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Abstract. OpenDrift is an open-source Python-based frame-
work for Lagrangian particle modelling under development
at the Norwegian Meteorological Institute with contribu-
tions from the wider scientific community. The framework
is highly generic and modular, and is designed to be used
for any type of drift calculations in the ocean or atmo-
sphere. A specific module within the OpenDrift framework
corresponds to a Lagrangian particle model in the traditional
sense. A number of modules have already been developed,
including an oil drift module, a stochastic search-and-rescue
module, a pelagic egg module, and a basic module for at-
mospheric drift. The framework allows for the ingestion of
an unspecified number of forcing fields (scalar and vectorial)
from various sources, including Eulerian ocean, atmosphere
and wave models, but also measurements or a priori values
for the same variables. A basic backtracking mechanism is
inherent, using sign reversal of the total displacement vector
and negative time stepping. OpenDrift is fast and simple to
set up and use on Linux, Mac and Windows environments,
and can be used with minimal or no Python experience. It is
designed for flexibility, and researchers may easily adapt or
write modules for their specific purpose. OpenDrift is also
designed for performance, and simulations with millions of
particles may be performed on a laptop. Further, OpenDrift
is designed for robustness and is in daily operational use for
emergency preparedness modelling (oil drift, search and res-
cue, and drifting ships) at the Norwegian Meteorological In-
stitute.

1 Introduction

Lagrangian trajectory models are used to predict the path-
ways and transformations of various types of objects and sub-
stances drifting in the ocean or in the atmosphere. There are
many practical and academic applications, including predic-
tion of

– oil drift and weathering to aid mitigation and cleanup
operations (Jones et al., 2016);

– drifting objects for search and rescue (Breivik and
Allen, 2008; Breivik et al., 2011, 2013);

– ichthyoplankton transport (fish eggs and larvae) for
stock assessments (Röhrs et al., 2014); and

– microplastics suspended in the ocean (van Sebille et al.,
2012, 2015).

Table 1 lists some commonly used trajectory models and
their applications. Additionally, many individual researchers
or research groups have been developing trajectory model
codes for in-house use, without publishing (or naming) a
software code.

Lagrangian tools fall in two broad categories: either the
trajectories are computed along with the velocity fields as
part of the ocean or atmospheric circulation model, e.g. so-
called floats in the regional ocean modelling system (ROMS)
(Shchepetkin and McWilliams, 2005). This is known as “on-
line” trajectory computations and has the advantage that no
separate model is needed. Alternatively, the trajectories can
be computed “offline” after completion of the Eulerian model
simulation(s). This is the approach taken for OpenDrift and
is also necessary for a generic framework as the trajectories
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depend in many cases on forcing from a range of fields stem-
ming from more than just one Eulerian model. This is, e.g.
the case for oil drift and search-and-rescue models, which
both require wind as well as currents (and wave forcing
in the case of oil drift) to properly account for the advec-
tion and transformation of the particles. For such emergency
preparedness purposes, offline models are the only option
fast enough to meet the requirements of operational agen-
cies. Other advantages of offline models are that modifica-
tions (sensitivity tests) of the drift algorithms may be tested
quickly without needing to rerun the full Eulerian model, and
also that simulations backwards in time may be performed.

Existing trajectory models are in most cases tied to a spe-
cific application, and may not be applied to other drift appli-
cations without compromising quality or flexibility. In many
cases, trajectory models are also tied to a specific Eulerian
model, or even a particular institutional ocean model setup,
limiting usability for other institutes or researchers. Often, it
is also required that Eulerian forcing data must be in a spe-
cific file format. This raises the time and effort needed to
set up a trajectory model. Further, in an operational setup,
the need to convert large files to another format increases
both the complexity and computational costs of the process-
ing chain, compromising robustness.

The OpenDrift framework has been designed to perform
all tasks which are common to trajectory models, whether
oceanic or atmospheric. In short, the main task is to obtain
forcing data from various sources and to use this information
to move (propagate) the elements in space, while potentially
transforming other element properties, such as evaporation
of oil, or growth of larvae. In addition, common function-
ality includes mechanisms for configuration of simulations,
seeding of elements, exporting output to file, and tools to
visualise and analyse the output. Additionally, several de-
sign requirements have been imposed on the development
of OpenDrift: (1) platform independence and ease of instal-
lation and use; (2) simple and rapid implementation of any
purpose-specific processes, yet flexibility to support unfore-
seen needs; (3) forcing data from any type of source sup-
ported, including Eulerian ocean, atmosphere or wave mod-
els (typically NetCDF or GRIB files), in situ measurements,
vector data sets (e.g. GSHHS coastlines) or analytical fields
for conceptual studies; (4) the ability run fast, even with a
large number of elements; (5) simulations forward and back-
ward in time; (6) robustness for operational use.

In Sect. 2, we describe the overall design of the code and
the general workflow of performing a simulation. In Sect. 3,
we give examples of three specific modules which are in-
cluded in the OpenDrift repository: search and rescue, oil
drift and atmospheric transport. The test suite and example
scripts are described in Sect. 4, and graphical user interfaces
(web and desktop) are described in Sect. 5. Section 6 pro-
vides discussion and conclusions.

2 Software design

To meet the requirements listed above, a simple and flexi-
ble object-oriented data model has been designed, based on
two main classes. One class (“Reader”) is dedicated to ob-
taining forcing data from external sources, as described in
Sect. 2.1. A generic class for a trajectory model instance
(“BaseModel”) is described in Sect. 2.2. This class contains
functionality which is common to all drift models, whereas
advection (propagation) and transformation of elements is
left for purpose-specific subclasses.

