

- or -

Where We Could Go Seriously Wrong

Mark A. Bourassa and Paul J. Hughes

Center for Ocean-Atmospheric Prediction Studies & Department of Meteorology,

bourassa@met.fsu.edu

Differences in Forcing Products

- There are large differences in surface forcing products.
- NWP Products
 - Disadvantages:
 - Poor boundary-layer representation
 - Questionable (at best) flux parameterization
 - Advantage: forecasts
- Satellite-based Products
 - Advantages: Great winds and SSTs, and potentially stress
 - Disadvantages:
 - Poor heat fluxes
 - No forecast
- In situ-based Products
 - Advantages: relatively good input to heat fluxes
 - Disadvantages: poor sampling, no forecast

Forcing Product Inconstancies: Zonal Averaged Zonal Stress

Forcing Product Inconstancies: Zonal Averaged Meridional Stress

Forcing Product Inconstancies: Zonal Averaged Latent Heat Flux

Forcing Product Inconstancies: Zonal Averaged Sensible Heat Flux

Input Data for Flux Algorithms

- Several studies have indicated that much better surface forcing can be achieved by using NWP values as input to good flux models.
- But what about the accuracy of the flux model?
 - Are there large difference between model parameterizations?
 - How good are the model inputs, and how sensitive are flux models to errors in these inputs?

Results of Taylor and Yelland's Parameterization on SWS2 data

- This
 parameterization is
 very good in
 comparison to most
 stress
 parameterizations.
- It has two tuning parameters, one more than usual.
 - Largest wind speed in this data set is 24 ms⁻¹.

bourassa@met.fsu.edu

Results of Bourassa (2006) Compared to **SWS2 Observations**

- This variation has a non-zero displacement height.
- Displacement height is a fraction of the significant wave height.

$$\frac{u_*}{k_v} \log \left(\frac{z - 0.8H_s}{z_o} \right)$$

Charnock's constant $\frac{1}{1}$ is greatly reduced.

Zonal Averaged 10m Air Temperature

bourassa@met.fsu.edu

Zonal Averaged 10m Specific Humidity

Zonal Averaged Wind Speed

Comparison to Satellite

Historical and Modern Goals For Flux Accuracy

- During TOGA-COARE it was determined that a goal in surface turbulent flux observations was a bias of no more than 5Wm⁻².
- This same goal is currently being stated in comments on decadal satellite survey.
- There have been several estimates on the observational accuracies required to achieve this goal.
- HOWEVER these accuracies were determined for the environments being observed during TOGA-COARE (the tropical Pacific Ocean).
 - The conditions in the tropical Pacific Ocean are somewhat different from other parts of the globe.
 - How much do the necessary observational accuracies change for different environments?

Suggested Measurement Accuracy From the Handbook

Table 1: Accuracy, precision and random error targets for SAMOS. Accuracy estimates are currently based on time scales for climate studies (i.e., ±10 W/m² for Q_{net} on monthly to seasonal timescales). Several targets are still to be determined.

	Accuracy of Mean	Data	Random Error
Parameter	(bias)	Precision	(uncertainty)
Latitude and	0.001°	0.001°	
Longitude			
Heading	2°	0.1°	
Course over	2°	0.1°	
ground			
Speed over ground	Larger of 2% or 0.2 m/s	0.1 m/s	Greater of 10% or 0.5 m/s
Speed over water	Larger of 2% or 0.2 m/s	0.1 m/s	Greater of 10% or 0.5 m/s
Wind direction	3°	1°	
Wind speed	Larger of 2% or 0.2 m/s	0.1 m/s	Greater of 10% or 0.5 m/s
Atmospheric	0.1 hPa (mb)	0.01 hPa	
Pressure		(mb)	
Air Temperature	0.2 °C	0.05 °C	
Dewpoint	0.2 °C	0.1 °C	
Temperature			
Wet-bulb	0.2 °C	0.1 °C	
Temperature			
Relative Humidity	2%	0.5 %	
Specific Humidity	0.3 g/kg	0.1 g/kg	
Precipitation	~0.4 mm/day	0.25 mm	
Radiation (SW in,	5 W/m ²	1 W/m^2	
LW in)			
Sea Temperature	0.1 °C	0.05 °C	
Salinity			
Surface Current	0.1 m/s	0.05 m/s	

- I will assume that a 5Wm⁻² is the limit for biases in radiative fluxes.
- Then 5Wm⁻² is the limit for biases in surface turbulent heat fluxes.

