-
dinavia (SC), while in other seasons the differences between
the two models are found to be rather small at the scale of the
analysed regions.

We now examine the biases in precipitation. Figure 8
shows the seasonal mean biases in both model versions and
their difference (see Fig. S13 for relative precipitation bi-
ases). The biases are very similar between both models. In
particular, the dry bias over eastern Europe in JJA is not re-

duced in w@h2, which sheds some light on the mechanisms
leading to the reduced temperature bias in this region and
season. The introduction of the more sophisticated MOSES
2 land-surface scheme may impact climate in two main ways:
first, MOSES 2 may better simulate evapotranspiration (e.g.
by better distributing water across storage components or im-
proved stomatal resistance parameterization), thereby lead-
ing to an improved partitioning of the energy available at the
land surface into sensible and latent heat fluxes. Improved
surface fluxes, in particular sensible heat flux, directly lead
to an improved simulated temperature. Second, altered sur-
face fluxes may additionally impact precipitation (e.g. Gen-
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Figure 9. Same as Fig. 7 but for precipitation.

tine et al., 2013; Guillod et al., 2014, 2015), feeding back
on the biases. For instance, precipitation may increase as a
response to increased evapotranspiration, which may further
reduce the biases by providing more water for further evap-
otranspiration, thereby leading to cooler and wetter condi-
tions. The absence of an improvement in simulated precipi-
tation over eastern Europe suggests that this second pathway
does not dominate the response. Instead, it is either the direct
improvement in simulated evapotranspiration in MOSES 2
or other factors unrelated to the land-surface scheme, such
as increased horizontal resolution, which reduce temperature
biases.

Figure 9 provides an overview of the precipitation biases
at the grid cell scale within each sub-region by showing the
precipitation RMSB (as in Fig. 7 for temperature), comple-
mented by Table 2 for the bias of regionally averaged precip-
itation. Unlike for temperature, model performance for pre-
cipitation is highly dependent on horizontal resolution and

the interpretation is less straightforward. The region with the
largest precipitation biases at the grid cell scale is the Alps
(AL). There, the biases are largest for each model at their
own resolution, but smaller when interpolated or aggregated
to the other resolution. This is expected for w@h2, as aggre-
gating the data to a coarser grid allows for biases of opposing
signs in neighbouring grid cells to compensate each other. As
a result, w@h2 clearly outperforms w@h1 over the Alps at
0.44◦ resolution. However, the improvement of w@h1 per-
formance after bilinear interpolation to the higher resolution
may seem surprising. It suggests that the locations of the
peaks in precipitation are shifted relative to the observations,
leading to large local biases of both signs within the region, a
feature that can indeed be observed in Fig. 8. The geographi-
cal distribution of precipitation, quantified by the spatial cor-
relation between seasonally averaged precipitation in model
and observations (Fig. S14), highlights that, in most cases,
the spatial correlation increases with interpolation or aggre-
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Table 2. HadRM3P biases in regionally averaged temperature and precipitation for the eight regions shown in Fig. 1. The numbers in bold
font indicate better performance in the corresponding model version for each region, season, and variable.

BI IP FR ME SC AL MD EA

Air temperature (◦C)

DJF
w@h1 0.20 –0.51 0.56 0.99 −0.19 −0.92 −1.04 0.65
w@h2 0.37 −0.67 0.45 0.98 0.06 –0.75 –0.67 0.93

MAM
w@h1 0.10 0.41 0.35 0.41 –0.23 −0.87 0.12 0.26
w@h2 0.01 0.22 0.20 0.33 0.47 –0.62 0.12 0.47

JJA
w@h1 0.75 2.26 2.74 2.55 0.30 2.07 3.50 4.48
w@h2 0.35 0.98 1.72 1.93 0.98 1.76 2.66 3.89

SON
w@h1 −0.52 –0.25 0.25 0.34 −0.84 –0.62 –0.31 0.50
w@h2 –0.40 −0.71 –0.2 –0.02 –0.61 −0.76 −0.41 0.05

Precipitation (mm day−1)