2.1 Reader class

The class Reader obtains forcing data (e.g. wind, waves and
currents) from any possible source and provides this to any
OpenDrift model through a common interface. To avoid du-
plication of code, a parent class “BaseReader” contains func-
tionality which is common to all Readers, whereas specific
subclasses take care of only the tasks which are specific to
a particular source of data, e.g. how to decode and inter-
pret a particular file format. Two methods must be imple-
mented by any Reader subclass: (1) a constructor method
which initialises a Reader object and (2) a method to re-
trieve data for given variables, position and time. The con-
structor (__init__ in Python) can take any arguments as im-
plemented by the specific Reader class, but it is typical to
provide a filename or URL from which data shall be obtained
by this Reader. The following Python commands initialise a
Reader of type NetCDF_CF_generic to obtain data from a
file “ocean_model_output.nc”.

>>> from opendrift.readers import reader_
netCDF_CF_generic

>>> r = reader_netCDF_CF_generic.Reader(
"ocean_model_output.nc")

The initialisation typically includes opening and reading
metadata from a given file or URL to check which variables
are available, and the coverage in time and space. The ac-
tual reading of the data is, however, not performed yet, but is
delayed until it is known exactly which subset in space and
time is actually needed (“lazy reading”). The contents can be
inspected by printing the object:

>>> print r
Projection:

+proj=stere +lat_0=90 +lon_0=70 +lat_ts=60
+units=m +a=6.371e+06 +e=0 +no_defs

Coverage: [m]
xmin: -2952800.000000
xmax: -2712800.000000
step: 800 numx: 301
ymin: -1384000.000000
ymax: -1224000.000000
step: 800 numy: 201
Corners (lon, lat):

( 2.52, 59.90) ( 4.28, 61.89)
( 5.11, 59.32) ( 7.03, 61.26)

Vertical levels [m]:
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Table 1. Some existing trajectory models for various oceanic and atmospheric applications.

Name Reference/URL Main application

Ariane Blanke et al. (1997) Oceanography
BSHDmod Dick and Soetje (1990) Oil
Connectivity Modeling System Paris et al. (2013) Ocean, generic
CIS iceberg model Kubat et al. (2007) Icebergs
CLaMS McKenna et al. (2002) Atmospheric chemistry
EMEP Simpson et al. (2012) Air pollution
FLEXPART, FLEXSTRA www.flexpart.eu, Nuclear, air pollution

Stohl et al. (1995)
HYSPLIT Stein et al. (2015) Atmospheric transport
Ladim Ådlandsvik and Sundby (1994) Plankton transport
LAGRANTO Wernli and Davies (1997), Meteorology

Sprenger and Wernli (2015)
LAGRANTO.ocean Schemm et al. (2017) Water mass properties
Leeway Breivik and Allen (2008), Search and rescue

Allen and Plourde (1999)
LTRANS Schlag and North (2012) Plankton (including larvae)
MEDSLIK, MEDSLIK-II De Dominicis et al. (2013), Oil

Lardner et al. (1998)
MIKE www.mikepoweredbydhi.com Ocean, generic
MOHID www.mohid.com Oil, sediments, water quality
MOTHY Daniel (1996) Oil, drifting objects
OD3D Wettre et al. (2001) Oil
OILMAP, SIMAP, CHEMMAP,

www.asascience.com
Oil, sediments, chemical, search

MUDMAP, SARMAP and rescue
OILTOX Brovchenko et al. (2003) Oil
OILTRANS Berry et al. (2012) Oil
OSCAR www.sintef.no/en/software/oscar Oil
OSERIT oserit.mumm.ac.be Oil, chemicals
PARCELS https://github.com/OceanPARCELS/parcels Ocean, generic
POSEIDON-OSM osm.hcmr.gr Oil
PyGNOME/GNOME gnome.orr.noaa.gov Oil, generic
SeaTrackWeb, PADM stw.smhi.se Oil, chemicals
SNAP Bartnicki et al. (2016) Atmospheric nuclear transport
STILT www.stilt-model.org Atmospheric trace gases
THREETOX Margvelashvily et al. (1997) Nuclear ocean transport
TRACMASS Döös et al. (2013) Ocean and atmosphere, generic
VOS en.ferhri.org Oil

[0.]
Available time range:

start: 2015-11-16 00:00:00
end: 2015-11-18 18:00:00
step: 1:00:00

67 times (0 missing)
Variables:

x_sea_water_velocity
y_sea_water_velocity

The above example shows that the created Reader object can
provide ocean surface current on a grid with 800 m pixel size
in polar stereographic coordinates, at hourly time resolution.

To allow for generic coupling of any OpenDrift model
with any Reader, a naming convention for variables is neces-
sary. By convention, the commonly used Climate and Fore-

cast (CF) naming convention (cfconventions.org)
should be used whenever possible. Thus, if the data source
is not already following this convention (e.g. a GRIB file),
the Reader should map the variable names to corresponding
CF standard_name.

The given Reader class must also have implemented a spe-
cific instance of the method get_variables which is called to
return data:

>>> data = r.get_variables(["x_wind",
"y_wind"], x, y, z, time)

The horizontal coordinates (x,y) correspond to the native
projection of the Reader, which is polar stereographic in the
given example. The task of transforming from one coordinate
system to another (including the rotation of vectors) is per-
formed by common methods from the parent class, based on
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the widely used PROJ.4 library (proj4.org), through its
Python interface pyproj. This allows OpenDrift to combine
input data from any coordinate systems, whilst keeping the
implementation of new Reader classes as minimalistic and
clean as possible. Further, this centralisation of code also fa-
cilitates optimisation for both performance and robustness.
The vertical coordinate (z) is by convention always in me-
tres, zero at the air/water surface and positive upwards. Thus,
Readers providing data from sources with other vertical co-
ordinate systems (e.g. topography following coordinates or
pressure/density levels) must take care of transforming this to
metres before data are returned. This is, e.g. done by an exist-
ing Reader supporting native output from the ROMS ocean
model. The variable time is consistently handled as Python
datetime objects within OpenDrift, with any time intervals
as timedelta objects. Readers also share some common con-
venience methods, such as plotting of geographical coverage.

