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1 In this Report, the following summary terms are used to describe the available evidence: limited, medium, or robust; and for the degree of agreement: low, medium, or high. 
A level of confidence is expressed using five qualifiers: very low, low, medium, high, and very high, and typeset in italics, e.g., medium confidence. For a given evidence and 
agreement statement, different confidence levels can be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence (see 
Section 1.4 and Box TS.1 for more details).

2 In this Report, the following terms have been used to indicate the assessed likelihood of an outcome or a result: Virtually certain 99–100% probability, Very likely 90–100%, 
Likely 66–100%, About as likely as not 33–66%, Unlikely 0–33%, Very unlikely 0–10%, Exceptionally unlikely 0–1%. Additional terms (Extremely likely: 95–100%, More likely 
than not >50–10 0%, and Extremely unlikely 0–5%) may also be used when appropriate. Assessed likelihood is typeset in italics, e.g., very likely (see Section 1.4 and Box TS.1 
for more details).

Executive Summary

This chapter assesses the scientific literature describing expectations 
for near-term climate (present through mid-century). Unless otherwise 
stated, ‘near-term’ change and the projected changes below are for the 
period 2016–2035 relative to the reference period 1986–2005. Atmos-
pheric composition (apart from CO2; see Chapter 12) and air quality 
projections through to 2100 are also assessed. 

Decadal Prediction

The nonlinear and chaotic nature of the climate system imposes natu-
ral limits on the extent to which skilful predictions of climate statistics 
may be made. Model-based ‘predictability’ studies, which probe these 
limits and investigate the physical mechanisms involved, support the 
potential for the skilful prediction of annual to decadal average tem-
perature and, to a lesser extent precipitation.

Predictions for averages of temperature, over large regions of 
the planet and for the global mean, exhibit positive skill when 
verified against observations for forecast periods up to ten 
years (high confidence1). Predictions of precipitation over some land 
areas also exhibit positive skill. Decadal prediction is a new endeavour 
in climate science. The level of quality for climate predictions of annual 
to decadal average quantities is assessed from the past performance of 
initialized predictions and non-initialized simulations. {11.2.3, Figures 
11.3 and 11.4}

In current results, observation-based initialization is the dominant con-
tributor to the skill of predictions of annual mean temperature for the 
first few years and to the skill of predictions of the global mean surface 
temperature and the temperature over the North Atlantic, regions of 
the South Pacific and the tropical Indian Ocean for longer periods (high 
confidence). Beyond the first few years the skill for annual and multi-
annual averages of temperature and precipitation is due mainly to the 
specified radiative forcing (high confidence). {Section 11.2.3, Figures 
11.3 to 11.5}

Projected Changes in Radiative Forcing of Climate

For greenhouse gas (GHG) forcing, the new Representative Con-
centration Pathway (RCP) scenarios are similar in magnitude and 
range to the AR4 Special Report on Emission Scenarios (SRES) 
scenarios in the near term, but for aerosol and ozone precursor 
emissions the RCPs are much lower than SRES by factors of 1.2 
to 3. For these emissions the spread across RCPs by 2030 is much nar-
rower than between scenarios that considered current legislation and 

maximum technically feasible emission reductions (factors of 2). In the 
near term, the SRES Coupled Model Intercomparison Project Phase 3 
(CMIP3) results, which did not incorporate current legislation on air 
pollutants, include up to three times more anthropogenic aerosols 
than RCP CMIP5 results (high confidence), and thus the CMIP5 global 
mean temperatures may be up to 0.2°C warmer than if forced with 
SRES aerosol scenarios (medium confidence). {10.3.1.1.3, Figure 10.4, 
11.3.1.1, 11.3.5.1, 11.3.6.1, Figure 11.25, Tables AII.2.16 to AII.2.22 
and AII.6.8} 

Including uncertainties for the chemically reactive GHG meth-
ane gives a range in concentration that is 30% wider than the 
spread in RCP concentrations used in CMIP5 models (likely2). By 
2100 this range extends 520 ppb above RCP8.5 and 230 ppb below 
RCP2.6 (likely), reflecting uncertainties in emissions from agricultural, 
forestry and land use sources, in atmospheric lifetimes, and in chemical 
feedbacks, but not in natural emissions. {11.3.5}

Emission reductions aimed at decreasing local air pollution 
could have a near-term impact on climate (high confidence). 
Short-lived air pollutants have opposing effects: cooling from sulphate 
and nitrate; warming from black carbon (BC) aerosol, carbon monox-
ide (CO) and methane (CH4). Anthropogenic CH4 emission reductions 
(25%) phased in by 2030 would decrease surface ozone and reduce 
warming averaged over 2036–2045 by about 0.2°C (medium confi-
dence). Combined reductions of BC and co-emitted species (78%) 
on top of methane reductions (24%) would further reduce warming 
(low confidence), but uncertainties increase. {Section 7.6, Chapter 8, 
11.3.6.1, Figure 11.24a, 8.7.2.2.2, Table AII.7.5a}

Projected Changes in Near-term Climate

Projections of near-term climate show modest sensitivity to 
alternative RCP scenarios on global scales, but aerosols are an 
important source of uncertainty on both global and regional 
scales. {11.3.1, 11.3.6.1}

Projected Changes in Near-term Temperature

The projected change in global mean surface air temperature 
will likely be in the range 0.3 to 0.7°C (medium confidence). This 
projection is valid for the four RCP scenarios and assumes there will be 
no major volcanic eruptions or secular changes in total solar irradiance 
before 2035. A future volcanic eruption similar to the 1991 eruption 
of Mt Pinatubo would cause a rapid drop in global mean surface air 
temperature of several tenths °C in the following year, with recovery 
over the next few years. Possible future changes in solar irradiance 
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could influence the rate at which global mean surface air temperature 
increases, but there is high confidence that this influence will be small 
in comparison to the influence of increasing concentrations of GHGs in 
the atmosphere. {11.3.6, Figure 11.25}

It is more likely than not that the mean global mean surface 
air temperature for the period 2016–2035 will be more than 
1°C above the mean for 1850–1900, and very unlikely that it 
will be more than 1.5°C above the 1850–1900 mean (medium 
confidence). {11.3.6.3}

In the near term, differences in global mean surface air temper-
ature change across RCP scenarios for a single climate model 
are typically smaller than differences between climate models 
under a single RCP scenario. In 2030, the CMIP5 ensemble median 
values differ by at most 0.2ºC between RCP scenarios, whereas the 
model spread (17 to 83% range) for each RCP is about 0.4ºC. The 
inter-scenario spread increases in time: by 2050 it is 0.8ºC, whereas 
the model spread for each scenario is only 0.6ºC. Regionally, the 
largest differences in surface air temperature between RCP2.6 and 
RCP8.5 are found in the Arctic. {11.3.2.1.1, 11.3.6.1, 11.3.6.3, Figure 
11.24a,b, Table AII.7.5}

It is very likely that anthropogenic warming of surface air tem-
perature will proceed more rapidly over land areas than over 
oceans, and that anthropogenic warming over the Arctic in 
winter will be greater than the global mean warming over the 
same period, consistent with the AR4. Relative to natural internal 
variability, near-term increases in seasonal mean and annual mean 
temperatures are expected to be larger in the tropics and subtropics 
than in mid-latitudes (high confidence). {11.3.2, Figures 11.10 and 
11.11}

Projected Changes in the Water Cycle and Atmospheric 
Circulation

Zonal mean precipitation will very likely increase in high and 
some of the mid latitudes, and will more likely than not decrease 
in the subtropics. At more regional scales precipitation changes may 
be influenced by anthropogenic aerosol emissions and will be strongly 
influenced by natural internal variability. {11.3.2, Figures 11.12 and 
11.13}

Increases in near-surface specific humidity over land are very 
likely. Increases in evaporation over land are likely in many 
regions. There is low confidence in projected changes in soil moisture 
and surface run off. {11.3.2, Figure 11.14}

It is likely that the descending branch of the Hadley Circulation 
and the Southern Hemisphere (SH) mid-latitude westerlies will 
shift poleward. It is likely that in austral summer the projected recov-
ery of stratospheric ozone and increases in GHG concentrations will 
have counteracting impacts on the width of the Hadley Circulation and 
the meridional position of the SH storm track. Therefore, it is likely that 
in the near term the poleward expansion of the descending southern 
branch of the Hadley Circulation and the SH mid- latitude westerlies in 
austral summer will be less rapid than in recent decades. {11.3.2}

There is medium confidence in near-term projections of a north-
ward shift of Northern Hemisphere storm tracks and westerlies. 
{11.3.2}

Projected Changes in the Ocean and Cryosphere

It is very likely that globally averaged surface and vertically 
averaged ocean temperatures will increase in the near term. 
It is likely that there will be increases in salinity in the tropical and 
(especially) subtropical Atlantic, and decreases in the western tropical 
Pacific over the next few decades. The Atlantic Meridional Overturning 
Circulation is likely to decline by 2050 (medium confidence). However, 
the rate and magnitude of weakening is very uncertain and, due to 
large internal variability, there may be decades when increases occur. 
{11.3.3}

It is very likely that there will be further shrinking and thinning 
of Arctic sea ice cover, and decreases of northern high-latitude 
spring time snow cover and near surface permafrost (see glos-
sary) as global mean surface temperature rises. For high GHG 
emissions such as those corresponding to RCP8.5, a nearly ice-free 
Arctic Ocean (sea ice extent less than 1 × 106 km2 for at least 5 con-
secutive years) in September is likely before mid-century (medium con-
fidence). This assessment is based on a subset of models that most 
closely reproduce the climatological mean state and 1979 to 2012 
trend of Arctic sea ice cover. There is low confidence in projected near-
term decreases in the Antarctic sea ice extent and volume. {11.3.4}

Projected Changes in Extremes

In most land regions the frequency of warm days and warm 
nights will likely increase in the next decades, while that of 
cold days and cold nights will decrease. Models project near-term 
increases in the duration, intensity and spatial extent of heat waves 
and warm spells. These changes may proceed at a different rate than 
the mean warming. For example, several studies project that European 
high-percentile summer temperatures warm faster than mean temper-
atures. {11.3.2.5.1, Figures 11.17 and 11.18}

The frequency and intensity of heavy precipitation events over 
land will likely increase on average in the near term. However, 
this trend will not be apparent in all regions because of natural vari-
ability and possible influences of anthropogenic aerosols. {11.3.2.5.2, 
Figures 11.17 and 11.18}

There is low confidence in basin-scale projections of changes 
in the intensity and frequency of tropical cyclones (TCs) in all 
basins to the mid-21st century. This low confidence reflects the 
small number of studies exploring near-term TC activity, the differences 
across published projections of TC activity, and the large role for nat-
ural variability and non-GHG forcing of TC activity up to the mid-21st 
century. There is low confidence in near-term projections for increased 
TC intensity in the North Atlantic, which is in part due to projected 
reductions in North Atlantic aerosols loading. {11.3.2.5.3}
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Projected Changes in Air Quality 

The range in projections of air quality (O3 and PM2.5 in near-
surface air) is driven primarily by emissions (including CH4), 
rather than by physical climate change (medium confidence).  
The response of air quality to climate-driven changes is more 
uncertain than the response to emission-driven changes (high 
confidence).  Globally, warming decreases background surface O3 
(high confidence).  High CH4 levels (RCP8.5, SRES A2) can offset this 
decrease, raising 2100 background surface O3 on average by about 8 
ppb (25% of current levels) relative to scenarios with small CH4 chang-
es (RCP4.5, RCP6.0) (high confidence).  On a continental scale, pro-
jected air pollution levels are lower under the new RCP scenarios than 
under the SRES scenarios because the SRES did not incorporate air 
quality legislation (high confidence).  {11.3.5, 11.3.5.2; Figures 11.22 
and 11.23ab, AII.4.2, AII.7.1–AII.7.4}

Observational and modelling evidence indicates that, all else 
being equal, locally higher surface temperatures in polluted 
regions will trigger regional feedbacks in chemistry and local 
emissions that will increase peak levels of O3 and PM2.5 (medium 
confidence).  Local emissions combined with background levels and 
with meteorological conditions conducive to the formation and accu-
mulation of pollution are known to produce extreme pollution epi-
sodes on local and regional scales. There is low confidence in project-
ing changes in meteorological blocking associated with these extreme 
episodes.  For PM2.5, climate change may alter natural aerosol sources 
(wildfires, wind-lofted dust, biogenic precursors) as well as precipi-
tation scavenging, but no confidence level is attached to the overall 
impact of climate change on PM2.5 distributions.  {11.3.5, 11.3.5.2, Box 
14.2}
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11.1 Introduction

This chapter describes current scientific expectations for ‘near-term’ cli-
mate. Here ‘near term’ refers to the period from the present to mid-cen-
tury, during which the climate response to different emissions scenar-
ios is generally similar. Greatest emphasis in this chapter is given to 
the period 2016–2035, though some information on projected changes 
before and after this period (up to mid-century) is also assessed. An 
assessment of the scientific literature relating to atmospheric compo-
sition (except carbon dioxide (CO2), which is addressed in Chapter 12) 
and air quality for the near-term and beyond to 2100 is also provided.