DJF
w@h1 −0.31 −0.43 0.07 0.47 0.58 0.99 0.03 0.43
w@h2 0.04 –0.42 0.17 0.51 0.64 1.01 0.34 0.47

MAM
w@h1 −0.26 0.04 0.07 0.14 0.52 1.08 0.60 0.46
w@h2 –0.19 0.07 0.07 0.11 0.44 1.19 0.74 0.44

JJA
w@h1 −0.78 0.14 −0.37 −0.48 –0.10 −0.40 –0.07 –0.84
w@h2 –0.73 0.09 –0.34 –0.46 −0.13 –0.20 −0.09 −0.93

SON
w@h1 −1.19 −0.09 −0.28 −0.23 −0.24 0.71 0.19 0.02
w@h2 –0.90 –0.06 –0.20 –0.11 –0.05 0.77 0.50 0.18

Table 3. Characterization of forecast reliability following Weisheimer and Palmer (2014). The uncertainty range of the slope is characterized
by the 75 % confidence interval derived from 1000 bootstrap samples with replacement.

Category Meaning Slope of the reliability diagram

5 perfect forecast Uncertainty range includes perfect reliability (i.e. 1).

4 still very useful for decision-making The lower uncertainty bound is at a minimum of 0.5 and the uncertainty range
does not include the perfect reliability line.

3 marginally useful The lower uncertainty bound is positive but does not belong to category 4 or 5.

2 not useful Positive slope and the uncertainty range includes 0.

1 dangerously useless Negative slope.

gation, while no significant difference between the models is
found at each model’s respective resolution. The better reso-
lution of topography thereby does not particularly improve
the simulation of spatial patterns within the regions, even
over the Alps. The smoothing of the field that results from
bilinearly interpolating to 0.22◦ thereby artificially reduces
the overall bias. This result is consistent with earlier find-
ings showing that the model exhibits some exaggerated rain-
shadow effect (Buonomo et al., 2007), also seen here with a
dry bias south of the Alps. This effect also likely plays a role
in the better performance of w@h2 at 0.44◦, which should
therefore be treated with caution (see e.g. the apparent im-
provement in w@h2 found in Fig. 9, where the bias differ-
ence is shown at 0.44◦). Nonetheless, it should be noted that
for example in JJA, the precipitation bias is halved when con-
sidering regional averages over the Alps (Table 2), while no

such difference is found at the grid cell scale (Fig. 9), high-
lighting again the scale dependency of the biases. This im-
provement found in JJA at the regional scale, however, does
not hold in other seasons. Overall, these results suggest that
the analysis of regionally aggregated data in a region may be
more appropriate in regions with complex topography than
analysis at the grid cell scale.

Finally, the impact of the short spin-up is evaluated as was
done in Sect. 3.1 for HadAM3P. Figure S15 shows the dif-
ference in soil moisture as in Fig. S5 (see Sect. 3.1). Over
Europe, only Finland and north-western Russia display large
differences in the upper 1 m of the soil. In the deepest layer,
soil moisture is larger in the analysed year than in the pre-
vious year over south-eastern Europe and in some other re-
gions, but this deep layer may be less critical to evapotranspi-
ration and therefore to surface climate. Analyses of temper-

www.geosci-model-dev.net/10/1849/2017/ Geosci. Model Dev., 10, 1849–1872, 2017



1862 B. P. Guillod et al.: weather@home2

ature and precipitation biases (Figs. S16 and S17) show that
the hot MAM and JJA biases over south-eastern Europe are
reduced with progressing spin-up, as expected from the in-
creasing soil moisture, suggesting that a longer spin-up may
further reduce this bias. Temperature biases in DJF and pre-
cipitation biases in all seasons are not related to soil moisture
changes in a straightforward manner, and hence could be due
to soil temperature, a variable not saved as an output in our
simulations and therefore not analysed here.