Readers are, however, normally not called directly by the
user or from specific OpenDrift instances (models) but rather
implicitly from the parent BaseModel class (see Sect. 2.2).
An internal caching mechanism is implemented to minimise
the amount of data to be read, which is key to improving per-
formance. Input data from numerical models are normally
provided on a 3-D spatial grid (x,y,z) at discrete time steps,
which are often larger than the time steps used internally by
OpenDrift models. When data are requested for a given set
of element positions at a given time, OpenDrift requests from
the Readers’ 3-D blocks of data from the time before and af-
ter the given time. These 3-D blocks encompass the elements
tightly, except for a buffer on each side which is large enough
so that elements will stay within the coverage during the time
step of the Reader. After 3-D blocks of data are provided
by the Reader, interpolators are generated and then reused to
interpolate the same data blocks onto the element positions
successively at each internal calculation time step, until the
calculation time step reaches the latter Reader (model) time
step. At this point, a 3-D block for the subsequent model time
step is requested, and a new interpolator is generated. Due to
this very economical access of remote data, simulations with
OpenDrift are almost as fast when obtaining data from re-
mote Thredds servers, as when reading the same data from a
local file. The interpolator mechanism is also modularised by
a dedicated class in OpenDrift, allowing independent devel-
opment and optimisation. The default interpolation algorithm
uses bilinear interpolation (scipy.ndimage.map_coordinates)
and may also extrapolate data towards land, to avoid parti-
cles stranding in a “no data” gap between ocean pixels from
an ocean model and land points as determined from an inde-
pendent land mask.

Functionality exists also for reading and interpolating data
from ensemble models. For example, when obtaining wind
from a NetCDF model file containing 10 ensemble members,
particles number 1, 11, 21. . . will use wind from member 1 of
the atmospheric ensemble, and particles number 2, 12, 22. . .

will use wind from member 2 of the atmospheric ensemble

and so on. This allows for a more realistic spread/diffusion
of particles than when using no or constant diffusivity. This
functionality is particularly useful for ocean model output,
which is inherently uncertain on short timescales, due to lim-
ited availability of observations for assimilation.

Whereas obtaining forcing data from 3-D Eulerian mod-
els is the most common in practice, Readers may obtain data
from any other possible source. One example is to read a time
series from an American Standard Code for Information In-
terchange (ASCII) file of observations, e.g. from a buoy or a
weather station. Another example is to calculate forcing data
according to some analytical function. One such example is
included in the code repository, providing ocean current vec-
tors according to a “perfect circular eddy” with centre co-
ordinates as given to its constructor. Such analytical forcing
data fields are useful for, e.g. testing the accuracy of forward
propagation schemes, as discussed below.

OpenDrift also contains some internal convenience meth-
ods to calculate geophysical variables from others. For exam-
ple, if a drift module requires wave height or Stokes drift, this
may be parameterised internally based on the wind velocity
if no Readers providing wave parameters are available.

2.2 BaseModel class

Functionality which is common to any trajectory model is
described in a main class, named BaseModel. This function-
ality includes the following:

1. A mechanism for configuration of a trajectory model,
or a specific simulation is needed. This may include
adjusting the resolution of a coastline or some model-
specific parameters concerning the movement of the el-
ements. The configuration mechanism of OpenDrift is
based upon the ConfigObj package (https://pypi.python.
org/pypi/configobj).

2. A generic method to seed elements for a simulation is
required. See Sect. 2.3.3 for details.

3. Managing and referencing a set of Readers (Sect. 2.1),
which are called as needed to obtain forcing data dur-
ing a simulation, are also necessary. See Sect. 2.3.2 for
details.

4. It is required to keep track of the positions and prop-
erties of all elements during a simulation and remove
elements scheduled for deactivation. This is stored in
2-D arrays with two dimensions, time and particle ID.
Thus, the trajectory (propagation with time) of a single
element or the simulation state (all element positions
and properties at a given time) is easily and quickly ob-
tained as vertical or horizontal slices of the array. The
history of data may also be written to file, as described
in Sect. 2.3.6.
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Figure 1. Flowchart of an OpenDrift simulation.

5. Finally, the BaseModel class contains the main loop for
time stepping, performing necessary tasks for a simula-
tion in the correct order, as described in Sect. 2.3.5.

The only part missing is a description of how the elements
(e.g. objects or substance) shall be propagated and poten-
tially transformed along their trajectories under the influence
of environmental forcing data. Such application-specific de-
scription is left to subclasses, yielding trajectory model in-
stances as exemplified in Sect. 3. These subclasses thus in-
herit and may reuse any functionality from the BaseModel.
The subclasses may also add further functionality as needed,
or overload and modify existing functionality. Thus, all nec-
essary core functionality is available by convenience but may
be modified for flexibility. In precise terminology, OpenDrift
is a framework within which specific trajectory models may
be implemented by class inheritance (subclassing). An in-

stance (object) of such a subclass represents a specific trajec-
tory simulation.

2.3 Performing a simulation

In this section, we describe and explain the general workflow
of a simulation with an OpenDrift model, as illustrated in the
flowchart in Fig. 1.

2.3.1 Initialisation

The first step is to import a specific OpenDrift model (sub-
class of BaseModel) and to initialise an instance. The follow-
ing Python statements import and initialise an instance of the
Leeway search-and-rescue model (Sect. 3.1).

www.geosci-model-dev.net/11/1405/2018/ Geosci. Model Dev., 11, 1405–1420, 2018
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>>> from opendrift.models.leeway import
Leeway

>>> l = Leeway()

2.3.2 Adding Readers

If a given model requires, e.g. ocean current and atmospheric
wind as environmental forcing, we need to create and add
Reader instances which can provide these variables. Say that
we have a Thredds server which can provide ocean currents
and a local GRIB file which contains atmospheric winds; we
can create and add these Readers to the simulation instance
as follows:

>>> from opendrift.readers import reader_
netCDF_CF_generic

>>> from opendrift.readers import reader_
grib

>>> reader_current =
reader_netCDF_CF_generic.Reader(
’http://thredds.example.com/current.nc’)

>>> reader_wind = reader_grib.Reader
(’winds.grib’)

>>> l.add_readers([reader_current,
reader_wind])

For NetCDF files, it is also possible to create a single Reader
object which merges together many files by using wildcards
(∗ or ?) in the filename. This functionality is based on the
NetCDF MFDataset class.