Observational Errors

- Errors can be described as composed of
 - A bias (this bias could be a function of environmental conditions),
 - And a random uncertainty.
 - The same information can be used to determine the influence of the bias and the uncertainty.
- We are primarily interested in how biases in observations of wind speed (w), sea surface temperature (SST), near surface air temperature (T_{air}) , and near surface humidity (q_{air}) translate to biases in calculated fluxes.
 - Sensible heat (H), latent heat (E), and stress (τ) .
- In general, the bias in one of these observations can be related to the bias in a flux through a Sensitivity (S).

Example: How Much Bias in Wind Speed Can We Tolerate in Calculated SHF

Example: How Much Bias in SST Can We Tolerate in Calculated SHF 2,1 We can be 1.9 extremely 1.7 50 sloppy. 1.3 1.1 0.9 40 0.7 Assume a bias in Wind Speed (m/s) 0.5 SHF of <1.25 0.1 Wm $^{-2}$ is OK. 30 -0.1 -0.3 -0.5-0.720 -0.9 -1.1 Climate accuracy 0.4°C -1.3 -1.5 -1.7 10 -1.9 -2.1 -2.3 10 SST — Air Temperature (Celsius)

Example: How Much Bias in Wind Speed Can We Tolerate in Calculated LHF

Fortunately, high winds are associated with stratification $(SST - T_{air} > 0)$.

storms, we will not meet our requirement.

Conclusions

- Surface forcing differs too much from product to product.
- There are large differences in fluxes due to
 - Differences in flux parameterization,
 - Differences in input to flux parameterizations.
- The biases in some NWP input for flux models are far greater than the maximum desired biases to be under a 5Wm⁻² biases in heat fluxes.
 - For conditions with high wind speeds or large air/sea temperature differences, we are likely to have very large errors in fluxes because a small bias translates to a large error.
- A great deal of the seemly random error in surface stress can be removed by properly considering waves (and currents).
- It remains to be seen how much of the improvement in stress translates to improvements in heat fluxes.

How Much Bias in Air Temperature Can We Tolerate in Calculated LHF

Not a problem!

Saturation Vapor Pressure

- Surface' humidity is considered to be 98% or 100% of the saturation value, which is a strong function of temperature.
- The Clausius-Clapeyron equation describes how the saturation vapor pressure changes with temperature.

 $e_s = e_o \exp \left[\frac{L}{R_v} \left(\frac{1}{T_o} - \frac{1}{T} \right) \right]$

- where $e_o = 0.611$ kPa, $T_o = 273$ K, and $R_v = 461$ JK⁻¹kg⁻¹ is the gas constant for water vapor.
- L is either the latent heat of vaporization $(L_v = 2.5 \times 10^6 \text{ Jkg}^{-1})$, or the latent heat of deposition $(L_d = 2.83 \times 10^6 \text{ Jkg}^{-1})$, depending on whether or not we are describing equilibrium with

How Much Bias in SST Can We Tolerate in Calculated LHF?

bourassa@met.fsu.edu

- Recall that these numbers should be divided by Δq (in g/kg).
- For low temperature regions, we might what tighter accuracies than have been specified.
- In areas with large Δq , there could be issues for very high winds and unstable stratification.
 - Particularly so for point comparisons

Maximize Benefits of Improvements in Observations

- How do we decide which instruments to improve?
- A ratio of sensitivities provides some indication of where improvements to accuracy will have the greatest influence. That is, which type of observation is the best to improve.
 - Technically this should be weighted by the cost and time involved in the improvement.
 - However, if you can estimate that it will take \$x to make a certain amount of improvement, you can determine where the money is best spent.