4.2 Origin of the biases

To investigate the causes of the biases, and in particular the
role of the land surface in these, we analyse surface radia-
tive and turbulent fluxes. Figure 10 shows the seasonal cycle
of HadRM3P biases for each region and a number of vari-
ables. This analysis was conducted over years 1984–2006 in-
stead of the 1961–1990 period analysed in previous sections
due to availability of observations of land-surface variables
such as radiation (SRB dataset) and surface turbulent fluxes
(FLUXNET-MTE dataset). As a side-effect, only w@h2 sim-
ulations are analysed (the w@h1 ensemble only spans 1961–
1990).

The warm and dry summer biases appear clearly in
Fig. 10a, b, in particular over eastern Europe (EA) and the
Mediterranean (MD) regions. Positive biases in net short-
wave radiation at the surface (Fig. 10d) are found in most
regions from April/May to September, and are mostly driven
by an underestimation of cloud cover (not shown; see Massey
et al., 2015, for cloud cover biases in w@h1-HadAM3P).
The overestimation of incoming energy is most pronounced
in June and July in EA, and may explain part of the warm
biases.

The turbulent heat fluxes provide further insights into the
RCM biases: sensible heat flux (H , Fig. 10e), latent heat
flux (λE, Fig. 10f), and the partitioning of the energy avail-
able at the land surface into these two fluxes as expressed
by the evaporative fraction (EF= λE

λE+H
), i.e. the fraction of

the turbulent fluxes that is used for evapotranspiration. EF
(Fig. 10g) is overestimated in spring but underestimated in
summer, a decrease (relative to observations) that is a sign of
excessive summer soil moisture depletion. In fact, the over-
estimation of λE in spring may itself contribute to excessive
soil moisture depletion, although precipitation minus evapo-
ration (Fig. 10c) does not exhibit particularly negative biases
(note, however, that observed precipitation might be underes-
timated since the E-OBS dataset does not correct for the sys-
tematic undercatch of rain gauge measurements). The result
of this drying observed as a bias in EF is (i) an overestimation
of H , particularly in July and August, and (ii) a concurrent
underestimation of λE. The overestimation of H likely con-
tributes to the positive temperature bias in these months. In
fact, the MD region appears to be strongly affected by the
biases in turbulent fluxes, which may explain its large warm
bias despite a radiation bias smaller than other regions such

as EA. The underestimation of λE, on the other hand, im-
plies an overly dry boundary layer, which in turn may lead to
an underestimation of cloud cover and precipitation.

These results show that despite the improvements found
in w@h2 following the use of a more sophisticated land-
surface scheme, some deficiencies remain. Part of the biases
in temperature and precipitation can be explained by the land
surface. The origin of these land-surface biases could lie in
atmospheric parameterizations (e.g. of cloud and precipita-
tion formation), which provide too little precipitation and too
high incoming shortwave radiation. Alternatively, deficien-
cies in the land surface could be the driver of the fast drying
of the soils, which in turn feed back onto the atmosphere,
leading to the observed cloud, radiation, and precipitation
biases. A combination of both the atmosphere and the land
surface likely leads to the observed biases, but identifying
the driver of these biases is outside the scope of this paper.

4.3 Extreme events

The ability of the weather@home ensemble modelling sys-
tem to generate a large number of simulations makes it
particularly attractive for the study of extreme weather
events and their attribution to anthropogenic climate change.
Various extremes events have been investigated using
weather@home, such as floods (Schaller et al., 2016) and
heat waves (Otto et al., 2012; Mitchell et al., 2016b). In this
section, we analyse the performance of the model for the fol-
lowing extreme events: hot summer days, cold winter nights,
and heavy precipitation days in both seasons.

Figures 11 and 12 show quantile–quantile plots for the
eight regions for different variables and seasons, using all
overlapping years between E-OBS and our w@h2 ensemble
(1950–2006). The dots and crosses contain the values at spe-
cific quantiles for the whole ensemble, with filled dots for
deciles, empty dots for the values at percentiles 1 to 5 and
95 to 99, and crosses for the 0.5th and 99.5th percentile val-
ues. The envelopes provide indications about the spread from
ensemble members to assess both uncertainty and internal
variability of the model as follows: 1000 bootstrap samples
are constructed, each with one ensemble member per year,
thereby containing the same total number of days as the ob-
servations. The envelope displays the 95 % range of the quan-
tile values computed from each bootstrap sample.