It is also possible to perform a simulation even with no
Readers added for one or more of the required variables. In
this case, constant values may be provided; otherwise, rea-
sonable default values will be used, defaulting to zero val-
ues for winds, waves and currents. For example, in the case
of having a 5-day wind forecast, but only a 3-day current
forecast, it is still possible to run a 5-day trajectory forecast,
where the current will be zero for the last 2 days.

A key feature of OpenDrift, for both convenience and ro-
bustness, is the possibility to provide a priority list of Read-
ers for a given set of variables. As an example, it is possible
to specify that a high-resolution ocean model shall be used
whenever particles are within coverage in space and time,
and reverting to using another model with larger coverage
in space and time whenever particles are outside the time or
spatial domain of the high-resolution model. As an important
feature for operational setups, the backup Readers will also
be used if the first-choice model (file or URL) should not be
available, or if there should be any other problems, e.g. cor-
rupt values or files.

2.3.3 Seeding of elements

The seeding methods of OpenDrift are very flexible. The
simplest case is to seed (initialise) an element at a given po-
sition and time:

>>> l.seed_elements(lon=4.0, lat=60.0,
time=datetime(2017, 6, 25, 12))

Also the number of elements and an uncertainty radius may
be provided. Further, both position and time may be pro-
vided as two-element vectors to seed elements continuously
in space and time from position P1 with uncertainty radius
R1 at time T1, to position P2 with uncertainty radius R2 at
time T2. This is a common use case in search-and-rescue
modelling (see Breivik and Allen, 2008): a ship is known
to have departed from position P1 at time T1, with normally
small uncertainty radius R1, and disappeared on the way to-
wards the destination (P2), normally with larger uncertainty
in position (R2) and estimated arrival time (T2). Thus, this
will track out a “seeding cone” in space and time. Another
common use case is that P1 equals P2, with T2 > T1, e.g.
simulating a continuous oil spill from a leaking well.

Another built-in feature is seeding of elements within
polygons. This may, e.g. be done by providing vectors of lon-
gitude and latitude:

>>> l.seed_within_polygon(lon=lonvector,
lat=latvector,
time=datetime(2017, 6, 25, 12),
number=10000)

This example will seed 10 000 elements with regular spac-
ing within the polygon encompassed by vectors lonvec-
tor and latvector. Based upon this generic polygon seeding
method, more specific applications have been developed; see,
e.g. Sect. 3.2. The seeding methods may also be overloaded
to provide customised functionality for a given module.

2.3.4 Configuration

OpenDrift modules share several configuration settings
which may be adjusted before a simulation, as well as
some settings which are module specific. All possible set-
tings of a module may be shown with the command
l.list_configspec(), of which one example is

drift:scheme [euler] option(’euler’,
’runge-kutta’,
default=’euler’)

This shows that the setting drift:scheme may have one
or two possible values, ’euler’ or ’runge-kutta’, where the
first is the default and also the present setting as indicated
within brackets. A second-order Runge–Kutta propagation
scheme may instead be activated by the command

>>> l.set_config(’drift:scheme’,
’runge-kutta’)

Another example of a configuration setting is
coastline_action, which determines how the parti-
cles shall interact with the coastline. Possible options are
stranding, which means that particles will be deactivated
if they hit the coastline (default); previous which means
that particles shall be moved back to their previous position
(i.e. “waiting” at the coast until eventually moved offshore
later); or none, which means that particles do not interact
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with land, as for the WindBlow module as demonstrated in
Sect. 3.3.

The configuration mechanism is based on the widely used
ConfigObj package and allows, e.g. exporting to, and import-
ing from, files of the common ’INI’ format.

2.3.5 Starting the model run

After initialisation, configuration, adding of Readers and
seeding of elements, the model simulation may be started by
calling the method run:

>>> l.run(duration=timedelta(hours=48),
time_step=timedelta(minutes=15),
outfile=’outleeway.nc’)

This starts the main loop, as shown on the flowchart of
Fig. 1. At each time step, forcing data are obtained by all the
Readers and interpolated onto the element positions, and the
model-specific update method is called to move and/or oth-
erwise update the other element properties (e.g. evaporation
of oil elements, or growth of fish larvae) based on the envi-
ronmental conditions.

For the above example, the simulation will cover 48 h,
starting the time of the first seeded elements. The time step of
the calculation is given here as 15 min. An output time step
might be specified differently, with, e.g. output every hour to
save memory and disk space.

All instances of OpenDrift can be run in reverse, i.e. back-
wards from a final destination, by reversing the sign of the
advective increment. All spatial increments due to model
physics pertinent to the instance in question are calculated
as normal, but the sign of the total increment, (1x,1y,1z),
is reversed and the particles are advected “backwards” over a
time step 1t . All diffusive properties are kept in the forward
sense, meaning that particles will disperse as they propagate
backwards in time. Nonlinear processes, such as evaporation
of oil or capsizing of vessels, are disabled in backtracking
mode. This simple backtracking scheme is an easy-to-use al-
ternative to more complicated inverse methods, such as itera-
tive forward trajectory modelling (Breivik et al., 2012b), and
is also much less computationally expensive.

2.3.6 Exporting model output

In the above example, the output is saved to a CF-compliant
NetCDF file (trajectory data specification), which is the de-
fault output format of OpenDrift. Both particle positions and
any other properties, as well as configuration settings are
stored in the file. If the number of elements and time steps
is too large to keep all data in physical memory, OpenDrift
will flush history data to the output file as needed during the
simulation to free internal memory. The simulation may be
imported by OpenDrift, or independent software, for subse-
quent analysis or plotting. Stored output files may also be
used as input to a subsequent OpenDrift simulation, allow-
ing for an intermediate step where the particles are subjected

to various considerations such as a Bayesian update of their
probabilities based on posterior information. Saving data to
files is not a requirement, as the output of the simulations is
otherwise held in memory for subsequent plotting or anal-
ysis, either interactively from within Python shell, or by a
script. A number of visualisation tools based on the Mat-
plotlib graphics library of Python are included within Open-
Drift. Some examples of both generic and module-specific
plotting methods are illustrated in Sect. 3.