This emphasis on near-term climate arises from (1) a recognition of 
its importance to decision makers in government and industry; (2) an 
increase in the international research effort aimed at improving our 
understanding of near-term climate; and (3) a recognition that near-
term projections are generally less sensitive to differences between 
future emissions scenarios than are long-term projections. Climate 
prediction on seasonal to multi-annual time scales require accurate 
estimates of the initial climate state with less dependence on chang-
es in external forcing3 over the period. On longer time scales climate 
projections rely on projections of external forcing with little reliance on 
the initial state of internal variability. Estimates of near-term climate 
depend partly on the committed change (caused by the inertia of the 
oceans as they respond to historical external forcing), the time evo-
lution of internally generated climate variability and the future path 
of external forcing. Near-term climate is sensitive to rapid changes in 
some short-lived climate forcing agents (Jacobson and Streets, 2009; 
Wigley et al., 2009; UNEP and WMO, 2011; Shindell et al., 2012b).

The need for near-term climate information has spawned a new field of 
climate science: decadal climate prediction (Smith et al., 2007; Meehl 
et al., 2009b,  2013d). The Coupled Model Intercomparison Project 
Phase 5 (CMIP5) experimental protocol includes a sequence of near-
term predictions (1 to 10 years) where observation-based information 
is used to initialize the models used to produce the forecasts. The goal 
is to exploit the predictability of internally generated climate variability 
as well as that of the externally forced component. The result depends 
on the ability of current models to reproduce the observed variability 
as well as on the accurate depiction of the initial state (see Box 11.1). 
Skilful multi-annual to decadal climate predictions (in the technical 
sense of ‘skilful’ as outlined in 11.2.3.2 and FAQ 11.1) are being pro-
duced although technical challenges remain that need to be overcome 
in order to improve skill. These challenges are now being addressed by 
the scientific community. 

Climate change experiments with models that do not depend on initial 
condition but on the history and projection of climate forcings (often 
referred to as ‘uninitialized’ or ‘non-initialized’ projections or simply 
as ‘projections’) are another component of CMIP5. Such projections 
have been the main focus of assessments of future climate in previ-
ous IPCC assessments and are considered in Chapters 12 to 14. The 
main focus of attention in past assessments has been on the properties 
of projections for the late 21st century and beyond. Projections also 

3 Seasonal-to-interannual predictions typically include the impact of external forcing.

 provide  valuable information on externally forced changes to near-
term climate, however, and are an important source of information 
that complements information from the predictions. Projections are 
also assessed in this chapter.

The objectives of this chapter are to assess the state of the science con-
cerning both near-term predictions and near-term projections. CMIP5 
results are considered for the near term as are other published near-
term predictions and projections. The chapter consists of four major 
assessments:

1. The scientific basis for near-term prediction as reflected in esti-
mates of predictability (see Box 11.1), and the dynamical and 
physical mechanisms underpinning predictability, and the process-
es that limit predictability (see Section 11.2).

2. The current state of knowledge in near-term prediction (see Sec-
tion 11.2). Here the emphasis is placed on the results from the 
decadal (10-year) multi-model prediction experiments in the 
CMIP5 database.

3. The current state of knowledge in near-term projection (see Sec-
tion 11.3). Here the emphasis is on what the climate in next few 
decades may look like relative to 1986–2005, based on near-term 
projections (i.e., the forced climatic response). The focus is on the 
‘core’ near-term period (2016–2035), but some information prior 
to this period and out to mid-century is also discussed. A key issue 
is when, where and how the signal of externally forced climate 
change is expected to emerge from the background of natural cli-
mate variability.

4. Projected changes in atmospheric composition and air quality, and 
their interactions with climate change during the near term and 
beyond, including new findings from the Atmospheric Chemistry 
and Climate Model Intercomparison (ACCMIP) initiative.
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Box 11.1 | Climate Simulation, Projection, Predictability and Prediction

This section outlines some of the ideas and the terminology used in this chapter.

Internally generated and externally forced climate variability
It is useful for purposes of analysis and description to consider the pre-industrial climate system as being in a state of climatic equilib-
rium with a fixed atmospheric composition and an unchanging Sun. In this idealized state, naturally occurring processes and interac-
tions within the climate system give rise to ‘internally generated’ climate variability on many time scales (as discussed in Chapter 1). 
Variations in climate may also result due to features ‘external’ to this idealized system. Forcing factors, such as volcanic eruptions, solar 
variations, anthropogenic changes in the composition of the atmosphere, land use change etc., give rise to ‘externally forced’ climate 
variations. In this sense climate system variables such as annual mean temperatures (as in Box 11.1, Figure 1 for instance) may be 
characterized as a combination of externally forced and internally generated components with T(t) = Tf(t) + Ti(t). This separation of T, 
and other climate variables, into components is useful when analysing climate behaviour but does not, of course, mean that the climate 
system is linear or that externally forced and internally generated components do not interact.

Climate simulation
A climate simulation is a model-based representation of the temporal behaviour of the climate system under specified external forcing 
and boundary conditions. The result is the modelled response to the imposed external forcing combined with internally generated var-
iability. The thin yellow lines in Box 11.1, Figure 1 represent an ensemble of climate simulations begun from pre-industrial conditions 
with imposed historical external forcing. The imposed external conditions are the same for each ensemble member and differences 
among the simulations reflect differences in the evolutions of the internally generated component. Simulations are not intended to be 
forecasts of the observed evolution of the system (the black line in Box 11.1, Figure 1) but to be possible evolutions that are consistent 
with the external forcings.

In practice, and in Box 11.1, Figure 1, the forced component of the temperature variation is estimated by averaging over the different 
simulations of T(t) with Tf(t) the component that survives ensemble averaging (the red curve) while Ti(t) averages to near zero for a 
large enough ensemble. The spread among individual ensemble members (from these or pre-industrial simulations) and their behaviour 
with time provides some information on the statistics of the internally generated variability. (continued on next page)
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Box 11.1, Figure 1 |  The evolution of observation-based global mean temperature T (the black line) as the difference from the 1986–2005 average together with 
an ensemble of externally forced simulations to 2005 and projections based on the RCP4.5 scenario thereafter (the yellow lines). The model-based estimate of the 
externally forced component Tf (the red line) is the average over the ensemble of simulations. To the extent that the red line correctly estimates the forced component, 
the difference between the black and red lines is the internally generated component Ti for global mean temperature. An ensemble of forecasts of global annual mean 
temperature, initialized in 1998, is plotted as thin purple lines and their average, the ensemble mean forecast, as the thick green line. The grey areas along the axis 
indicate the presence of external forcing associated with volcanoes.
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Climate projection
A climate projection is a climate simulation that extends into the future based on a scenario of future external forcing. The simulations 
in Box 11.1, Figure 1 become climate projections for the period beyond 2005 where the results are based on the RCP4.5 forcing scenario 
(see Chapters 1 and 8 for a discussion of forcing scenarios).

Climate prediction, climate forecast
A climate prediction or climate forecast is a statement about the future evolution of some aspect of the climate system encompassing 
both forced and internally generated components. Climate predictions do not attempt to forecast the actual day-to-day progression of 
the system but instead the evolution of some climate statistic such as seasonal, annual or decadal averages or extremes, which may 
be for a particular location, or a regional or global average. Climate predictions are often made with models that are the same as, or 
similar to, those used to produce climate simulations and projections (assessed in Chapter 9). A climate prediction typically proceeds 
by integrating the governing equations forward in time from observation-based initial conditions. A decadal climate prediction com-
bines aspects of both a forced and an initial condition problem as illustrated in Box 11.1, Figure 2. At short time scales the evolution is 
largely dominated by the initial state while at longer time scales the influence of the initial conditions decreases and the importance of 
the forcing increases as illustrated in Box 11.1, Figure 4. Climate predictions may also be made using statistical methods which relate 
current to future conditions using statistical relationships derived from past system behaviour. 

Because of the chaotic and nonlinear nature of the climate system small differences, in initial conditions or in the formulation of the 
forecast model, result in different evolutions of forecasts with time. This is illustrated in Box 11.1, Figure 1, which displays an ensemble 
of forecasts of global annual mean temperature (the thin purple lines) initiated in 1998. The individual forecasts are begun from slightly 
different initial conditions, which are observation-based estimates of the state of the climate system. The thick green line is the average 
of these forecasts and is an attempt to predict the most probable outcome and to maximize forecast skill. In this schematic example, the 
1998 initial conditions for the forecasts are warmer than the average of the simulations. The individual and ensemble mean forecasts 
exhibit a decline in global temperature before beginning to rise again. In this case, initialization has resulted in more realistic values for 
the forecasts than for the corresponding simulation, at least for short lead times in the forecast. As the individual forecasts evolve they 
diverge from one another and begin to resemble the projection results. 

A probabilistic view of forecast behaviour is depicted schematically in Box 11.1, Figure 3. The probability distribution associated with 
the climate simulation of temperature evolves in response to external forcing. By contrast, the probability distribution associated with 
a climate forecast has a sharply peaked initial distribution representing the comparatively small uncertainty in the observation-based 
initial state. The forecast probability distribution broadens with time until, ultimately, it becomes indistinguishable from that of an 
uninitialized climate projection.

Climate predictability
The term ‘predictability’, as used here, indicates the extent to which even minor imperfections in the knowledge of the current state or 
of the representation of the system limits knowledge of subsequent states. The rate of separation or divergence of initially close states 
of the climate system with time (as for the light purple lines in Box 11.1, Figure 1), or the rate of displacement and broadening of its 

Box 11.1 (continued)

Box 11.1, Figure 2 |  A schematic illustrating the progression from an initial-value based prediction at short time scales to the forced boundary-value problem of 
climate projection at long time scales. Decadal prediction occupies the middle ground between the two. (Based on Meehl et al., 2009b.)

 (continued on next page)
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probability distribution (as in Box 11.1, Figure 3) are 
indications of the system’s predictability. If initially 
close states separate rapidly (or the probability dis-
tribution broadens quickly towards the climatological 
distribution), the predictability of the system is low 
and vice versa. Formally, predictability in climate sci-
ence is a feature of the physical system itself, rather 
than of our ‘ability to make skilful predictions in prac-
tice’. The latter depends on the accuracy of models and 
initial conditions and on the correctness with which 
the external forcing can be treated over the forecast 
period. 

Forecast quality, forecast skill
Forecast (or prediction) quality measures the success 
of a prediction against observation-based informa-
tion. Forecasts made for past cases, termed retrospec-
tive forecasts or hindcasts, may be analysed to give 
an indication of the quality that may be expected for 
future forecasts for a particular variable at a particular 
location.

The relative importance of initial conditions and of 
external forcing for climate prediction, as depicted 
schematically in Box 11.1, Figure 2, is further illustrat-
ed in the example of Box 11.1, Figure 4 which plots 
correlation measures of both forecast skill and predictability for temperature averages over the globe ranging from a month to a 
decade. Initialized forecasts exhibit enhanced values compared to uninitialized simulations for shorter time averages but the advantage 
declines as averaging time increases and the forced component grows in importance.

Box 11.1 (continued)

t

p[X  |  forcing,initialization]

p[X  |  forcing]

Box 11.1, Figure 3 |  A schematic representation of prediction in terms of probability. The 
probability distribution corresponding to a forced simulation is in red, with the deeper shades 
indicating higher probability. The probabilistic forecast is in blue. The sharply peaked forecast 
distribution based on initial conditions broadens with time as the influence of the initial condi-
tions fades until the probability distribution of the initialized prediction approaches that of an 
uninitialized projection. (Based on Branstator and Teng, 2010.)
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Box 11.1, Figure 4 |  An example of the relative importance of initial conditions and external forcing for climate prediction and predictability. The global average of 
the correlation skill score of ensemble mean initialized forecasts are plotted as solid orange lines and the corresponding model-based predictability measure as dashed 
orange lines. The green lines are the same quantities but for uninitialized climate simulations. Results are for temperature averaged over periods from a month to a 
decade. Values plotted for the monthly average correspond to the first month, those for the annual average to the first year and so on up to the decadal average. (Based 
on Boer et al., 2013.)
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11.2 Near-term Predictions

11.2.1 Introduction

11.2.1.1 Predictability Studies

The innate behaviour of the climate system imposes limits on the abil-
ity to predict its evolution. Small differences in initial conditions, exter-
nal forcing and/or in the representation of the behaviour of the system 
produce differences in results that limit useful prediction. Predictability 
studies estimate predictability limits for different variables and regions. 