We first investigate the performance of hot summer ex-
tremes, quantified by the daily maximum temperature (in
red in Fig. 11). High daily maximum temperature values are
overestimated in all regions. Interestingly, in most regions,
the quantiles match the observations very well in the colder
half of the data, but not in the warmer tail, highlighting that
the warm biases in hot extremes in these regions are respon-
sible for the warm bias in mean temperature. In MD and EA,
however, even the cold tail of daily maximum temperature
is overestimated. Interestingly, these two regions can be ex-
pected to be in a regime where soil moisture is a major limit-
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(f) Surface sensible heat flux [W m−2]
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Figure 10. Seasonal cycle of HadRM3P biases from 1984 to 2006 in each region for (a) temperature, (b) precipitation, (c) precipitation minus
evaporation, (d) net shortwave radiation at the surface, (e) surface latent heat flux, (f) surface sensible heat flux, and (g) evaporative fraction
(i.e. the ratio of latent heat flux to the sum of sensible and latent heat fluxes). The observational datasets used are E-OBS for temperature and
precipitation, SRB for radiation, and FLUXNET-MTE for surface fluxes and the evaporative fraction. P –E is computed using precipitation
from E-OBS and evapotranspiration from FLUXNET-MTE.

ing factor to evapotranspiration, thereby strongly controlling
summer temperature (e.g. Mueller and Seneviratne, 2012).
The dry summer precipitation bias in these two regions (e.g.
Fig. 8) can thus be expected to indeed induce a warming over
a wide range of temperature quantiles. A possible reason for
the bias to be restricted to warm extremes in the other regions
may be that the model on some occasions produces an overly
strong summer drying in these regions, inducing a shift into a
soil moisture-controlled regime and thereby an amplification
of temperature anomalies on hot days. Note that the spread
from the bootstrap samples is small in most regions, high-
lighting that these biases do not result from internal variabil-

ity, but are exhibited in any subsample of the same size as the
observational data.

For cold winter temperatures (daily minimum tempera-
ture in DJF, in blue in Fig. 11), the model performs rather
well. Apart from the regions MD, SC, and, to a lesser ex-
tent, ME and AL, where nighttime temperatures are underes-
timated or overestimated, observed cold quantile values are
mostly within the range of the modelled values. Extreme cold
nights in BI and FR, however, are also underestimated by the
model (i.e. extreme cold nights are not cold enough). Over-
all, w@h2 appears to be suitable for the investigation of cold
winter nights over Europe.

www.geosci-model-dev.net/10/1849/2017/ Geosci. Model Dev., 10, 1849–1872, 2017
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Figure 11. Quantile–quantile plots of the distribution of (red) JJA daily maximum temperature (tasmax) and (blue) DJF daily minimum
temperature (tasmin) for the eight regions, comparing w@h2 to E-OBS over years 1950–2006. Blue axes (bottom, left) are for DJF tasmin,
red axes (top, right) are for JJA tasmax. Dots show the quantile values for the entire ensemble (filled dots: deciles; empty dots: 1st to 5th and
95th to 99th percentiles; cross symbols: 0.5th and 99.5th percentiles). The coloured envelopes show the 95 % confidence interval of w@h2
quantile values from 1000 bootstrap samples with one ensemble member per year (see text).
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Figure 12. Same as Fig. 11 but for daily precipitation: quantile–quantile plots for JJA (red) and DJF (blue) comparing w@h2 to E-OBS over
years 1950–2006. Here, the same axes are used for both seasons.