3 Examples of model instances

3.1 Leeway (search and rescue)

The OpenDrift Leeway instance (OpenLeeway) is based
on the operational search-and-rescue model of the Norwe-
gian Meteorological Institute (Breivik and Allen, 2008). The
model ingests a list of object classes, where each drifting
object has specific properties such as downwind and cross-
wind leeway (the motion due to wind) in a way similar
to SAROPS, the operational system used by the US Coast
Guard (see Kratzke et al., 2010, and the overview of search-
and-rescue models by Davidson et al., 2009). These prop-
erties vary greatly from object to object and are based on
field work (Breivik et al., 2011, 2012a) where specific ob-
jects of relevance in search and rescue have been studied. All
objects are assumed to be small enough that direct wave scat-
tering forces are insignificant. Furthermore, the Stokes drift
(Kenyon, 1969; Breivik et al., 2014, 2016) is inherently part
of the leeway obtained from observations. As wind-generated
waves have a mean direction closely aligned with the local
wind direction, it is neither practical nor desirable to disen-
tangle the Stokes drift from the wind drag for Leeway simu-
lations.

Once an object class has been chosen and the pertinent
wind and current forcing fields selected, the particles are
seeded based on the available information. If the particles
hit the coast, they stick by default. This can, however, be re-
laxed so that particles detach from the coastline if the wind
direction changes.

The OpenLeeway class along with all other subclasses has
the option of being run backwards. This is a convenient fea-
ture in the cases where, for example, a debris field is ob-
served and the location of the accident is sought. Note that
this method is fundamentally different from the BAKTRAK
model described by Breivik et al. (2012b) where a large num-
ber of particles were seeded in potential initial locations at
various times, and only those that ended up close to the lo-
cation of the observed object were kept. This is an iterative
procedure which in principle can deal with nonlinearities in
the flow field as well as nonlinear behaviour of the object
itself (such as capsizing and swamping). Although in prin-
ciple this allows for a more realistic mapping of initial lo-
cations, the difficulties associated with this iterative process
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mean that real-time operations are normally better off with a
simple negative-time integration.

OpenLeeway is used operationally at Norwegian Meteoro-
logical Institute and is also currently being implemented as
the operational search-and-rescue model for the Joint Rescue
Coordination Centres (JRCC) of Norway.

The following lines of Python code illustrate a complete
working example of running an OpenLeeway simulation:

from opendrift.readers import reader_netCDF_
CF_generic

from opendrift.models.leeway import Leeway
l = Leeway() # Creating a simulation object
# Wind field
reader_wind = reader_netCDF_CF_generic.

Reader(’http://thredds.met.no/thredds/
dodsC/meps25files/meps_det_pp_2_
5km_latest.nc’)

# Ocean model data
reader_ocean = reader_netCDF_CF_generic.

Reader(’http://thredds.met.no/thredds/
dodsC/sea/norkyst800m/1h/aggregate_be’)

l.add_reader([reader_wind, reader_ocean])
# Seed elements at defined position and time
objType = 26 # Life-raft, no ballast
l.seed_elements(lon=4.5, lat=60.0,

radius=1000, number=5000,
time=datetime(2017,7,1,12),
objectType=objType)

# Running the model 48 hours ahead
l.run(duration=timedelta(hours=48))
# Print and plot results
print
l.animation(filename=’leeway_example.mp4’)
l.plot(filename=’leeway_example.png’)

The final plotting command yields Fig. 2. The coastline
shown is from the GSHHS database (Wessel and Smith,
1996), which is the default option used to check strand-
ing in OpenDrift. This coastline is, however, interfaced
to OpenDrift as a regular Reader (Sect. 2.1) and can be
replaced by any other Reader providing the CF variable
land_binary_mask. This allows performing simulations in
narrow bays or lakes where even the full-resolution GSHHS
coastline is too coarse.

3.2 OpenOil (oil drift)

OpenOil is a full-fledged oil drift model, bundled within the
OpenDrift framework. As a model, it has been developed
from scratch but is based on a selection of parameterisations
of oil drift as found in the open research literature. With re-
gard to horizontal drift, three processes are considered:

– Any element, whether submerged or at the surface,
drifts along with the ocean current.

– Elements are subject to Stokes drift corresponding to
their actual depth. Surface Stokes drift is normally ob-
tained from a wave model (or by any Reader), and

its decline with depth is calculated as described in
Breivik et al. (2016).

– Oil elements at the ocean surface are moved with an
additional factor of 2 % (configurable) of the wind. To-
gether with the Stokes drift (typically 1.5 % of the wind
at the surface), this sums up to the commonly found em-
pirical value of 3.5 % of the wind (Schwartzberg, 1971).
The physical mechanism behind this wind drift factor is
not obvious and is discussed in Jones et al. (2016).

The above three drift components may lead to a very
strong gradient of drift magnitude and direction in the up-
per few metres of the ocean. For this reason, it is also of
critical importance to have a good description of the vertical
oil transport processes, which in OpenOil are the sum of the
following factors:

– If the vertical ocean current velocity is available from a
Reader, the oil elements will follow it. This part of the
movement is, however, often negligible compared to the
processes below.

– Oil elements at the surface, regarded as being in the state
of an oil slick, may be entrained into the ocean by break-
ing waves. Presently, OpenOil contains two different
parameterisations of this entrainment rate, from which
the user can chose as part of configuration (see below):
Tkalich and Chan (2002) and Li et al. (2017). The en-
trainment depends on both the wind and wave (break-
ing) conditions and also on the oil properties, such as
viscosity, density and oil–water interfacial tension.