11.2.1.2 Prognostic Predictability Studies

Prognostic predictability studies analyse the behaviour of models inte-
grated forward in time from perturbed initial conditions. The study of 
Griffies and Bryan (1997) is one of the earliest studies of the predict-
ability of internally generated decadal variability in a coupled atmos-
phere–ocean climate model. The study concentrates on the North 
Atlantic and the subsurface ocean temperature while the subsequent 
studies of Boer (2000) and Collins (2002) deal mainly with surface 
 temperature. Long time scale temperature variability in the North 
Atlantic has received considerable attention together with its  possible 
connection to the variability of the Atlantic Meridional Overturn-
ing Circulation (AMOC) in predictability studies by Collins and Sinha 
(2003), Collins et al. (2006), Dunstone and Smith (2010), Dunstone et 
al. (2011), Grotzner et al. (1999), Hawkins and Sutton (2009), Latif et al. 
(2006, 2007), )Msadek et al. (2010), Persechino et al. (2012), Pohlmann 
et al. (2004, 2013), Swingedouw et al. (2013), and Teng et al. (2011). 
The predictability of the AMOC varies among models and, to some 
extent, with initial model states, ranging from several to 10 or more 
years. The predictability values are model-based and the realism of the 
simulated AMOC in the models cannot be easily judged in the absence 
of a sufficiently long record of observation-based AMOC values. Many 
predictability studies are based on perturbations to surface quantities 
but Sevellec and A. Fedorov (2012) and Zanna (2012) note that small 
perturbations to deep ocean quantities may also affect upper ocean 
values. The predictability of the North Atlantic sea surface temperature 
(SST) is typically weaker than that of the AMOC and the connection 
between the predictability of the AMOC, and the SST is inconsistent 
among models.

Prognostic predictability studies of the Pacific are less plentiful 
although Pacific Decadal Variability (PDV) mechanisms (including the 
Pacific Decadal Oscillation (PDO) and the Inter-decadal Pacific Oscilla-
tion (IPO) have received considerable study (see Chapters 2 and 12). 
Power and Colman (2006) find predictability on multi-year time scales 
in SST and on decadal time-scales in the sub-surface ocean temper-
ature in the off-equatorial South Pacific in their model. Power et al. 
(2006) find no evidence for the predictability of inter-decadal changes 
in the nature of El Niño-Southern Oscillation (ENSO) impacts on Aus-
tralian rainfall. Sun and Wang (2006) suggest that some of the tem-
perature variability linked to PDV can be predicted approximately 7 
years in advance. Teng et al. (2011) investigate the predictability of the 
first two Empirical Orthogonal Functions (EOFs) of annual mean SST 
and upper ocean temperature identified with PDV and find predict-
ability of the order of 6 to 10 years. Meehl et al. (2010) consider the 

 predictability of 19-year filtered Pacific SSTs in terms of low order EOFs 
and find predictability on these long time scales.

Hermanson and Sutton (2010) report that predictable signals in dif-
ferent regions and for different variables may arise from differing ini-
tial conditions and that ocean heat content is more predictable than 
atmospheric and surface variables. Branstator and Teng (2010) ana-
lyse upper ocean temperatures, and some SSTs, for averages over the 
North Atlantic, North Pacific and the tropical Atlantic and Pacific in the 
National Center for Atmospheric Research (NCAR) model. Predictabil-
ity associated with the initial state of the system decreases whereas 
that due to external forcing increases with time. The ‘cross-over’ time, 
when the two contributions are equal, is longer in extratropical (7 to 11 
years) compared to tropical (2 years) regions and in the North Atlantic 
compared to the North Pacific. Boer et al. (2013) estimate surface air 
(rather than upper ocean) temperature predictability in the Canadian 
Centre for Climate Modelling and Analysis (CCCma) model and find 
a cross-over time (using a different measure) on the order of 3 years 
when averaged over the globe. 

11.2.1.3 Diagnostic Predictability Studies

Diagnostic predictability studies are based on analyses of the observed 
record or the output of climate models. Because long data records are 
needed, diagnostic multi-annual to decadal predictability studies based 
on observational data are comparatively few. Newman (2007) and 
Alexander et al. (2008) develop multivariate empirical Linear Inverse 
Models (LIMs) from observation-based SSTs and find predictability for 
ENSO and PDV type patterns that are generally limited to the order of 
a year although exceeding this in some areas. Zanna (2012) develops 
a LIM based on Atlantic SSTs and infers the possibility of decadal scale 
predictability. Hoerling et al. (2011) appeal to forced climate change 
relative to the 1971–2000 period together with the statistics of natural 
variability to infer the potential for the prediction of temperature over 
North America for 2011–2020. 

Tziperman et al. (2008) apply LIM-based methods to Geophysical Fluid 
Dynamics Laboratory (GFDL) model output, as do Hawkins and Sutton 
(2009) and Hawkins et al. (2011) to Hadley Centre model output and 
find predictability up to a decade or more for the AMOC and North 
Atlantic SST. Branstator et al. (2012) use analog and multivariate linear 
regression methods to quantify the predictability of the internally gen-
erated component of upper ocean temperature in results from six cou-
pled models. Results differ considerably across models but offer some 
areas of commonality. Basin-average estimates indicate predictability 
for up to a decade in the North Atlantic and somewhat less in the North 
Pacific. Branstator and Teng (2012) assess the predictability of both the 
internally generated and forced component of upper ocean temperature 
in results from 12 coupled models participating in CMIP5. They infer 
potential predictability from initializing the internally generated com-
ponent for 5 years in the North Pacific and 9 years in the North Atlantic 
while the forced component dominates after 6.5 and 8 years in the two 
basins. Results vary among models, although with some agreement for 
internal component predictability in subpolar gyre regions.

Studies of ‘potential predictability’ take a number of forms but broad-
ly assume that overall variability may be separated into a long time 
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scale component of interest and shorter time scale components that 
are unpredictable on these long time scales, written symbolically as 
s2

X = s2
v + s2

e. The fraction p = s2
v / s2

X is a measure of potentially 
predictable variance provided that hypothesis that s2

v  is zero may be 
rejected. Small p indicates either a lack of long time scale variability 
or its smallness as a fraction of the total. Predictability is ‘potential’ in 
the sense that the existence of appreciable long time scale  variability 
is not a direct indication that it may be skilfully predicted. There are 

a number of approaches to estimating potential predictability each 
with its statistical difficulties (e.g., DelSole and Feng, 2013). At mul-
ti-annual time scales the potential predictability of the internally gen-
erated component of temperature is studied in Boer (2000), Collins 
(2002), Pohlmann et al. (2004), Power and Colman (2006) and, in a 
multi-model context, in Boer (2004) and Boer and Lambert (2008). 
Power and Colman (2006) report that potential predictability in the 
ocean tends to increase with latitude and depth. Multi-model results 

Figure 11.1 |  The potential predictability of 5-year means of temperature (lower), the contribution from the forced component (middle) and from the internally generated compo-
nent (upper). These are multi-model results from CMIP5 RCP4.5 scenario simulations from 17 coupled climate models following the methodology of Boer (2011). The results apply 
to the early 21st century.
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Frequently Asked Questions 

FAQ 11.1 |  If You Cannot Predict the Weather Next Month, How Can You Predict Climate 
for the Coming Decade? 

Although weather and climate are intertwined, they are in fact different things. Weather is defined as the state of 
the atmosphere at a given time and place, and can change from hour to hour and day to day. Climate, on the other 
hand, generally refers to the statistics of weather conditions over a decade or more. 

An ability to predict future climate without the need to accurately predict weather is more commonplace that it 
might first seem. For example, at the end of spring, it can be accurately predicted that the average air temperature 
over the coming summer in Melbourne (for example) will very likely be higher than the average temperature during 
the most recent spring—even though the day-to-day weather during the coming summer cannot be predicted with 
accuracy beyond a week or so. This simple example illustrates that factors exist—in this case the seasonal cycle in 
solar radiation reaching the Southern Hemisphere—that can underpin skill in predicting changes in climate over a 
coming period that does not depend on accuracy in predicting weather over the same period.

The statistics of weather conditions used to define climate include long-term averages of air temperature and 
rainfall, as well as statistics of their variability, such as the standard deviation of year-to-year rainfall variability 
from the long-term average, or the frequency of days below 5°C. Averages of climate variables over long periods 
of time are called climatological averages. They can apply to individual months, seasons or the year as a whole. A 
climate prediction will address questions like: ‘How likely will it be that the average temperature during the coming 
summer will be higher than the long-term average of past summers?’ or: ‘How likely will it be that the next decade 
will be warmer than past decades?’ More specifically, a climate prediction might provide an answer to the question: 
‘What is the probability that temperature (in China, for instance) averaged over the next ten years will exceed the 
temperature in China averaged over the past 30 years?’ Climate predictions do not provide forecasts of the detailed 
day-to-day evolution of future weather. Instead, they provide probabilities of long-term changes to the statistics of 
future climatic variables. 

Weather forecasts, on the other hand, provide predictions of day-to-day weather for specific times in the future. 
They help to address questions like: ‘Will it rain tomorrow?’ Sometimes, weather forecasts are given in terms of prob-
abilities. For example, the weather forecast might state that: ‘the likelihood of rainfall in Apia tomorrow is 75%’. 

To make accurate weather predictions, forecasters need highly detailed information about the current state of the 
atmosphere. The chaotic nature of the atmosphere means that even the tiniest error in the depiction of ‘initial con-
ditions’ typically leads to inaccurate forecasts beyond a week or so. This is the so-called ‘butterfly effect’. 

Climate scientists do not attempt or claim to predict the detailed future evolution of the weather over coming 
seasons, years or decades. There is, on the other hand, a sound scientific basis for supposing that aspects of climate 
can be predicted, albeit imprecisely, despite the butterfly effect. For example, increases in long-lived atmospheric 
greenhouse gas concentrations tend to increase surface temperature in future decades. Thus, information from the 
past can and does help predict future climate. 

Some types of naturally occurring so-called ‘internal’ variability can—in theory at least—extend the capacity to 
predict future climate. Internal climatic variability arises from natural instabilities in the climate system. If such 
variability includes or causes extensive, long-lived, upper ocean temperature anomalies, this will drive changes in 
the overlying atmosphere, both locally and remotely. The El Niño-Southern Oscillation phenomenon is probably 
the most famous example of this kind of internal variability. Variability linked to the El Niño-Southern Oscillation 
unfolds in a partially predictable fashion. The butterfly effect is present, but it takes longer to strongly influence 
some of the variability linked to the El Nino-Southern Oscillation. 

Meteorological services and other agencies have exploited this. They have developed seasonal-to-interannual pre-
diction systems that enable them to routinely predict seasonal climate anomalies with demonstrable predictive skill. 
The skill varies markedly from place to place and variable to variable. Skill tends to diminish the further the predic-
tion delves into the future and in some locations there is no skill at all. ‘Skill’ is used here in its technical sense: it is a 
measure of how much greater the accuracy of a prediction is, compared with the accuracy of some typically simple 
prediction method like assuming that recent anomalies will persist during the period being predicted.

Weather, seasonal-to-interannual and decadal prediction systems are similar in many ways (e.g., they all incorpo-
rate the same mathematical equations for the atmosphere, they all need to specify initial conditions to kick-start

 

(continued on next page)
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for both externally forced and internally generated components of the 
potential predictability of decadal means of surface air temperature in 
simulations of 21st century climate in CMIP3 model data are analysed 
in Boer (2011) and results based on CMIP5 model data are shown 
in Figure 11.2. Potential predictability of 5-year means for internally 
generated variability is found over extratropical oceans but is generally 
weak over land while that associated with the decadal change in the 
forced component is found in tropical areas and over some land areas.

Predictability studies of precipitation on long time scales are com-
paratively few. Jai and DelSole (2012) identify ‘optimally predictable’ 
fractions of internally generated temperature and precipitation vari-
ance over land on multi-year time scales in the control simulations of 
10 models participating in CMIP5, with results that vary considerably 
from model to model. Boer and Lambert (2008) find little potential 
predictability for decadal means of precipitation in the internally gen-
erated variability of a collection of CMIP3 model control simulations 
other than over parts of the North Atlantic. This is also the case for the 
internally generated component of CMIP3 precipitation in 21st century 
climate change simulations in Boer (2011) although there is evidence 
of potential predictability for the forced component of precipitation 
mainly at higher latitudes and for longer time scales.

11.2.1.4 Summary

Predictability studies suggest that initialized climate forecasts should 
be able to provide more detailed information on climate evolution, over 

a few years to a decade, than is available from uninitialized climate 
simulations alone. Predictability results are, however, based mainly on 
climate model results and depend on the verisimilitude with which the 
models reproduce climate system behaviour (Chapter 9). There is evi-
dence of multi-year predictability for both the internally generated and 
externally forced components of temperature over considerable por-
tions of the globe with the first dominating at shorter and the second 
at longer time scales. Predictability for precipitation is based on fewer 
studies, is more modest than for temperature, and appears to be asso-
ciated mainly with the forced component at longer time scales. Predict-
ability can also vary from location to location.