For daily precipitation (Fig. 12 with JJA in red and DJF in
blue), the spread between bootstrap samples is larger. In sum-
mer, heavy precipitation days are very well represented in all
regions apart from BI and EA, where the quantile values are
underestimated by w@h2. These regions also exhibit rela-
tively large negative mean precipitation biases (e.g. Table 2).
Nonetheless, it appears that overall w@h2 does a reasonable
job at simulating summer heavy precipitation extremes in

most European regions. Daily winter heavy precipitation (in
blue in Fig. 12), on the other hand, is overestimated in most
regions (especially in MD, SC, AL, and EA), but well simu-
lated in BI and IP, with intermediate performances in FR and
ME. We note that, unlike for temperature, most precipitation
quantile–quantile plots display a rather linear shape, suggest-
ing that for applications where bias correction is necessary,
applying a linear method may be appropriate.
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These results provide some confidence in the ability of
w@h2 to simulate extreme events over Europe. A few excep-
tions include summer hot extremes, which are overestimated
over all regions. A range of bias-correction methodologies
are available to take such biases into account, ranging from
a simple additive (“delta method”, for temperature) or multi-
plicative (“linear scaling”, for precipitation, e.g. Lafon et al.,
2013) adjustment based on the mean, to sophisticated meth-
ods that attempt to correct for changes in the shape of the
distribution, such as quantile–quantile mapping (e.g. Wood
et al., 2004). The shapes of the quantile–quantile plots for
summer daily maximum temperature (Fig. 11) suggest that
the application of a simple additive bias correction may not
be suitable for correcting extremes. A multiplicative factor
applied to precipitation, on the other hand, seems appropriate
in most regions. However, these bias-correction techniques
may not preserve the physical consistency between variables
that is provided by the model, which may be an issue in the
case of impact studies. In the case of large ensembles such as
those from weather@home, a new bias-correction method-
ology (Sippel et al., 2016b), based on the resampling of en-
semble members conditional on the distribution of, e.g. sum-
mer averaged temperature over a region of interest, has been
shown to not only improve seasonal averages, but also the
representation of extremes. This new methodology is promis-
ing for a wide range of applications with weather@home
model output.

4.4 Reliability and trends

A common use of climate models, including weather@home,
is the study of the response of climate to forcing agents.
In particular, weather@home is regularly used for the attri-
bution of extreme weather events to anthropogenic climate
change. An obvious question is then the following. Is the
model reliable, i.e. does it simulate well the response to po-
tential drivers such as sea surface temperature and green-
house gases? In this section, we investigate the reliability
of w@h2 for simulating seasonally averaged events: warm
summers, cold winters, dry summers, and wet winters. While
seasonal averages are not directly related to extreme weather
events, the drivers of both are likely similar (e.g. higher CO2
leads to increased mean and extreme temperature), and the
occurrence of a few extreme events may strongly impact the
seasonal average. Figures 13 to 16 show reliability diagrams
(Weisheimer and Palmer, 2014) for these four types of sea-
sonal events and the eight analysed regions, using w@h2 and
CRU-TS data from 1901 to 2006. For each type of event
(e.g. high summer temperature, defined as JJA averaged tem-
perature in the upper tercile), the probability of the event
is computed for each year from regionally averaged w@h2
model output (“forecast probability”). The 106 forecasts (one
per year) are then grouped into bins of size 0.1, and the
corresponding observed frequency (“observed relative fre-
quency”) is computed from the observations in the corre-

sponding years, with uncertainties derived from bootstrap-
ping (Wilks, 2011; NCAR – Research Applications Labora-
tory, 2015). The forecast and observed values for each bin
are then plotted with the size of the dot proportional to the
sample size (i.e. number of years). Results for bins contain-
ing at least five data points (i.e. years) are shown in red,
while for other bins, shown in black, values are not very ro-
bust and should be interpreted with caution. The grey back-
ground in each plot shows the skill region, i.e. where data
contribute positively to the Brier skill score. Here, we fol-
low a commonly used method (e.g. Weisheimer and Palmer,
2014) whereby the tercile definition is based on the observed
and modelled distributions, respectively, i.e. a model’s fore-
cast of a warm summer is when the temperature is in the
upper tercile (i.e. upper third) of its own distribution.