– Buoyancy of droplets is calculated according to empir-
ical relationships and the Stokes law of Tkalich and
Chan (2002), dependent on ocean stratification (calcu-
lated from temperature and salinity profile, normally
read from an ocean model), oil and water viscosities and
densities. Also, the buoyancy is strongly dependent on
the oil droplet size (diameter), of which two parameter-
isations are available: one is a generic power law, with
droplets between a minimum and maximum diameter,
and a configurable exponent where −2.3 corresponds
to the classical work of (Delvigne and Sweeney, 1989).
The second option for droplet size spectrum is a “mod-
ern” approach by Johansen et al. (2015), where a log-
normal droplet spectrum is calculated explicitly based
on wave height and oil properties such as viscosity, den-
sity, interfacial tension and surface film thickness.

– In addition to the wave-induced entrainment, the oil el-
ements are also subject to vertical turbulence through-
out the water column, as parameterised with a numeri-
cal scheme described in Visser (1997). This scheme is
generic within OpenDrift and is also used by the Pelag-
icEgg module for ichthyoplankton (Sect. 3.4). Only the
properties specific to oil, or plankton, are coded in the
respective classes (modules).
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Figure 2. Output from the Leeway example of Sect. 3.1. Green dots are the initial positions of the elements (life rafts), grey lines are
trajectories, and blue dots are positions at the end of the simulation. Red dots indicate elements which have hit land (stranded).

In addition to the vertical and horizontal drift, weath-
ering of the oil also has to be considered. While pa-
rameterisations of weathering might also be imple-
mented directly within the OpenDrift framework, the
OpenOil module instead interfaces with the already
existing OilLibrary software developed by NOAA
(https://github.com/NOAA-ORR-ERD/OilLibrary). The
NOAA OilLibrary is also open-source and written in
Python, so integration is straightforward. In addition to
state-of-the-art parameterisations of processes such as evap-
oration, emulsification and dispersion, this software contains
a database of measured properties of almost 1000 oil types
from around the world. As oils from different sources/wells
have vastly different properties, such a database is of
vital importance for accurate results. The same OilLibrary
is also used by the NOAA oil drift model PyGNOME
(https://github.com/NOAA-ORR-ERD/PyGnome), where
it is replacing the original ADIOS oil library (Lehr et al.,
2002). PyGNOME includes also more processes not (yet)
included in OpenOil, such as dissolution, and adding of
dispersants.

To run an OpenOil simulation, one could reuse the exact
code as for the Leeway example of Sect. 3.1, only replacing
the name of the imported module (OpenOil instead of Lee-
way) and replacing the objectType property of Leeway with

a corresponding oil name from the NOAA database. How-
ever, whereas key features and functionality is shared among
OpenDrift modules, each module (or group of modules) may
add specific functionality. For example, for OpenOil, it is
possible to initialise the simulations with an oil slick as read
from a file containing contours, either a shapefile or the Ge-
ography Markup Language (GML) format/specification, as
used by the European Maritime Safety Agency (EMSA):

>>> o.seed_from_gml("RS2_20151116_002619_
SCNB_HH_Oil.gml", num_elements=2000)

>>> o.plot()

where o is the oil drift simulation object. The last command
produces the plot shown in Fig. 3.

OpenOil also has module-specific configuration settings.
The following commands specify that the oil entrainment
rate shall be calculated according to Li et al. (2017), and the
oil droplet size spectrum shall be calculated according to Jo-
hansen et al. (2015).

>>> o.set_config(’wave_entrainment:
entrainment_rate’,
’Li et al. (2017)’)

>>> o.set_config(’wave_entrainment:droplet_
size_distribution’,
’Johansen et al. (2015)’)
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Figure 3. Oil drift simulation initialised by seeding 2000 oil el-
ements within contours of an oil slick as observed from satellite
(Radarsat2). The contour is imported from a Geography Markup
Language (GML) file produced by Kongsberg Satellite Services
(KSAT).

Adjusting configuration this way is convenient for sensitivity
studies, where one component is changed for two otherwise
identical simulations.

After the simulation is finished, the generic plot command
may be used to produce a map with trajectories as shown
in Fig. 2. However, more specific plotting methods are also
available. The command o.plot_oil_budget() plots
an oil budget as shown in Fig. 4.

The vertical distribution of the ele-
ments can be plotted with the command
o.plot_vertical_distribution(), generat-
ing output as shown in Fig. 5. This method is shared
among three-dimensional modules and may also be used for
simulations with, e.g. the PelagicEgg module (Sect. 3.4).

3.3 WindBlow (atmospheric transport)

As an example of a minimalistic trajectory model, we also
include the instance WindBlow, which simply calculates
the propagation of a passive particle subject to a two-
dimensional wind field. The code below is the complete and
fully functional WindDrift module.

# WindBlow module code from opendrift.
models.basemodel

import OpenDriftSimulation from opendrift.
elements.passivetracer import PassiveTracer

class WindBlow(OpenDriftSimulation):
ElementType = PassiveTracer

required_variables = [’x_wind’, ’y_wind’]

def update(self):
self.update_positions(

self.environment.x_wind,
self.environment.y_wind)

Because all common functionality is inherited from the
main class, the WindBlow model only needs to address its
own specific needs. It will use elements without any other
properties except for position (PassiveTracer), and the only
forcing needed to move the elements is wind, whose vector
components are named x_wind and y_wind in CF terminol-
ogy. The update() method which is called at each time step
simply advects all elements with the wind velocity at their
respective locations. The wind might be provided by any
Reader (Sect. 2.1). The WindDrift module may be run with
an even more simplified form of the code example found in
Sect. 3.1: the WindDrift class has to be imported, no Reader
for ocean current is needed, and there is no object category
to specify.

Clearly, an air parcel in the real atmosphere will also be
subjected to updrafts and diffusion, and will with time rise or
fall, but the example serves to demonstrate how little is re-
quired to develop a new subclass of OpenDrift. The model
may be made more sophisticated by adding, e.g. vertical
wind (upward_air_velocity) and turbulence parameters to the
list of required variables, and adding corresponding parame-
terisations of how to use this information for the advection.