11.2.2 Climate Prediction on Decadal Time Scales

11.2.2.1 Initial Conditions

A dynamical prediction consists of an ensemble of forecasts pro-
duced by integrating a climate model forward in time from a set of 
observation-based initial conditions. As the forecast range increases, 
 processes in the ocean become increasingly important and the sparse-
ness, non-uniformity and secular change in sub-surface ocean obser-
vations is a challenge to analysis and prediction (Meehl et al., 2009b, 
2013d; Murphy et al., 2010) and can lead to differences among ocean 
analyses, that is, quantified descriptions of ocean initial conditions 
(Stammer, 2006; Keenlyside and Ba, 2010). Approaches to ocean ini-
tialization include (as listed in Table 11.1): assimilation only of SSTs 
to initialize the sub-surface ocean indirectly (Keenlyside et al., 2008; 

FAQ 11.1 (continued) 

predictions, and they are all subject to limits on forecast accuracy imposed by the butterfly effect). However, decadal 
prediction, unlike weather and seasonal-to-interannual prediction, is still in its infancy. Decadal prediction systems 
nevertheless exhibit a degree of skill in hindcasting near-surface temperature over much of the globe out to at least 
nine years. A ‘hindcast’ is a prediction of a past event in which only observations prior to the event are fed into 
the prediction system used to make the prediction. The bulk of this skill is thought to arise from external forcing. 
‘External forcing’ is a term used by climate scientists to refer to a forcing agent outside the climate system causing 
a change in the climate system. This includes increases in the concentration of long-lived greenhouse gases.

Theory indicates that skill in predicting decadal precipitation should be less than the skill in predicting decadal sur-
face temperature, and hindcast performance is consistent with this expectation. 

Current research is aimed at improving decadal prediction systems, and increasing the understanding of the reasons 
for any apparent skill. Ascertaining the degree to which the extra information from internal variability actually 
translates to increased skill is a key issue. While prediction systems are expected to improve over coming decades, 
the chaotic nature of the climate system and the resulting butterfly effect will always impose unavoidable limits 
on predictive skill. Other sources of uncertainty exist. For example, as volcanic eruptions can influence climate but 
their timing and magnitude cannot be predicted, future eruptions provide one of a number of other sources of 
uncertainty. Additionally, the shortness of the period with enough oceanic data to initialize and assess decadal 
predictions presents a major challenge.

Finally, note that decadal prediction systems are designed to exploit both externally forced and internally generat-
ed sources of predictability. Climate scientists distinguish between decadal predictions and decadal projections. Pro-
jections exploit only the predictive capacity arising from external forcing. While previous IPCC Assessment Reports 
focussed exclusively on projections, this report also assesses decadal prediction research and its scientific basis. 
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Dunstone, 2010; Swingedouw et al., 2013); the forcing of the ocean 
model with atmospheric observations (e.g., Du et al., 2012; Matei et al., 
2012b; Yeager et al., 2012) and more sophisticated alternatives based 
on fully coupled data assimilation schemes (e.g., Zhang et al., 2007a; 
Sugiura et al., 2009).

Dunstone and Smith (2010) and Zhang et al. (2010a) found an expected 
improvement in skill when sub-surface information was used as part of 
the initialization. Assimilation of atmospheric data, on the other hand, 
is expected to have little impact after the first few months  (Balmaseda 
and Anderson, 2009). The initialization of sea ice, snow cover, frozen 
soil and soil moisture can potentially contribute to seasonal and sub-
seasonal skill (e.g., Koster et al., 2010; Toyoda et al., 2011; Chevallier 
and Salas-Melia, 2012; Paolino et al., 2012), although an assessment of 
their benefit at longer time scales has not yet been determined.

11.2.2.2 Ensemble Generation

An ensemble can be generated in many different ways and a wide range 
of methods have been explored in seasonal prediction (e.g., Stockdale 
et al., 1998; Stan and Kirtman, 2008) but not yet fully investigated for 
decadal prediction (Corti et al., 2012). Methods being investigated 
include adding random perturbations to initial conditions, using atmos-
pheric states displaced in time, using parallel assimilation runs (Doblas-
Reyes et al., 2011; Du et al., 2012) and perturbing ocean initial condi-
tions (Zhang et al., 2007a; Mochizuki et al., 2010). Perturbations leading 
to rapidly growing modes, common in weather forecasting, have also 
been investigated (Kleeman et al., 2003; Vikhliaev et al., 2007; Hawkins 
and Sutton, 2009, 2011; Du et al., 2012). The uncertainty associated 
with the limitations of a model’s representation of the climate system 
may be partially represented by perturbed physics (Stainforth et al., 
2005; Murphy et al., 2007) or stochastic physics (Berner et al., 2008), 
and applied to multi-annual and decadal predictions (Doblas-Reyes et 
al., 2009; Smith et al., 2010). Weisheimer et al. (2011) compare these 
three approaches in a seasonal prediction context.

The multi-model approach, which is used widely and most common-
ly, combines ensembles of predictions from a collection of models, 
thereby increasing the sampling of both initial conditions and model 
properties. Multi-model approaches are used across time scales rang-
ing from seasonal–interannual (e.g., DEMETER; Palmer et al. (2004), 
to seasonal-decadal (e.g., Weisheimer et al., 2011; van Oldenborgh et 
al., 2012), in climate change simulation (e.g., IPCC, 2007, Chapter 10; 
Meehl et al., 2007b) and in the ENSEMBLES and CMIP5-based decadal 
predictions assessed in Section 11.2.3. A problem with the multi-model 
approach is tha inter-dependence of the climate models used in current 
forecast systems (Power et al. 2012; Knutti et al. 2013) is expected to 
lead to co-dependence of forecast error.

11.2.3 Prediction Quality

11.2.3.1 Decadal Prediction Experiments

Decadal predictions for specific variables can be made by exploiting 
empirical relationships based on past observations and expected phys-
ical relationships. Predictions of North Pacific Ocean temperatures 
have been achieved using prior wind stress observations (Schneider 

and Miller, 2001). Both global and regional predictions of surface 
temperature have been made based on projected changes in external 
forcing and the observed state of the natural variability at the start 
date (Lean and Rind, 2009; Krueger and von Storch, 2011; Ho et al., 
2012a; Newman, 2013). Some of these forecast systems are also used 
as benchmarks to compare with the dynamical systems under devel-
opment. Comparisons (Newman (2013) have shown that there is simi-
larity in the temperature skill between a linear inverse method and the 
CMIP5 hindcasts, pointing at a similarity in their sources of skill. In the 
future, the combination of information from empirical and dynamical 
predictions might be explored to provide a unified and more skilful 
source of information.

Evidence for skilful interannual to decadal temperatures using dynam-
ical models forced only by previous and projected changes in anthro-
pogenic greenhouse gases (GHGs) and aerosols and natural varia-
tions in volcanic aerosols and solar irradiance is reported by Lee et al. 
(2006b), Räisänen and Ruokolainen (2006) and Laepple et al. (2008). 
Some attempts to predict the 10-year climate over regions have been 
done using this approach, and include assessments of the role of the 
internal decadal variability (Hoerling et al., 2011). To be clear, in the 
context of this report these studies are viewed as projections because 
no attempt is made to use observational estimates for the initial con-
ditions. Essentially, an uninitialized prediction is synonymous with a 
projection. These projections or uninitialized predictions are referred 
to synonymously in the literature as ‘NoInit,’ or ‘NoAssim’, referring to 
the fact that no assimilated observations are used for the specification 
of the initial conditions.

Additional skill can be realized by initializing the models with obser-
vations in order to predict the evolution of the internally generated 
component and to correct the model’s response to previously imposed 
forcing (Smith et al., 2010; Fyfe et al., 2011; Kharin et al., 2012; Smith 
et al., 2012). Again, to be clear, the assessment provided here distin-
guishes between predictions in which attempts are made to initialize 
the models with observations, and projections. See Box 11.1 and FAQ 
11.1 for further details.

The ENSEMBLES project (van Oldenborgh et al., 2012), for example, 
has conducted a multi-model decadal retrospective prediction study, 
and the Coupled Model Intercomparison Project phase 5 (CMIP5) pro-
posed a coordinated experiment that focuses on decadal, or near-term, 
climate prediction (Meehl et al., 2009b; Taylor et al., 2012). Prior to 
these initiatives, several pioneering attempts at initialized decadal pre-
diction were made (Pierce et al., 2004; Smith et al., 2007; Troccoli and 
Palmer, 2007; Keenlyside et al., 2008; Pohlmann et al., 2009; Mochizuki 
et al., 2010). Results from the CMIP5 coordinated experiment (Taylor et 
al., 2012) are the basis for the assessment reported here.

Because the practice of decadal prediction is in its infancy, details of 
how to initialize the models included in the CMIP5 near-term exper-
iment were left to the discretion of the modelling groups and are 
described in Meehl et al. (2013d) and Table 11.1. In CMIP5 experi-
ments, volcanic aerosol and solar cycle variability are prescribed 
along the integration using observation-based values up to 2005, and 
assuming a climatological 11-year solar cycle and a background vol-
canic aerosol load in the future. These forcings are shared with CMIP5 
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Figure 11.2 |  Time series of global mean sea surface temperature from the (a) direct model output and (b) anomalies of the CMIP5 multi-model initialized hindcasts. Results for 
each forecast system are plotted with a different colour, with each line representing an individual member of the ensemble. Results for the start dates 1961, 1971, 1981, 1991 and 
2001 are shown, while the model and observed climatologies to obtain the anomalies in (b) have been estimated using data from start dates every five years. The reference data 
(ERSST) is drawn in black. All time series have been smoothed with a 24-month centred moving average that filters out the seasonal cycle and removes data for the first and last 
years of each time series.

historical runs (i.e., unintialized projections) started from pre-industrial 
control simulations, enabling an assessment of the impact of initial-
ization. The specification of the volcanic aerosol load and the solar 
irradiance in the hindcasts gives an optimistic estimate of the forecast 
quality with respect to an operational prediction system, where no 
such future information can be used. Table 11.1 summarizes forecast 
systems contributing to, and the initialization methods used in, the 
CMIP5 near-term experiment. 

The coordinated nature of the ENSEMBLES and CMIP5 experiments 
also offers a good opportunity to study multi-model ensembles (Gar-
cia-Serrano and Doblas-Reyes, 2012; van Oldenborgh et al., 2012) as 
a means of sampling model uncertainty while some modelling groups 
have also investigated this using perturbed parameter approaches 
(Smith et al., 2010). The relative merit of the different approaches for 
decadal predictions has yet to be assessed.

When initialized with states close to the observations, models ‘drift’ 
towards their imperfect climatology (an estimate of the mean climate), 
leading to biases in the simulations that depend on the forecast time. 
The time scale of the drift in the atmosphere and upper ocean is, in 
most cases, a few years (Hazeleger et al., 2013a). Biases can be largely 
removed using empirical techniques a posteriori (Garcia-Serrano and 
Doblas-Reyes, 2012; Kharin et al., 2012). The bias correction or adjust-
ment linearly corrects for model drift (e.g., Stockdale, 1997; Garcia-Ser-
rano et al., 2012; Gangstø et al., 2013). The approach assumes that the 
model bias is stable over the prediction period (from 1960 onward in 
the CMIP5 experiment). This might not be the case if, for instance, the 
predicted temperature trend differs from the observed trend (Fyfe et 
al., 2011; Kharin et al., 2012). Figure 11.2 is an illustration of the time 
scale of the global SST drift, while at the same time showing the sys-
tematic error of several of the forecast systems contributing to CMIP5. 
It is important to note that the systematic errors illustrated here are 
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common to both decadal prediction systems and climate-change 
projections. The bias adjustment itself is another important source of 
uncertainty in climate predictions (e.g., Ho et al., 2012b). There may be 
nonlinear relationships between the mean state and the anomalies, 
that are neglected in linear bias adjustment techniques. There are also 
difficulties in estimating the drift in the presence of volcanic eruptions.

It has been recognized that including as many initial states as possible 
in computing the drift and adjusting the bias is more desirable than a 
greater number of ensemble members per initial state (Meehl et al., 
2013d), although increasing both is desirable to obtain robust fore-
cast quality estimates. A procedure for bias adjustment following the 
technique outlined above has been recommended for CMIP5 (ICPO, 
2011). A suitable adjustment depends also on there being a sufficient 
number of hindcasts for statistical robustness (Garcia-Serrano et al., 
2012; Kharin et al., 2012).