In order to facilitate interpretation, reliability is further
classified into five categories using the definition proposed
by Weisheimer and Palmer (2014). To do so, 1000 bootstrap
samples with replacements were constructed from the full
set of w@h2 data. A reliability diagram was simulated for
each of them, to whose points a weighted linear regression
was applied, using the number of forecasts in each bin as
weights. The 75 % confidence interval (uncertainty range) of
the regression slopes is used to categorize forecasts into five
classes, from 1 (dangerously useless) to 5 (perfect forecast)
(Weisheimer and Palmer, 2014). Table 3 provides some de-
tail on the definition of the five categories, and the category
is indicated in the upper left of each panel on Figs. 13–16.

Reliability diagrams for warm summers (JJA temperature
in the upper tercile, Fig. 13) show that the model is very re-
liable at simulating the dependency of this quantity to forc-
ings and displays good resolution, albeit with a small under-
confidence, i.e. the model tends to over-forecast low proba-
bility events but under-forecast high probability events (see
Wilks, 2011, for details on the interpretation of reliability di-
agrams). Such forecasts can typically perform very well after
calibration. Interestingly, this underestimation of the sensi-
tivity of hot temperatures to forcings is consistent with the
tendency of RCMs to underestimate trends in heat waves
over Europe (Min et al., 2013; Sippel et al., 2016a). All re-
gions display skill that is “still very useful for decision mak-
ing” or “perfect” (categories 4 and 5, respectively). Note that
for a few bins (e.g. for forecast values above 0.7 in IP), ob-
servations are in the upper tercile for all years with such
forecast (modelled) probabilities, preventing the bootstrap-
ping method to compute uncertainty ranges for individual
bins (note that the uncertainty of the linear fit used to cat-
egorize the performance can still be applied). In most cases,
we also find that data points that lie far from the 1 : 1 line
(e.g. for forecast probabilities greater than 0.4 in FR) include
very few years and should therefore be interpreted cautiously
(black dots, including less than 5 years or “forecasts”). A
similarly good performance is found for the occurrence of
low winter temperature (DJF temperature in the lower tercile,
Fig. 14). Thus, the overall high reliability of w@h2 for simu-
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Figure 13. Reliability diagrams for high summer temperature for each sub-region, defined as seasonally averaged JJA temperature in the
upper tercile over 1902–2006. Forecasts are grouped into bins of size 0.1 and their average value within each bin is plotted (x-axis) versus
the relative frequency observed in the corresponding years. The area of the dots is proportional to the number of forecasts within each bin,
with bins containing less than 5 years shown in black (red dots indicate bins containing at least 5 years). Error bars are computed from 100
bootstrap samples using the “verification” R package (NCAR – Research Applications Laboratory, 2015). Grey shading indicates where
data points contribute positively to skill (Wilks, 2011). Performance category is indicated in the upper left of each plot, on a scale from 1
(dangerously useless) to 5 (perfect) (see Table 3) as in Weisheimer and Palmer (2014).
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Figure 14. Reliability diagrams for low winter temperature, defined as seasonal DJF averages in the lower tercile. See the caption of Fig. 13
for technical details.

lating warm summers and cold winters provides some con-
fidence in weather@home-based attribution statements for
temperature over Europe.

The reliability of the model for seasonal averages of pre-
cipitation is found to be lower. For low summer precipitation
(Fig. 15), the reliability is found to be marginally useful for
IP and EA, and not useful for FR. The reliability in other

regions is even lower (“dangerously useless”), as the slope
of the linear fit is slightly negative. A more positive picture
is found for high winter precipitation: perfect forecasts are
identified for ME and SC (Fig. 16), and still marginally use-
ful performance for IP and BI. The reliability is classified
as “dangerously useless” for MD, FR, and EA (Weisheimer
and Palmer, 2014). The relatively low skill for precipitation
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Figure 15. Reliability diagrams for low summer precipitation, defined as seasonal JJA averages in the lower tercile. See the caption of Fig. 13
for technical details.
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Figure 16. Reliability diagrams for high winter precipitation, defined as seasonal DJF averages in the upper tercile. See the caption of Fig. 13
for technical details.

should however be expected and it is consistent with low
seasonal predictability in Europe found in other studies (e.g.
Weisheimer and Palmer, 2014).