When Will Improved Accuracy in Air Temperature and Speed Help The Most?

Random Errors

- If the random errors have a Gaussian distribution, which might be expected from the *central limit theorem*, then random errors are described by a standard deviation (σ, which is used a measure of spread).
- If the latent heat flux (E) is written as a function of the input variables:
 - $E = f(x_1, x_2, x_3, x_4),$
 - Then the uncertainty in E (σ_E) for a single observation can be written as

$$\sigma_E^2 = \sum_{i} \left(\frac{\partial f}{\partial x_i} \sigma_{x_i} \right)^2$$

$$\sigma_{E}^{2} = \left(\frac{\partial E}{\partial w}\right)^{2} \sigma_{w}^{2} + \left(\frac{\partial E}{\partial T_{air}}\right)^{2} \sigma_{T_{air}}^{2} + \left(\frac{\partial E}{\partial SST}\right)^{2} \sigma_{SST}^{2} + \left(\frac{\partial E}{\partial q_{air}}\right)^{2} \sigma_{q_{air}}^{2}$$

• An uncertainty in the mean is equal to σ_E divided by the squareroot of the number of independent observations.

Take Home Messages

- The type(s) of error (bias, random, sampling) that are relevant depend on the application.
- Errors (or uncertainties) in observed variables can be used to determine the biases (and uncertainties) in calculated variables.
- The same sensitivity tables can used to determine both random errors and biases.
- The current suggestions for accuracies are for the most part good enough for many applications; however, there are conditions for which they are insufficient.
- Ratios of these sensitivities provides some insight into which instruments to improve to improve fluxes.
- Suggested changes to accuracies:
 - Tighter requirements for mean wind speed?
 - Tighter mean SST accuracy would be nice, but can we do it?
 - Tighter requirements preferred for satellite calibration.

Suggested Measurement Accuracy From the Handbook

Table 1: Accuracy, precision and random error targets for SAMOS. Accuracy estimates are currently based on time scales for climate studies (i.e., $\pm 10~\text{W/m}^2$ for Q_{net} on monthly to seasonal timescales). Several targets are still to be determined.

	Accuracy of Mean	Data	Random Error
Parameter	(bias)	Precision	(uncertainty)
Latitude and	0.001°	0.001°	
Longitude			
Heading	2°	0.1°	
Course over ground	2°	0.1°	
Speed over ground	Larger of 2% or 0.2 m/s	0.1 m/s	Greater of 10% or 0.5 m/s
Speed over water Wind direction	Larger of 2% or 0.2 m/s 3°	0.1 m/s 1°	Greater of 10% or 0.5 m/s
→ Wind speed	Larger of 2% or 0.2 m/s	0.1 m/s	Greater of 10% or 0.5 m/s
Atmospheric	0.1 hPa (mb)	0.01 hPa	
Pressure		(mb)	
Air Temperature	0.2 °C	0.05 °C	
Dewpoint	0.2 °C	0.1 °C	
Temperature			
Wet-bulb	0.2 °C	0.1 °C	
Temperature			
Relative Humidity	2%	0.5 %	
Specific Humidity	0.3 g/kg	0.1 g/kg	
Precipitation	~0.4 mm/day	0.25 mm	
Radiation (SW in,	5 W/m ²	1 W/m^2	
LW in)			
Sea Temperature	0.1 °C	0.05 °C	
Salinity			
Surface Current	0.1 m/s	0.05 m/s	

→Wave data

Forcing Product Inconstancies: Zonal Averaged Stress Magnitude

Latent Heat Flux: DJF (1982-2002)

NOC minus FSU3

bourassa@met.fsu.edu

Sensible Heat Flux: DJF (1982-2002)

NOC minus FSU3

bourassa@met.fsu.edu

Latent Heat Flux: JJA (1982-2002)

NOC minus FSU3

Sensible Heat Flux: JJA (1982-2002)

NOC minus FSU3