To reduce the impact of the drift many of the early attempts at decadal 
prediction (Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 
2009; Mochizuki et al., 2010) use an approach called anomaly initial-
ization (Schneider et al., 1999; Pierce et al., 2004; Smith et al., 2007). 
The anomaly initialization approach attempts to circumvent model drift 
and the need for a time-varying bias correction. The models are initial-
ized by adding observed anomalies to an estimate of the model mean 
climate. The mean model climate is subsequently subtracted from the 
predictions to obtain forecast anomalies. Sampling error in the estima-
tion of the mean climatology affects the success of this approach. This 
is also the case for full-field initialization, although as anomaly initial-
isation is affected to a smaller degree by the drift, the sampling error 
is assumed to be smaller (Hazeleger et al., 2013a). The relative merits 
of anomaly versus full initialization are being quantified (Hazeleger et 
al., 2013a; Magnusson et al., 2013; Smith et al., 2013a), although no 
initialization method was found to be definitely better in terms of fore-
cast quality. Another less widely explored alternative is dynamic bias 
correction in which multi-year monthly mean analysis increments are 
added during the integration of the ocean model (Wang et al., 2013). 
Figure 11.2 includes predictions performed with both full and anomaly 
initialization systems.

11.2.3.2 Forecast Quality Assessment

The quality of a forecast system is assessed by estimating, among 
others, the accuracy, skill and reliability of a set of hindcasts (Jolliffe 
and Stephenson, 2011). These three terms—accuracy, skill and reli-
ability—are used here in a strict technical sense. A suite of meas-
ures needs to be considered, particularly when a forecast system are 
compared. The accuracy of a forecast system refers to the average 
distance/error between forecasts and observations. The skill score is 
a relative measure of the quality of the forecasting system compared 
to some benchmark or reference forecast (e.g., climatology or per-
sistence). The reliability, which is a property of the specific forecast 
system, measures the trustworthiness of the predictions. Reliability 
measures how well the predicted probability distribution matches the 
observed relative frequency of the forecast event. Accuracy and relia-
bility are aspects of forecast quality that can be improved by improv-
ing the individual forecast systems or by combining several of them 
into a multi-model prediction. The reliability can be improved by a 

posteriori corrections to model spread. Forecast quality can also be 
improved by unequal weighting (Weigel et al., 2010; DelSole et al., 
2013), although this option has not been explored in decadal pre-
diction to date, because a long training sample is required to obtain 
robust weights. 

The assessment of forecast quality depends on the quantities of great-
est interest to those who use the information. World Meteorological 
Organization (WMO)’s Standard Verification System (SVS) for Long- 
Range Forecasts (LRF) (WMO, 2002) outlines specifications for long-
range (sub-seasonal to seasonal) forecast quality assessment. These 
measures are also described in Jolliffe and Stephenson (2011) and 
Wilks (2006). A recommendation for a deterministic metric for dec-
adal climate predictions is the mean square skill score (MSSS), and 
for a probabilistic metric, the continuous ranked probability skill score 
(CRPSS) as described in Goddard et al. (2013) and Meehl et al. (2013d). 
For dynamical ensemble systems, a useful measure of the characteris-
tics of an ensemble forecast system is spread. The relative spread can 
be described in terms of the ratio between the mean spread around the 
ensemble mean and the root mean square error (RMSE) of the ensem-
ble-mean prediction, or spread-to-RMSE ratio. A ratio of 1 is considered 
a desirable feature for a Gaussian-distributed variable of a well-cali-
brated (i.e., reliable) prediction system (Palmer et al., 2006). The impor-
tance of using statistical inference in forecast quality assessments has 
been recently emphasized (Garcia-Serrano and Doblas-Reyes, 2012; 
Goddard et al., 2013). This is even more important when there are only 
small samples available (Kumar, 2009) and a small number of degrees 
of freedom (Gangstø et al., 2013). Confidence intervals for the scores 
are typically computed using either parametric or bootstrap methods 
(Lanzante, 2005; Jolliffe, 2007; Hanlon et al., 2013). 

The skill of seasonal predictions can vary from generation to genera-
tion (Power et al. 1999) and from one generation of forecast systems 
to the next (Balmaseda et al., 1995). This highlights the possibility 
that the skill of decadal predictions might also vary from one period 
to another. Certain initial conditions might precede more predictable 
near-term states than other initial conditions, and this has the poten-
tial to be reflected in predictive skill assessments. However, the short 
length of the period available to initialize and verify the predictions 
makes the analysis of the variations in skill very difficult.

11.2.3.3 Pre-CMIP5 Decadal Prediction Experiments

Early decadal prediction studies found little additional predictive skill 
from initialization, over that due to changes in radiative forcing (RF), 
on global (Pierce et al., 2004) and regional scales (Troccoli and Palmer, 
2007). However, neither of these studies considered more than two 
start dates. More comprehensive tests, which considered at least nine 
different start dates indicated temperature skill (Smith et al., 2007; 
Keenlyside et al., 2008; Pohlmann et al., 2009; Sugiura et al., 2009; 
Mochizuki et al., 2010; Smith et al., 2010; Doblas-Reyes et al., 2011; 
Garcia-Serrano and Doblas-Reyes, 2012; Garcia-Serrano et al., 2012; 
Kroger et al., 2012; Matei et al., 2012b; van Oldenborgh et al., 2012; 
Wu and Zhou, 2012; MacLeod et al., 2013). Moreover, this skill was 
enhanced by initialization (local increase in correlation of 0.1 to 0.3, 
depending on the system) mostly over the ocean, in particular over 
the North Atlantic and subtropical Pacific oceans. Regions with skill 
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improvements from initialization for precipitation are small and rarely 
statistically significant (Goddard et al., 2013). 

11.2.3.4 Coupled Model Intercomparison Project Phase 5 
Decadal Prediction Experiments

Indices of global mean temperature, the Atlantic Multi-decadal Varia-
bility (AMV; (Trenberth and Shea, 2006)) and the Inter-decadal Pacific 
Oscillation (IPO; Power et al., 1999) or Pacific Decadal Oscillation (PDO) 
are used as benchmarks to assess the ability of decadal forecast sys-
tems to predict multi-annual averages of climate variability (Kim et al., 
2012; van Oldenborgh et al., 2012; Doblas-Reyes et al., 2013; Goddard 
et al., 2013; see also Figure 11.3). Initialized predictions of global mean 
surface air temperature (GMST) for the following year are now being 
performed in almost-real time (Folland et al., 2013). 

Non-initialized predictions (or projections) of the global mean tem-
perature are statistically significantly skilful for most of the forecast 
ranges considered (high confidence), due to the almost monotonic 
increase in temperature, pointing to the importance of the time-var-
ying RF (Murphy et al., 2010; Kim et al., 2012). This leads to a high 
(above 0.9) correlation of the ensemble mean prediction that varies 
very as a function of forecast lead time. This holds whether the changes 
in the external forcing (i.e., changes in natural and/or anthropogenic 
atmospheric composition) are specified (i.e., CMIP5) or are projected 
(ENSEMBLES). The skill of the multi-annual global mean surface tem-
perature improves with initialization, although this is mainly evidenced 
when the accuracy is measured in terms of the RMSE (Doblas-Reyes et 
al., 2013). An improved prediction of global mean surface temperature 
is evidenced by the closer fit of the initialized predictions during the 
21st century (Figure 11.3; Meehl and Teng, 2012; Doblas-Reyes et al., 
2013; Guemas et al., 2013; Box 9.2). The impact of initialization is seen 
as a better representation of the phase of the internal variability, in 
particular in increasing the upper ocean heat content (Meehl et al., 
2011) and in terms of a correction of the model’s forced response.

The AMV (Chapter 14) has important impacts on temperature and pre-
cipitation over land (Li and Bates, 2007; Li et al., 2008; Semenov et al., 
2010). The AMV index shows a large fraction of its variability on dec-
adal time scales and has multi-year predictability (Murphy et al., 2010; 
Garcia-Serrano and Doblas-Reyes, 2012). The AMV has been connected 
to multi-decadal variability of Atlantic tropical cyclones (Goldenberg et 
al., 2001; Zhang and Delworth, 2006; Smith et al., 2010; Dunstone et al., 
2011). Figure 11.3 shows that the CMIP5 multi-model ensemble mean 
has skill on multi-annual time scales, the skill being generally larger 
than for the single-model forecast systems (Garcia-Serrano and Doblas-
Reyes, 2012; Kim et al., 2012). The skill of the AMV index improves with 
initialization (high confidence) for the early forecast ranges. In particu-
lar, the RMSE is substantially reduced (indicating improved skill) with 
initialization for the AMV. The positive correlation of the non-initialized 
AMV predictions is consistent with the view that part of the recent 
variability is due to external forcings (Evan et al., 2009; Ottera et al., 
2010; Chang et al., 2011; Booth et al., 2012; Garcia-Serrano et al., 2012; 
Terray, 2012; Villarini and Vecchi, 2012; Doblas-Reyes et al., 2013).

Pacific decadal variability is associated with potentially important 
climate impacts, including rainfall over America, Asia, Africa and Aus-

tralia (Power et al., 1999; Deser et al., 2004; Seager et al., 2008; Zhu 
et al., 2011; Li et al., 2012). The combination of Pacific and Atlantic 
variability and climate change is an important driver of multi-decadal 
USA drought (McCabe et al., 2004; Burgman et al., 2010) including key 
events like the American dustbowl of the 1930s (Schubert et al., 2004). 
van Oldenborgh et al. (2012) reported weak skill in hindcasting the IPO 
in the ENSEMBLES multi-model. Doblas-Reyes et al. (2013) show that 
the ensemble-mean skill of the ENSEMBLES multi-model IPO is not 
statistically significant at the 95% level and shows no clear impact of 
the initialization, in agreement with the predictability study of Meehl 
et al. (2010). On the other hand, case studies suggest that there might 
be some initial states that can produce skill in predicting IPO-related 
decadal variability for some time periods (e.g., Chikamoto et al., 2012b; 
Meehl and Arblaster, 2012; Meehl et al., 2013a).

The higher AMV and global mean temperature skill of the CMIP5 pre-
dictions with respect to the ENSEMBLES hindcasts (van Oldenborgh 
et al., 2012; Goddard et al., 2013) might be partly due to the CMIP5 
multi-model using specified instead of projected aerosol loading (espe-
cially the volcanic aerosol) and solar irradiance variations during the 
simulations. As these forcings cannot be specified in a real forecast set-
ting, ENSEMBLES offers an estimate of the skill closer to what could be 
expected from a real-time forecast system such as the one described 
in (Smith et al., 2013a). The use of correct forcings nevertheless allows 
a more powerful test of the effect of initialization on the ability of 
models to reproduce past observations.

Near-term prediction systems have significant skill for temperature 
over large regions (Figure 11.4), especially over the oceans (Smith et al., 
2010; Doblas-Reyes et al., 2011; Kim et al., 2012; Matei et al., 2012b; 
van Oldenborgh et al., 2012; Hanlon et al., 2013). It has been shown 
that a large part of the skill corresponds to the correct representation 
of the long-term trend (high confidence) as the skill decreases substan-
tially after an estimate of the long-term trend is removed from both 
the predictions and the observations (e.g., Corti et al., 2012; van Old-
enborgh et al., 2012; MacLeod et al., 2013). Robust skill increase due 
to initialization (Figure 11.4) is limited to areas of the North Atlantic, 
the Indian Ocean and the southeast Pacific (high confidence) (Doblas-
Reyes et al., 2013), in agreement with previous results (Pohlmann et 
al., 2009; Smith et al., 2010; Mochizuki et al., 2012) and predictability 
estimates (Branstator and Teng, 2012). Similar results have been found 
in several individual forecast systems (e.g., Muller et al., 2012; Bel-
lucci et al., 2013). However, the impact of initialization on the skill in 
those regions, though robust (as shown by the agreement between the 
different CMIP5 systems) is small and not statistically significant with 
90% confidence.