It should be noted that, as Figs. 13 to 16 are based on
1901–2006, they include the influence of all temporally vary-
ing factors, including greenhouse gases, sea surface tem-
perature and sea ice, aerosols, and volcanoes. Therefore,
these results are dominated by the long-term trend arising
from increased greenhouse gas concentrations, rather than
by year-to-year sea surface temperature variability, for ex-
ample. Trends in regional averages of temperature and pre-
cipitation, quantified using the Theil–Sen slope with Mann–

Kendall significance testing (e.g. Yue et al., 2002), are shown
in Fig. 17 for summer and winter. For w@h2, we constructed
1000 106-year time series by randomly sampling one simu-
lation per year, from which trends and p values are derived.
Boxplots summarize these 1000 trend values and are overlaid
by white dots depicting the observed trend from CRU-TS.
The value at the bottom of each boxplot indicates the per-
centage of w@h2 time series with a significant trend, with an
asterisk if the observed trend is significant. Overall, temper-
ature trends are well within the interquartile range of mod-
elled trends, although they are underestimated in IP, FR, and
AL. Thus, w@h2 follows the tendency of RCMs to underes-
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Figure 17. Regional summer and winter trends in (a) temperature and (b) precipitation. Boxes show the distribution of trend values using
1000 time series constructed by randomly sampling one w@h2 ensemble member per year, with outliers shown as black dots. White dots
show the observed regional trend estimated from CRU-TS. Theil–Sen linear trend slopes are computed using regional averages and signif-
icance is tested using a Mann–Kendall test. The numbers below the boxes indicate the percentage of w@h2 time series with a statistically
significant trend (at the 5 % level), and with an asterisk if the observed trend is significant.

timate temperature trends over Europe (Min et al., 2013). For
precipitation, on the other hand, trends are noisy and clus-
tered around 0, and observed trends often lie at the tail of
the w@h2 trend distributions. This could explain the overall
poor reliability in seasonal averages of precipitation found in
Figs. 15 and 16.

Attempts to isolate the response to the oceans (SSTs and
sea ice) by using anomalies from a 31-year running aver-
age (not shown) do not provide more insights, as the fore-
casts from individual years are all close to the climatological
forecast of 1/3. This result is consistent with the time se-
ries shown in panels (e, k, o) in Figs. S9–S12, which show
that for European regions the inter-member spread is sub-
stantially larger than the variability in the ensemble mean
from year to year (long-term trend excepted). Therefore, in
w@h2 most of the inter-annual variability in Europe is due to
(unpredictable) internal variability in the atmosphere, rather
than to specific SST or sea ice patterns, consistent with the
relatively low seasonal predictability often found over Eu-
rope (e.g. Weisheimer and Palmer, 2014). Further work will
investigate this more specifically and will aim at determin-
ing whether this finding is a model feature or can be con-
firmed by observations. Here, we simply note that Figs. S9–
S12 suggest a different behaviour in some regions known to
be strongly influenced by SST patterns such as the El Niño–
Southern Oscillation.

5 Conclusions

The new version of weather@home presented and vali-
dated in this paper is a powerful tool for the study of ex-
treme weather events. The modelling set-up consists of the
HadAM3P GCM driven by sea surface temperature, sea ice,
and other forcings, which is downscaled over a sub-region by
its RCM counterpart, HadRM3P. Using a distributed comput-
ing infrastructure (Massey et al., 2006), very large ensembles
of climate model simulations can be generated, allowing one
to examine rare extreme events with high statistical confi-
dence.

Improvements in w@h2 include the use of a more recent
land-surface scheme, MOSES 2, which uses tiles to represent
land-surface-type heterogeneity within each grid cell, as well
as a 2-fold increase in horizontal resolution in HadRM3P
with the use of the 0.22◦ European CORDEX region. A large
ensemble with about 100 members per year for years 1901–
2006 has been generated, and is compared to a w@h1 en-
semble over 1961–1990 (Massey et al., 2015).