3.4 Other modules

In addition to the models described above, some other mod-
ules are bundled within the OpenDrift repository, as illus-
trated in Fig. 6:

– OceanDrift is a basic module for tracking, e.g. water
masses or passive tracers. Stokes drift is included, if
provided by a Reader. A wind drift factor may also be
specified, allowing an additional wind drag at the sur-
face, e.g. for simulation trajectories of various ocean
drifting buoys (Dagestad and Röhrs, 2018).

– PelagicEgg is a module for transport of pelagic ichthy-
oplankton. This module contains quite basic function-
ality with identical transport mechanisms as in Röhrs
et al. (2014), including the vertical turbulent scheme
(Sect. 3.2) which is of key importance for most pelagic
plankton applications. Although a fully working a mod-
ule, users with specialised needs (e.g. a specific bio-
logical species) can customise the drift and behaviour
parameterisations by modifying or adding parameteri-
sations in the PelagicEgg module, such as larval be-
haviour. Some users have interfaced this module with
existing Fortran code, e.g. for calculation of sunlight-
dependent behaviour; see, e.g. Kvile et al. (2018) and
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Figure 4. Plot of the time evolution of the oil budget of a 24 h simulation with OpenOil. Of 500 kg oil initially at the ocean surface, about
20 % is seen to evaporate within the 24 h. The amount of oil submerged due to wave action and ocean turbulence varies with the wind
and wave conditions, with more oil resurfacing when wind decreases after about 7 h. After about 18 h, some of the oil is seen to hit the
coastline. These results are for the oil type “Martin Linge crude”; very different results could be obtained if using another oil type for the
same geophysical conditions.

Figure 5. Vertical profile of the amount of (oil) elements. The bot-
tom bar is an interactive slider, which the user can pull left/right to
see the time variation of the vertical distribution.

Sundby et al. (2017). A pure Python version of the sun-
light module is available and will be included in a future
version of OpenDrift.

– ShipDrift is a module for predicting the drift of ships
larger than 30 m, where the effect of waves has to be
calculated explicitly, and not implicitly with the wind
drift as in the Leeway module. This module is based
on Sørgård and Vada (2011). A previous version pro-
grammed in the C programming language has been
used operationally at MET Norway for 15 years but is
now replaced by the OpenDrift version, which has been

tested and shown to provide identical output for identi-
cal input/forcing.

A module for drift of icebergs (OpenBerg, not yet included
in repository) has been developed by Ron Saper at Carleton
University with partial funding from ASL Environmental
Sciences of Victoria, Canada, and with data support from
the Canadian Ice Service (personal communication, 2017).
Two different iceberg drift forecasting approaches are be-
ing tested. One approach uses a drag formulation to calcu-
late wind and water drag forces. The challenge with this ap-
proach is that the trajectories are very sensitive to underwa-
ter draft/shape and suitable drag coefficients, of which infor-
mation is rarely available. The second approach predicts and
subtracts the wind and tidal components of the drift, and then
analyses the residual for extrapolation an appropriately short
time into the future. Finally, wind and tidal components are
added back in to produce a trajectory forecast. The first ver-
sion of OpenBerg does not include thermodynamic effects
(melting) which are important longer timescales from weeks
to months.

Drift of marine plastics, including microplastics, is an im-
portant application not covered by modules included with the
OpenDrift repository version 1.0. However, as most of the
needed infrastructure is already provided, including a ver-
tical mixing scheme, a user with knowledge of the relevant
physics and basic Python programming should be able to im-
plement such a module with moderate efforts. However, there
is no upper limit to the complexity of any module.
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Figure 6. Illustration of how OpenDrift modules for specific applications (white boxes) inherit common functionality from the core module.
This includes functionality to interact with Readers for obtaining forcing data. Subclassing (inheritance) allows, e.g. both the OpenOil and
PelagicEgg models to share further 3-D-functionality through subclassing the OpenDrift3D class. The boxes with solid boundaries illustrate
existing modules bundled with the OpenDrift repository, whereas dashed boundaries indicate planned modules. The green box illustrates that
OpenOil (oil drift model) utilises functionality from a third-party library, the NOAA OilLibrary.

4 Test suite and example scripts

OpenDrift contains a broad set of automatic tests (Python
unittest framework) which can be run by the user to assure
that all calculations are performed correctly on the local ma-
chine. The tests cover both basic calculations, such as inter-
polation and rotation of vectors from one spatial reference
system (SRS) to another, but also more extensive integration
tests, performing full simulations with the modules to ver-
ify that an expected numerical result is obtained. Also, very
importantly, the tests are also run automatically on a variety
of machine configurations, using the Travis Continuous In-
tegration (CI) framework (https://travis-ci.org). This ensures
that OpenDrift calculations remain accurate and correct with
both old and new versions of the various required libraries
(e.g. NumPy), and that existing functionality is not broken
as new functionality is added. For version 1.0 of OpenDrift,
64 % of the code is covered by the unit tests, as reported by
the Coveralls tool (coveralls.io).

A user manual of OpenDrift is kept alongside the code
repository on the wiki pages of GitHub (https://github.com/
OpenDrift/opendrift/wiki), facilitating a dynamic description
to evolve with the code, instead of diverting from it. Many
example scripts (40 in version 1.0) are also provided in the
repository along with the needed input forcing data, illustrat-
ing a variety of real-life use cases. The examples can easily
be modified and adapted, allowing a soft learning curve.