The improvement in retrospective North Atlantic variability predictions 
from initialization (Smith et al., 2010; Dunstone et al., 2011; Garcia-
Serrano et al., 2012; Hazeleger et al., 2013b) suggests that internal var-
iability was important to North Atlantic variability during the past few 
decades. However, the interpretation of the results is complicated by 
the fact that the impact on skill varies slightly with the forecast quality 
measure used (Figure 11.3; Doblas-Reyes et al., 2013). This has been 
attributed to, among other things, the different impact of the predicted 
local trends on the scores used (Goddard et al., 2013). Skill in hindcasts 
of subpolar Atlantic temperature, which is evident in Figure 11.4, is 
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Figure 11.3 | Decadal prediction forecast quality of two climate indices. (Top row) Time series of the 2- to 5-year average ensemble-mean initialized hindcast anomalies and the 
corresponding non-initialized experiments for two climate indices: global mean surface temperature (GMST, left) and the Atlantic multi-decadal variability (AMV, right). The obser-
vational time series, Goddard Institute of Space Studies (GISS) GMST and Extended Reconstructed Sea Surface Temperature (ERSST) for the AMV, are represented with dark grey 
(positive anomalies) and light grey (negative anomalies) vertical bars, where a 4-year running mean has been applied for consistency with the time averaging of the predictions. 
Predicted time series are shown for the CMIP5 Init (solid) and NoInit (dotted) simulations with hindcasts started every 5 years over the period 1960–2005. The lower and upper 
quartile of the multi-model ensemble are plotted using thin lines. The AMV index was computed as the SST anomalies averaged over the region Equator to 60ºN and 80ºW to 0ºW 
minus the SST anomalies averaged over 60ºS to 60ºN. Note that the vertical axes are different for each time series. (Middle row) Correlation of the ensemble mean prediction with 
the observational reference along the forecast time for 4-year averages of the three sets of CMIP5 hindcasts for Init (solid) and NoInit (dashed). The one-sided 95% confidence 
level with a t distribution is represented in grey. The effective sample size has been computed taking into account the autocorrelation of the observational time series. A two-sided 
t test (where the effective sample size has been computed taking into account the autocorrelation of the observational time series) has been used to test the differences between 
the correlation of the initialized and non-initialized experiments, but no differences where found statistically significant with a confidence equal or higher than 90%. (Bottom row) 
Root mean square error (RMSE) of the ensemble mean prediction along the forecast time for 4-year averages of the CMIP5 hindcasts for Init (solid) and NoInit (dashed). A two-
sided F test (where the effective sample size has been computed taking into account the autocorrelation of the observational time series) has been used to test the ratio between 
the RMSE of the Init and NoInit, and those forecast times with differences statistically significant with a confidence equal or higher than 90% are indicated with an open square. 
(Adapted from Doblas-Reyes et al., 2013.)
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improved more by initialization than is skill in hindcasting sub-tropical 
Atlantic temperature (Garcia-Serrano et al., 2012; Robson et al., 2012; 
Hazeleger et al., 2013b). This is relevant because the sub-polar branch 
of the AMV is a source of skill for multi-year North Atlantic tropical 
storm frequency predictions (Smith et al., 2010). Vecchi et al. (2013) 
argued that the nominal improvement in multi-year forecasts of North 
Atlantic hurricane frequency was mainly due to persistence.

Sugiura et al. (2009) reported on skill in hindcasting the Pacific Decadal 
Oscillation (PDO) in their forecast system. They ascribed the skill to 
the interplay between Rossby waves and a clockwise propagation of 
ocean heat content anomalies along the Kuroshio–Oyashio extension 
and subtropical subduction pathway. However, as Figure 11.4 shows, 
the Pacific Ocean has the lowest temperature skill overall, with no con-
sistent impact from initialization. The central North Pacific has zero or 
negative skill, which may be due to the relatively large amplitude of 
the interannual variability when compared to the long-term trend; the 
overall failure to predict the largest warming events (Guémas et al., 
2012) beyond a few months; and differences (compared to AMV) in 
how surface temperature and upper ocean heat content interact for 
the PDO (Mochizuki et al., 2010; Chikamoto et al., 2012a; Mochizuki 
et al., 2012). There is a robust loss of skill due to initialization in the 
CMIP5 predictions over the equatorial Pacific (Doblas-Reyes et al., 
2013) that has not been adequately explained. 

The AMV is thought to be related to the AMOC (Knight et al., 2005). An 
assessment of the impact of observing systems on AMOC predictability 
indicates that the recent dense observations of oceanic temperature 
and salinity are crucial to constraining the AMOC in one model Zhang 
et al. (2007a). The observing system representative of the pre-2000s 
was not as effective, indicating that inadequate observations in the 
past might also limit the impact of initialization on the predictions. 
This has been confirmed by Pohlmann et al. (2013) using decadal pre-
dictions, where they also find a positive impact from initialization that 
agrees with Hazeleger et al. (2013b). Assessments of the skill of pre-
diction systems to hindcast past variability in the AMOC have been 
attempted (Pohlmann et al., 2013; Swingedouw et al., 2013) although 
direct measures of the AMOC are far too short to underpin a relia-
ble estimate of skill, and longer histories are poorly known (Matei et 
al., 2012a; Vecchi et al., 2012). There is very low confidence in current 
estimates of the skill of the AMOC hindcasts. Sustained ocean observa-
tions, such as Argo, a broad global array of temperature/salinity profil-
ing floats, and Rapid Climate Change-Meridional Overturning Circula-
tion and Heatflux Array (RAPID-MOCHA), will be needed to build a 
capability to reliably predict the AMOC (Srokosz et al., 2012).

Climate prediction is, by nature, probabilistic. Probabilistic predictions 
are expected to be skilful, but also reliable. Decadal predictions should 
be evaluated on the basis of whether they give an accurate estimation 
of the relative frequency of the predicted outcome. This question can 
be addressed using, among other tools, attributes diagrams (Mason, 
2004). They measure how closely the forecast probabilities of an event 
correspond to the mean probability of observing the event. They are 
based on a discrete binning of many forecast probabilities taken over 
a given geographical region. Figure 11.5 illustrates the CMIP5 mul-
ti-model Init and NoInit attributes diagrams for predictions of both the 
global and North Atlantic SSTs to be in the lower tercile (where the 

tercile threshold has been estimated separately for the predictions and 
the observations). The diagrams are constructed using predictions for 
each grid point over the corresponding area. For perfect reliability the 
forecast probability and the frequency of occurrence should be equal, 
and the plotted points should lie on the diagonal (solid black line in 
the figure). When the line joining the bullets (the reliability curve) has 
positive slope it indicates that as the forecast probability of the event 
increases, so does the chance of observing the event. The predictions 
therefore can be considered as moderately reliable. However, if the 
slope of the curve is less than the slope of the diagonal, then the fore-
cast system is overconfident. If the reliability curve is mainly horizontal, 
then the frequency of occurrence of the event does not depend on the 
forecast probabilities and the predictions contain no more information 
than a random guess. An ideal forecast should have a good resolution 
whilst retaining reliability, that is, probability forecasts should be both 
sharp and reliable.

In agreement with Corti et al. (2012), CMIP5 multi-model surface tem-
perature predictions are more reliable for the North Atlantic than when 
considered over the global oceans, and have a tendency to be over-
confident particularly for the global oceans (medium confidence). This 
means that the multi-model ensemble spread should not be considered 
as a robust measure of the actual uncertainty, at least for multi-an-
nual averages. The attributes diagrams already take into account the 
 systematic error in the simulated variability by estimating separately 
the event thresholds for the predictions and the observational refer-
ence. For the North Atlantic, initialization improves the reliability of the 
predictions, which translates into an increase of the Brier skill score, the 
probabilistic skill measure with respect to a naïve climatological pre-
diction (which is reliable, but not skilful) used to aggregate the infor-
mation in the attributes diagram. However, the uncertainty associated 
with these estimates is not negligible. This is due mainly to the small 
sample of start dates, which has the consequence that the number of 
predictions with a given probability is small to give a robust estimate 
of the observed relative frequency (Brocker and Smith, 2007). In addi-
tion to this, there are biases in the reliability diagram itself (Ferro and 
Fricker, 2012). These results suggest that the multi-model ensemble 
should be used with care when estimating probability forecasts or the 
uncertainty of the mean predictions. Given that the models used for the 
dynamical predictions are the same as those used for the projections, 
this verification also provides useful information for the assessment of 
the projections (cf. Box 11.2).

The skill in hindcasting precipitation over land (Figure 11.6) is much 
lower than the skill in hindcasting temperature over land. This is con-
sistent with predictability studies discussed previously (e.g., Box 11.1) 
(high confidence). Several regions, especially in the Northern Hemi-
sphere (NH) and West Africa (Gaetani and Mohino, 2013), have skill 
but these regions are not statistically significant with a 95% confi-
dence level. The positive skill in hindcasting precipitation can be attrib-
uted mostly to variable RF (high confidence) as initialization improves 
the skill very little (Goddard et al., 2013). The areas with positive skill 
agree with those where the precipitation trends of multi-annual aver-
ages are the largest (Doblas-Reyes et al., 2013). The skill in areas like 
West Africa might be associated with the positive AMV skill, as the 
AMV drives interannual variability in precipitation over this region (van 
Oldenborgh et al., 2012).
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Figure 11.4 |  (a) Root mean square skill score of the near surface air temperature forecast quality for the forecast time 2 to 5 years from the multi-model ensemble mean of the 
CMIP5 Init experiment with 5-year interval between start dates over the period 1960–2005. A combination of temperatures from Global Historical Climatology Network/Climate 
Anomaly Monitoring System (GHCN/CAMS) air temperature over land, Extended Reconstructed Sea Surface Temperature (ERSST) and Goddard Institute of Space Studies Surface 
Temperature Analysis (GISTEMP) 1200 over the polar areas is used as a reference. Black dots correspond to the points where the skill score is statistically significant with 95% 
confidence using a one-sided F-test taking into account the autocorrelation of the observation minus prediction time series. (b) Ratio between the root mean square error of the 
ensemble mean of Init and NoInit. Dots are used for the points where the ratio is significantly above or below 1, with 90% confidence using a two-sided F-test taking into account 
the autocorrelation of the observation minus prediction time series. Contours are used for areas where the ratio of at least 75% of the single forecast systems is either above or 
below one agreeing with the value of the ratio in the multi-model ensemble. Poorly observationally sampled areas are masked in grey. The original model data have been bilinearly 
interpolated to the observational grid. The ensemble mean of each forecast system has been estimated before computing the multi-model ensemble mean. (Adapted from Doblas-
Reyes et al., 2013.)

The small amount of statistically significant differences found between 
the initialized and non-initialized experiments does not necessarily 
mean that the impact of the initialization does not have a physical 
basis. A comparison of the global mean temperature and AMV fore-
cast quality using 1- and 5-year intervals between start dates (Garcia-enJ
ET
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skill improvement for temperature over the North Atlantic, are robust 
in the sense that it is found in more than 75% of forecast system. How-
ever, it is difficult to obtain statistical significance with these limited 
samples. The low start date sampling frequency is one of the limita-
tions of the core CMIP5 near-term prediction experiment, the other one 
being the short length of the period of study, limited by the availability 
of observational data. Results estimated with yearly start dates are 
more robust than with a 5-year start date frequency. However, even 
with 1-year start date frequency, the impact of the initialization is sim-
ilar. The spatial distribution of the skill does not change substantially 
with the different start date frequency. The skill and the initialization 

impact are both slightly reduced in the results with yearly start dates, 
but at the same time the spatial variability is substantially reduced. 

The CMIP5 multi-model overestimates the spread of the multi-annual 
average temperature (Doblas-Reyes et al., 2013). Figure 11.7 shows 
the ratio of the spread around the ensemble mean prediction and the 
RMSE of the ensemble mean prediction of Init and NoInit, which in 
a well-calibrated system is expected to be close to 1. However, the 
ratio is overestimated over the North Atlantic, the Indian Ocean and 
the Arctic, and underestimated over the North Pacific and most conti-
nental areas, suggesting that the CMIP5 systems do not discriminate 
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Figure 11.5 |  Attributes diagram for the CMIP5 multi-model decadal initialized (a and c) and non-initialized (b and d) hindcasts for the event ‘surface air temperature anomalies 
below the lower tercile over (a) and (b) the global oceans (60ºN to 60ºS) and (c) and (d) the North Atlantic (87.5ºN to 30ºN, 80ºW to 10ºW) for the forecast time 2 to 5 years. The red 
bullets in the figure correspond to the number of probability bins (10 in this case) used to estimate forecast probabilities. The size of the bullets represents the number of forecasts 
in a specific probability category and is a measure of the sharpness (or variance of the forecast probabilities) of the predictions. The blue horizontal and vertical lines indicate the 
climatological frequency of the event in the observations and the mean forecast probability, respectively. Grey vertical bars indicate the uncertainty in the observed frequency for 
each probability category estimated at 95% level of confidence with a bootstrap resampling procedure based on 1000 samples. The longer the bars, the more the vertical position 
of the bullets may change as new hindcasts become available. The black dashed line separates skilful from unskilled regions in the diagram in the Brier skill score sense. The Brier 
skill score with respect to the climatological forecast is drawn in the top left corner of each panel. (Adapted from Corti et al., 2012.)
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Figure 11.6 | (a) Root mean square skill score for precipitation hindcasts for the forecast time 2 to 5 years from the multi-model ensemble mean of the CMIP5 Init experiment 
with 5-year interval between start dates over the period 1960–2005. Global Precipitation Climatology Centre (GPCC) precipitation is used as a reference. Black dots correspond to 
the points where the skill score is statistically significant with 95% confidence using a one-sided F-test taking into account the autocorrelation of the observation minus prediction 
time series. (b) Ratio between the root mean square error of the ensemble mean of Init and NoInit. Dots are used for the points where the ratio is significantly above or below one 
with 90% confidence using a two-sided F-test taking into account the autocorrelation of the observation minus prediction time series. Contours are used for areas where the ratio 
of at least 75% of the single forecast systems is either above or below 1, agreeing with the value of the ratio in the multi-model ensemble. The model original data have been 
bilinearly interpolated to the observational grid. The ensemble mean of each forecast system has been estimated before computing the multi-model ensemble mean. (Adapted from 
Doblas-Reyes et al., 2013.)

between the regions where the spread should be reduced according to 
the RMSE level in the area. These results are found for both the Init and 
NoInit ensembles and agree with the overconfidence of the probability 
forecasts shown in Figure 11.6 (Corti et al., 2012). The spread overes-
timation also agrees with the results found for the indices illustrate 
in Figure 11.3 (Doblas-Reyes et al., 2013). The spread overestimation 

points to the need for a careful interpretation of current ensemble and 
probabilistic climate information for climate adaptation and services.