Overall, w@h2 shows reduced biases compared to
w@h1, although the general bias patterns persist. Biases in
HadAM3P are reduced in the Southern Hemisphere, while
mixed results are found in the Northern Hemisphere. The
model is found to be reliable in most regions and in terms
of year-to-year variability in global temperature over land.
In HadRM3P, the most striking bias reduction is found over
eastern Europe, where a warm summer bias is reduced (but
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remains significant). Precipitation biases in HadRM3P, on
the other hand, do not exhibit substantial improvements over-
all. Hot extremes are overestimated for all European regions,
but cold extremes are well represented. The model is shown
to perform particularly well for extreme daily precipitation.

A limitation of w@h2 as presented in this study is the rel-
atively short spin-up (1 year). We find that a longer spin-up
may further improve w@h2, in particular with respect to the
representation of summer temperatures over south-eastern
Europe. Future w@h2 experiments will therefore include a
longer spin-up of 5–10 years, in order to allow for a full sta-
bilization of soil moisture and soil temperature and to thereby
take full advantage of the capability of the model.

One of the main uses of weather@home relates to the at-
tribution of extreme weather events to anthropogenic climate
change. The ability of the model to respond to forcing agents
such as greenhouse gases and sea surface temperature was
therefore examined over Europe. The model is reliable for
seasonal averages of temperature although slightly under-
confident, i.e. it might underestimate the impact of the forc-
ing. The model’s reliability is less satisfactory for seasonally
averaged precipitation, although in most regions and seasons
comparison with observations lies within uncertainties.

Another common use of weather@home output is for the
generation of datasets of synthetic extreme events, to be used
by the impact modelling community. For example, the on-
going MaRIUS project (Managing the Risks, Impacts and
Uncertainties of droughts and water Scarcity) uses drought
events in the UK for present and future conditions gener-
ated by weather@home to assess the risks associated with
droughts. Using the weather@home modelling system al-
lows for thousands of drought events to be generated and
fed into various hydrological and impact models, thereby en-
abling a risk assessment framework to be applied to types of
events with rather few observed occurrences.

For some applications, bias correction might be neces-
sary. The availability of a large number of simulations al-
lows for new methodologies to be applied, for example by
re-sampling from the ensemble (Sippel et al., 2016b) or by
giving weights to ensemble members in order to obtain dis-
tributions close to observations.

In this paper, we focused on the European region, but
w@h2 is being developed over a range of regions. Collab-
orators around the world have already used weather@home,
where HadRM3P is run over their region of interest, and the
project is expected to continue establishing new regions with
w@h2 in the future.

In conclusion, the improved physical representation of
the land surface in w@h2 increases our confidence in the
model’s ability to simulate weather extremes, in particular
hot extremes which can be highly related to land-surface–
atmosphere interactions (e.g. Miralles et al., 2014), although
some biases persist. Overall, weather@home may be a useful
tool for the investigation of extreme weather events if proper
bias corrections and other caveats are taken into account.

Code and data availability. HadRM3P is available from the UK
Met Office as part of the Providing REgional Climates for
Impacts Studies (PRECIS) program. Access to standard ver-
sions of the software is dependent on attendance at a PRE-
CIS training workshop after which all source code, includ-
ing that relevant to configuring HadAM3P, and other materials
are made available (http://www.metoffice.gov.uk/research/applied/
international-development/precis/obtain). These workshops are ei-
ther held at the Met Office, for which a small fee is charged to cover
the costs of the workshop delivery, or as part of a project, often in
a region where PRECIS is to be applied. The code to manage and
embed these models within the weather@home project is specific
to their utilization within the BOINC environment and we consider
it not within the scope of this publication.

The full set of model output data for the experiment used in
this study will be freely available at the Centre for Environmental
Data Analysis (http://www.ceda.ac.uk) in the next few months. Un-
til the point of publication within the CEDA archive, please email
cpdn@oerc.ox.ac.uk, who will work with you to access the relevant
data.

The Supplement related to this article is available online
at doi:10.5194/gmd-10-1849-2017-supplement.
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