OpenDrift also comes with a set of handy command line
tools, such as readerinfo.py, which may be used to easily in-
spect the contents and coverage of potential forcing fields.
The following shell command produces the same output as
the example of Sect. 2.1, where the switch ’-p’ also displays
a plot of the geographical coverage:

$ readerinfo.py ocean_model_output.nc -p

5 Graphical user interfaces

Although running OpenDrift modules with Python scripts
(see, e.g. Sect. 3.1) is the most flexible and powerful, a basic
graphical user interface (GUI) is also included in the repos-
itory. A screenshot is shown in Fig. 7. The GUI allows to
select a module and an object type or medium (e.g. oil type)
corresponding to the module, and then a seeding location and
time. The simulation is started by clicking the “START” but-
ton, and plots and animation of the output is available after
the simulation and also saved to a NetCDF file. The GUI will
obtain forcing data through a provided list (configurable) of
Thredds servers with global coverage, so there is no need for
the user to obtain and download large amounts of model in-
put in advance. Although presently with only basic function-
ality, the GUI is in operational use at MET Norway, where
it is tested daily by meteorologists on duty as part of the oil
spill and search-and-rescue preparedness system.

In addition to the native GUI, a web interface has also been
developed for remote access without need for any local in-
stallation. This is based on communication with OpenDrift
through a web processing service (WPS) developed at MET
Norway (not included in the repository). Independently, a
WPS for the Leeway module has also been developed and
implemented at the Swedish Met Office (SMHI). A generic
and configurable WPS to be included in the repository is
planned for the future.

6 Discussion and conclusions

Several offline trajectory models exist to predict the trans-
port and transformation of various substances and objects in
the ocean or in the atmosphere. OpenDrift is an open-source
Python framework aiming at extracting anything which is
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Figure 7. Screenshot of the graphical user interface included with OpenDrift.

common to all such trajectory models in a core library, and
combining this with a clean and generic interface for de-
scribing any processes which are application specific. Sev-
eral examples of such specific modules are bundled with the
OpenDrift code repository and serve as ready-to-use trajec-
tory models. This includes an oil drift model (OpenOil), a
search-and-rescue model (Leeway) and a model for predict-
ing the drift and transformation of ichthyoplankton (Pelag-
icEgg). Interfaces (Readers) towards the most common for-
mats of forcing data (e.g. NetCDF and GRIB) are also in-
cluded, allowing any of the modules to be forced by data
from a combination of files and other sources, including re-
mote Thredds servers. The concept of Readers is also modu-
larised, allowing a scientist or programmer to easily develop
an interface towards any other specific source of forcing data,
e.g. an ASCII file containing in situ observations from a buoy
or weather station, or ocean currents from HF-radar systems
in a specific binary format.

A built-in configuration mechanism provides flexibility to
the operation of the OpenDrift modules. However, the fact
that the application-specific processes of these modules are
separated from the technical complexities of the OpenDrift

core provides even greater flexibility to the user in that it is
easy to modify existing modules, or even write new mod-
ules from scratch. Several users have already developed or
adjusted modules for their specific purpose and added use-
ful contributions to the OpenDrift core (Sundby et al., 2017;
Kvile et al., 2018).

Whereas flexibility is important for scientific studies,
OpenDrift is also designed for performance and robustness
and is in daily use for operational emergency response sys-
tems at the Norwegian Meteorological Institute. Being able
to use the same tool in both cases facilitates rapid transition
of the latest research results into operations.

The efficiency of the code has been optimised to the point
that more time is normally spent on reading the forcing data
from disk (or a URL) than on performing actual calculations.
Computational performance similar to compiled languages
(Fortran or C) is obtained by, e.g. using primarily NumPy
arrays for calculations (avoiding the slower MaskedArray
class) and avoiding “for loops”. A typical emergency sim-
ulation with the Leeway model with 5000 elements and 48 h
duration takes on the order of 1 min. A corresponding simu-
lation with OpenOil takes about 3–5 min, primarily because
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more layers of ocean model data have to be read from disk, in
contrast to the Leeway simulation which only needs the sur-
face current. A typical 1-year simulation of 20 000 drifting
cod eggs (developing into larvae) takes about 4 h on a reg-
ular desktop computer (Kvile et al., 2018). The OpenDrift
code is presently not parallelised. However, given that most
time is spent on reading data from disk, some further per-
formance gain could possibly be achieved by, e.g. reading in
parallel data from different input files (e.g. ocean model and
atmospheric model) or by reading input data for the follow-
ing time step in parallel to performing calculations.

Another great benefit of the modularity provided by Open-
Drift is the ability to perform sensitivity tests by varying one
component while keeping everything else constant. Much
can be learnt from performing two otherwise identical sim-
ulations with, e.g. input from two different Eulerian models,
or by using two different parameterisations of some process.
Further, consistency is also provided by the possibility of
handling, e.g. overlap of fish eggs and oil with the same forc-
ing and numerical scheme. Traditionally, it might be difficult
to draw conclusions by comparing the output from different
trajectory models, as the differences depend on many factors,
such as interpolation schemes and numerical algorithms.

The modules presently included with OpenDrift will be
improved in the future, in particular by validation against
available relevant observations. Among the general prob-
lems which require more attention, is properly describing
and quantifying the very strong vertical gradients of horizon-
tal drift often found in the upper few metres of the ocean,
as result of a delicate balance between ocean currents and
Stokes drift, as well as the direct wind drift affecting objects
and substances at the very ocean surface. This vertical gra-
dient of forcing is highly important for drift of, e.g. oil and
chemicals, plankton and microplastics. This implies further
that having accurate parameterisations of the vertical trans-
port processes (wave entrainment, buoyancy and ocean tur-
bulence) is also very important. For example, a key factor
for successful simulation of the drift of observed oil slicks
in Jones et al. (2016) was to incorporate a vertical mixing
scheme developed for fish eggs (Sundby, 1983; Thygesen
and Ådlandsvik, 2007; Ådlandsvik and Sundby, 1994) into
the oil drift model OpenOil.

Code availability. OpenDrift is housed on GitHub:
https://github.com/OpenDrift/opendrift. The accompanying
wiki pages contain installation instructions, documentation and
examples. Version 1.0 of OpenDrift is registered with Zenodo:
https://doi.org/10.5281/zenodo.845813. OpenDrift has been tested
on both Linux, Mac and Windows platforms. Version 1.0 requires
Python 2.7 and is not adapted for Python 3. The OpenDrift
framework is distributed under a GPLv2 license.
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