The skill of extreme daily temperature and precipitation in multi-annu-
al time scales has also been assessed (Eade et al., 2012; Hanlon et al., 
2013). There is little improvement in skill with the initialization beyond 
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Figure 11.7 |  Ratio between the surface temperature spread around the ensemble mean and the root mean square error (RMSE) of the ensemble-mean prediction of Init and 
NoInit for the forecast time 2 to 5 years with 5-year interval between start dates over the period 1960–2005. A combination of temperatures from Global Historical Climatology 
Network/Climate Anomaly Monitoring System (GHCN/CAMS) air temperature over land, Extended Reconstructed Sea Surface Temperature (ERSST) v3b over sea and Goddard Insti-
tute of Space Studies Surface Temperature Analysis (GISTEMP) 1200 over the polar areas is used as a reference to compute the RMSE. (Adapted from Doblas-Reyes et al., 2013.)

the first year, suggesting that skill then arises largely from the varying 
external forcing. The skill for extremes is generally similar to, but slight-
ly lower than, that for the mean.

Responding to the increases in decadal skill in certain regions due to 
initialization, a coordinated quasi-operational decadal prediction ini-
tiative has been organized (Smith et al., 2013b). The forecast systems 
participating in the initiative are based on those of CMIP5 and have 
been evaluated for forecast quality. Statistical predictions are also 
included in the initiative. The most recent forecast shows (compared 
to the projections) substantial warming of the north Atlantic subpo-
lar gyre, cooling of the north Pacific throughout the next decade and 
cooling over most land and ocean regions and in the global average 
out to several years ahead. However, in the absence of explosive or 
frequent volcanic eruptions, global surface temperature is predicted to 
continue to rise and, to a certain degree, recover from the reduced rate 
of warming (see Box 9.2).

11.2.3.5 Realizing Potential

Although idealized model experiments show considerable promise for 
predicting internal variability, realizing this potential is a challenging 
task. There are three main hurdles: (1) the limited availability of data 
to initialize and verify predictions, (2) limited progress in initialization 
techniques for decadal predictions and (3) dynamical model shortcom-
ings that require validating how the simulated variance compares with 
the observed variance.

It is expected that the availability of temperature and salinity data in 
the top 2 km of the ocean through the enhanced global deployment of 
Argo floats will give a step change in our ability to initialize and pre-

dict ocean heat and density anomalies (Zhang et al., 2007a; Dunstone 
and Smith, 2010). Another important advancement is the availabili-
ty of highly accurate altimetry data, made especially useful after the 
launching of TOPography EXperiment (TOPEX)/Poseidon in 1992. Argo 
and altimeter data became available only in 2000 and 1992 respec-
tively, so an accurate estimate of their impact on real forecasts has to 
wait (Dunstone and Smith, 2010). In all cases, both the length of the 
observational data sets and the reduced coverage of the data avail-
able, especially before 2000, are serious limitations to obtain robust 
estimates of forecast quality.

Improved initialization of other aspects such as sea ice, snow cover, 
frozen soil and soil moisture, may also have potential to contribute to 
predictive skill beyond the seasonal time scale. This could be investi-
gated, for example by using measurements of soil moisture from the 
Soil Moisture and Ocean Salinity (SMOS) satellite launched in 2009, or 
by initializing sea ice thickness with observations from the CryoSat-2 
satellite launched in 2010. Along the same line, understanding the 
links between the initialization and the correct prediction of both the 
internal and external variability should help improving forecast quality 
(Solomon et al., 2011).

Many of the current decadal prediction systems use relatively simple 
initialization schemes and do not adopt fully coupled initialization/
ensemble generation schemes. Assimilation schemes offer opportuni-
ties for fully coupled initialization including assimilation of variables 
such as sea ice, snow cover and soil moisture, although they present 
technically and scientifically challenging problems. This approach has 
been tested in schemes like four-dimensional variational data assim-
ilation (4DVAR; Sugiura et al., 2008) and the ensemble Kalman filter 
(Keppenne et al., 2005; Zhang et al., 2007a).
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Bias correction is used to reduce the effects of model drift, but the 
nonlinearity in the climate system (e.g., Power (1995) might limit the 
effectiveness of bias correction and thereby reduce forecast quality. 
Understanding and reducing both drift and systematic errors is impor-
tant (Palmer and Weisheimer, 2011), as it is also for seasonal-to-inter-
annual climate prediction and for climate change projections. While 
improving models is the highest priority, efforts to quantify the degree 
of interference between model bias and predictive signals should not 
be overlooked.

11.3 Near-term Projections

11.3.1 Introduction

In this section the outlook for global and regional climate up to 
mid-century is assessed, based on climate model projections. In con-
trast to the predictions discussed in Section 11.2, these projections are 
not initialized using observations; instead, they are initialized from 
historical simulations of the evolution of climate from pre-industrial 
conditions up to the present. The historical simulations are forced by 
estimates of past anthropogenic and natural climate forcing agents, 
and the projections are obtained by forcing the models with scenari-
os for future climate forcing agents. Major use is made of the CMIP5 
model experiments forced by the Representative Concentration Path-
way (RCP) scenarios discussed in Chapters 1 and 8. Projections of cli-
mate change in this and subsequent chapters are expressed relative 
to the reference period: 1986–2005. In this chapter most emphasis is 
given to the period 2016–2035, but some information on changes pro-
jected before and after this period (up to mid-century) is also provided. 
Longer-term projections are assessed in Chapters 12 and 13.

Key assessment questions addressed in this section are: What is the 
externally forced signal of near-term climate change, and how large 
is it compared to natural internal variability? From the point of view 
of climate impacts, the absolute magnitude of climate change may 
in some instances be less important than the magnitude relative to 
the local level of natural internal variability. Because many systems 
are naturally adapted to a background level of variability, it may be 
changes that move outside of this range that are most likely to trigger 
impacts that are unprecedented in the recent past (e.g., Lobell and 
Burke (2008) for crops). 

An important conclusion of the AR4 (Section 10.3.1) was that near-
term climate projections are not very sensitive to plausible alternative 
non-mitigation scenarios for GHG concentrations (specifically the Spe-
cial Report on Emission Scenarios (SRES) scenarios; comparison with 
RCP scenarios is discussed in Chapter 1), that is, in the near term, dif-
ferent scenarios give rise to similar magnitudes and patterns of climate 
change. (Note, however, that some impacts may be more sensitive.) For 
this reason, most of the projections presented in this chapter are based 
on one specific RCP scenario, RCP4.5. RCP4.5 was chosen because of 
its intermediate GHG forcing. However, there is greater sensitivity to 
other forcing agents, in particular anthropogenic aerosols (e.g., Chalm-
ers et al., 2012). Consequently, a further question addressed in this 
section (especially in Section 11.3.6.1) is: To what extent are near-term 
climate projections sensitive to alternative scenarios for anthropogenic 

forcing? Note finally that a great deal of additional information on 
near-term projections is provided in Annex I.

11.3.1.1 Uncertainty in Near-term Climate Projections

As discussed in Chapters 1 (Section 1.4) and 12 (Section 12.2), climate 
projections are subject to several sources of uncertainty. Here three 
main sources are distinguished. The first arises from natural internal 
variability, which is intrinsic to the climate system, and includes phe-
nomena such as variability in the mid-latitude storm tracks and the 
ENSO. The existence of internal variability places fundamental limits 
on the precision with which future climate variables can be project-
ed. The second is uncertainty concerning the past, present and future 
forcing of the climate system by natural and anthropogenic forcing 
agents such as GHGs, aerosols, solar forcing and land use change. Forc-
ing agents may be specified in various ways, for example, as emissions 
or as concentrations (see Section 12.2). The third is uncertainty related 
to the response of the climate system to the specified forcing agents.

Quantifying the uncertainty that arises from each of the three sources is 
an important challenge. For projections, no attempt is made to predict 
the evolution of the internal variability. Instead, the statistics of this 
variability are included as a component of the uncertainty associated 
with a projection. The magnitude of internal variability can be estimat-
ed from observations (Chapters 2, 3 and 4) or from climate models 
(Chapter 9). Challenges arise in estimating the variability on decadal 
and longer time scales, and for rare events such as extremes, as obser-
vational records are often too short to provide robust estimates.

Uncertainty concerning the past forcing of the climate system arises 
from a lack of direct or proxy observations, and from observational 
errors. This uncertainty can influence future projections of some vari-
ables (particularly large-scale ocean variables) for years or even dec-
ades ahead (e.g., Meehl and Hu, 2006; Stenchikov et al., 2009; Gregory, 
2010). Uncertainty about future forcing arises from the inability to pre-
dict future anthropogenic emissions and land use change, and natural 
forcings (e.g., volcanoes), and from uncertainties concerning carbon 
cycle and other biogeochemical feedbacks (Chapters 6, 12 and Annex 
II.4.1). The uncertainties in future anthropogenic forcing are typically 
investigated through the development of specific scenarios (e.g., for 
emissions or concentrations), such as the RCP scenarios (Chapters 1 
and 8). Different scenarios give rise to different climate projections, 
and the spread of such projections is commonly described as scenario 
uncertainty. The sensitivity of climate projections to alternative sce-
narios for future anthropogenic emissions is discussed especially in 
Section 11.3.6.1

To project the climate response to specified forcing agents, climate 
models are required. The term model uncertainty describes uncertainty 
about the extent to which any particular climate model provides an 
accurate representation of the real climate system. This uncertainty 
arises from approximations required in the development of models. 
Such approximations affect the representation of all aspects of the 
climate including natural internal variability and the response to exter-
nal forcings. As discussed in Chapter 1 (Section 1.4.2), the term model 
uncertainty is sometimes used in a narrower sense to describe the 
spread between projections generated using different models or model 
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Figure 11.8 |  Sources of uncertainty in climate projections as a function of lead time based on an analysis of CMIP5 results. (a) Projections of global mean decadal mean surface 
air temperature to 2100 together with a quantification of the uncertainty arising from internal variability (orange), model spread (blue) and RCP scenario spread (green). (b) Signal-
to-uncertainty ratio for various global and regional averages. The signal is defined as the simulated multi-model mean change in surface air temperature relative to the simulated 
mean surface air temperature in the period 1986–2005, and the uncertainty is defined as the total uncertainty. (c–f) The fraction of variance explained by each source of uncertainty 
for: global mean decadal and annual mean temperature (c), European (30°N to 75°N, 10°W to 40°E) decadal mean boreal winter (December to February) temperature (d) and 
precipitation (f), and East Asian (5°N to 45°N, 67.5°E to 130°E) decadal mean boreal summer (June to August) precipitation (e). See text and Hawkins and Sutton (2009) and 
Hawkins and Sutton (2011) for further details.
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versions; however, such a measure is crude as it takes no account of 
factors such as model quality (Chapter 9) or model independence. The 
term model response uncertainty is used here to describe the dimen-
sion of model uncertainty that is directly related to the response to 
external forcings. To obtain projections of extreme events such as trop-
ical cyclones, or regional phenomena such as orographic rainfall, it is 
sometimes necessary to employ a dynamical or statistical downscaling 
procedure. Such downscaling introduces an additional dimension of 
model uncertainty (e.g., Alexandru et al., 2007).

The relative importance of the different sources of uncertainty depends 
on the variable of interest, the space and time scales involved (Sec-
tion 10.5.4.3 of Meehl et al. (2007b)), and the lead-time of the projec-
tion. Figure 11.8 provides an illustration of these dependencies based 
on an analysis of CMIP5 projections (following Hawkins and Sutton, 
2009, 2011;Yip et al., 2011). In this example, the forcing-related uncer-
tainty is estimated using the spread of projections for different RCP 
scenarios (i.e., scenario uncertainty), while the spread among differ-
ent models for individual RCP scenarios is used as a measure of the 
model response uncertainty. Internal variability is estimated from the 
models as in Hawkins and Sutton (2009). Key points are: (1) the uncer-
tainty in near-term projections is dominated by internal variability and 
model spread. This finding provides some of the rationale for consid-
ering near-term projections separately from long-term projections. 
Note, however, that the RCP scenarios do not sample the full range 
of uncertainty in future anthropogenic forcing, and that uncertainty in 
aerosol forcings in particular may be more important than is suggested 
by Figure 11.8 (see Section 11.3.6.1); (2) internal variability becomes 
increasingly important on smaller space and time scales; (3) for pro-
jections of precipitation, scenario uncertainty is less important and (on 
regional scales) internal variability is generally more important than for 
projections of surface air temperature; (4) the full model uncertainty 
may well be larger or smaller than the model spread due to common 
errors or unrealistic models.

A key quantity for any climate projection is the signal-to-noise (S/N) 
ratio (Christensen et al., 2007), where the ‘signal’ is a measure of the 
amplitude of the projected climate change, and the noise is a measure 
of the uncertainty in the projection. Higher S/N ratios indicate more 
robust projections of change and/or changes that are large relative 
to background levels of variability. Depending on the purpose, it may 
be useful to identify the noise with the total uncertainty, or with a 
specific component such as the internal variability. The evolution of the 
S/N ratio with lead time depends on whether the signal grows more 
rapidly than the noise, or vice versa. Figure 11.8 (top right) shows that, 
when the noise is identified with the total uncertainty, the S/N ratio 
for surface air temperature is typically higher at lower latitudes and 
has a maximum at a lead time of a few decades (Cox and Stephenson, 
2007; Hawkins and Sutton, 2009). The former feature is primarily a 
consequence of the greater amplitude of internal variability in mid-lat-
itudes. The latter feature arises because over the first few decades, 
when scenario uncertainty is small, the signal grows most rapidly, but 
subsequently, the contribution from scenario uncertainty grows more 
rapidly than does the signal, so the S/N ratio falls. See Hawkins and 
Sutton (2009, 2011) for further details.

11.3.2 Near-term Projected Changes in the Atmosphere 
and Land Surface

11.3.2.1 Surface Temperature

11.3.2.1.1 Global mean surface air temperature

Figure 11.9 (a) and (b) show CMIP5 projections of global mean surface 
air temperature under RCP4.5. The 5 to 95% range for the projected 
anomaly for the period 2016–2035, relative to the reference period 
1986–2005, is 0.47°C to 1.00°C (see also Table 12.2). However, as 
discussed in Section 11.3.1.1, this range provides only a very crude 
measure of uncertainty, and there is no guarantee that the real world 
must lie within this range. Obtaining better estimates is an important 
challenge. One approach involves initializing climate models using 
observations, as discussed in Section 11.2. Figure 11.9 (b) compares 
multi-model initialized climate predictions (8 models from Smith et al., 
2013b), initialized in 2011; 14 CMIP5 decadal prediction experiment 
models following the methodology of Meehl and Teng (2012), initial-
ized in 2006 with the ‘raw’ uninitialized CMIP5 projections. The 5 to 
95% range for both sets of initialized predictions is cooler (by about 
15% for the median values) than the corresponding range for the raw 
projections, particularly at the upper end. The differences are partly a 
consequence of initializing the models in a state that is cool (in com-
parison to the median of the raw projections) as a result of the recent 
hiatus in global mean surface temperature rise (see Box 9.2). However, 
it is not yet possible to attribute all of the reasons with confidence 
because the raw projections are based on a different, and larger, set 
of models than the initialized predictions, and because of uncertainties 
related to the bias adjustment of the initialized predictions (Goddard 
et al., 2013; Meehl et al., 2013d)

Another approach to making projections involves weighting models 
according to some measure of their quality (see Chapter 9). A specific 
approach of this type, known as Allen, Stott and Kettleborough (ASK) 
(Allen et al., 2000; Stott and Kettleborough, 2002), is based on the use 
of results from detection and attribution studies (Chapter 10), in which 
the fit between observations and model simulations of the past is used 
to scale projections of the future. ASK requires specific simulations to 
be carried out with individual forcings (e.g., anthropogenic GHG forc-
ing alone), and only some of the centres participating in CMIP5 have 
carried out the necessary integrations. Biases in ASK-derived projec-
tions may arise from errors in the specified forcings, or in the simulated 
patterns of response, and/or from nonlinearities in the responses to 
forcings.

Figure 11.9c shows the projected range of global mean surface air tem-
perature change derived using the ASK approach for RCP4.5 (Stott and 
G. Jones, 2012; Stott et al., 2013) applied to six models and compares 
this with the range derived from the 42 CMIP5 models. In this case 
decadal means are shown. The 5 to 95% confidence interval for the 
projected temperature anomaly for the period 2016–2035, based on 
the ASK method, is 0.39°C to 0.87°C. As for the initialized predictions 
shown in Figure 11.9b, both the lower and upper values are below the 
corresponding values obtained from the raw CMIP5 results, although 
there is substantial overlap between the two ranges. The relative 
cooling of the ASK results is directly related to evidence presented in 
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Figure 11.9 |  (a) Projections of global mean, annual mean surface air temperature 1986–2050 (anomalies relative to 1986–2005) under RCP4.5 from CMIP5 models (blue lines, 
one ensemble member per model), with four observational estimates: Hadley Centre/Climate Research Unit gridded surface temperature data set 3 (HadCRUT3: Brohan et al., 2006); 
European Centre for Medium range Weather Forecast (ECMWF) interim reanalysis of the global atmosphere and surface conditions (ERA-Interim: Simmons et al., 2010); Goddard 
Institute of Space Studies Surface Temperature Analysis (GISTEMP: Hansen et al., 2010); National Oceanic and Atmospheric Administration (NOAA: Smith et al. (2008) for the period 
1986–2011 (black lines). (b) As in (a) but showing the 5 to 95% range (grey and blue shades, with the multi-model median in white) of annual mean CMIP5 projections using one 
ensemble member per model from RCP4.5 scenario, and annual mean observational estimates (solid black line). The maximum and minimum values from CMIP5 are shown by the 
grey lines. Red hatching shows 5 to 95% range for predictions initialized in 2006 for 14 CMIP5 models applying the Meehl and Teng (2012) methodology. Black hatching shows the 
5 to 95% range for predictions initialized in 2011 for eight models from Smith et al. (2013b). (c) As (a) but showing the 5 to 95% range (grey and blue shades, with the multi-model 
median in white) of decadal mean CMIP5 projections using one ensemble member per model from RCP4.5 scenario, and decadal mean observational estimates (solid black line). 
The maximum and minimum values from CMIP5 are shown by the grey lines. The dashed black lines show an estimate of the projected 5 to 95% range for decadal mean global 
mean surface air temperature for the period 2016–2040 derived using the ASK methodology applied to six CMIP5 GCMs. (From Stott et al., 2013.) The red line shows a statistical 
prediction based on the method of Lean and Rind (2009), updated for RCP4.5.
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Seasonal mean air temperature change (RCP4.5: 2016-2035)

Figure 11.10 |  CMIP5 multi-model ensemble mean of projected changes in December, January and February and June, July and August surface air temperature for the period 
2016–2035 relative to 1986–2005 under RCP4.5 scenario (left panels). The right panels show an estimate of the model-estimated internal variability (standard deviation of 20-year 
means). Hatching in left-hand panels indicates areas where projected changes are small compared to the internal variability (i.e., smaller than one standard deviation of estimated 
internal variability), and stippling indicates regions where the multi-model mean projections deviate significantly from the simulated 1986–2005 period (by at least two standard 
deviations of internal variability) and where at least 90% of the models agree on the sign of change. The number of models considered in the analysis is listed in the top-right portion 
of the panels; from each model one ensemble member is used. See Box 12.1 in Chapter 12 for further details and discussion. Technical details are in Annex I.

Chapter 10 (Section 10.3.1) that ‘This provides evidence that some 
CMIP5 models have a higher transient response to GHGs and a larger 
response to other anthropogenic forcings (dominated by the effects of 
aerosols) than the real world (medium confidence).’ The ASK results 
and the initialised predictions both suggest that those CMIP5 models 
that warm most rapidly over the period (1986–2005) to (2016–2035) 
may be inconsistent with the observations. This possibility is also sug-
gested by comparing the models with the observed rate of warming 
since 1986—see Box 9.2 for a full discussion of this comparison. Lastly, 
Figure 11.9 also shows a statistical prediction for global mean surface 
air temperature, using the method of Lean and Rind (2009), which uses 
multiple linear regression to decompose observed temperature vari-
ations into distinct components. This prediction is very similar to the 
CMIP5 multi-model median.

The projections shown in Figure 11.9 assume the RCP4.5 scenario 
and use the 1986–2005 reference period. In Section 11.3.6 addition-
al uncertainties associated with future forcing, climate responses and 
sensitivity to the choice of reference period, are discussed. An overall 
assessment of the likely range for future global mean surface air tem-
perature is provided in Section 11.3.6.3. 

For the remaining projections in this chapter the spread among the 
CMIP5 models is used as a simple, but crude, measure of  uncertainty. 

The extent of agreement between the CMIP5 projections provides 
rough guidance about the likelihood of a particular outcome. But—as 
partly illustrated by the discussion above—it must be kept firmly in 
mind that the real world could fall outside of the range spanned by 
these particular models. See Section 11.3.6 for further discussion.

11.3.2.1.2 Regional and seasonal patterns of surface warming

The geographical pattern of near-term surface warming simulated 
by the CMIP5 models (Figure 11.10) is consistent with previous IPCC 
reports in a number of key aspects, although weaknesses in the ability 
of current models to capture observed regional trends (Box 11.2) must 
be kept in mind. First, temperatures over land increase more rapidly 
than over sea (e.g., Manabe et al., 1991; Sutton et al., 2007). Process-
es that contribute to this land–sea warming contrast include differ-
ent local feedbacks over ocean and land and changes in atmospheric 
energy transport from ocean to land regions (e.g., Lambert and Chiang, 
2007; Vidale et al., 2007; Shimpo and Kanamitsu, 2009; Fasullo, 2010; 
Boer, 2011; Joshi et al., 2011).

Second, the projected warming in wintertime shows a pronounced 
polar amplification in the NH (see Box 5.1). This feature is found in 
virtually all coupled model projections, but the CMIP3 simulations 
 generally appeared to underestimate this effect in comparison to 
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observations (Stroeve et al., 2007; Screen and Simmonds, 2010). Sever-
al studies have isolated mechanisms behind this amplification, which 
include reductions in snow cover and retreat of sea ice (e.g., Serreze 
et al., 2007; Comiso et al., 2008); changes in atmospheric and ocean-
ic circulations (Chylek et al., 2009, 2010; Simmonds and Keay, 2009); 
presence of anthropogenic soot in the Arctic environment (Flanner et 
al., 2007; Quinn et al., 2008; Jacobson, 2010; Ramana et al., 2010); and 
increases in cloud cover and water vapour (Francis, 2007; Schweiger et 
al., 2008). Most studies argue that changes in sea ice are central to the 
polar amplification—see Section 11.3.4.1 for further discussion. Fur-
ther information about the regional changes in surface air temperature 
projected by the CMIP5 models is presented in Annex I.

As discussed in Sections 11.1 and 11.3.1, the signal of climate change 
is emerging against a background of natural internal variability. The 
concept of ‘emergence’ describes the magnitude of the climate change 
signal relative to this background variability, and may be useful for 
some climate impact assessments (e.g., AR4, Chapter 11, Table 11.1; 
Mahlstein et al., 2011; Hawkins and Sutton, 2012; see also FAQ 10.2). 
However, it is important to recognize that there is no single metric of 
emergence. It depends on user-driven choices of variable, space and 
time scale, of the baseline relative to which changes are measured 
(e.g., pre-industrial versus recent climate) and of the threshold at 
which emergence is defined.

Figure 11.11 quantifies the ‘Time of Emergence’ (ToE) of the mean 
warming signal relative to the recent past (1986–2005), based on the 
CMIP5 RCP4.5 projections, using a spatial resolution of 2.5° latitude 
× 2.5° longitude, the standard deviation of interannual variations as 
the measure of internal variability, and a signal-to-noise threshold of 1. 
Because of the dependence on user-driven choices, the most important 
information in Figure 11.11 is the geographical and seasonal variation 
in ToE, seen in the maps, and the variation in ToE between models, 
shown in the histograms. Consistent with Mahlstein et al. (2011), the 
earliest ToE is found in the tropics, with ToE in mid-latitudes typically a 
decade or so later. Over North Africa and Asia, earlier ToE is found for 
the warm half-year (April to September) than for the cool half-year. 
Earlier ToE is generally found for larger space and time scales, because 
the variance of natural internal variability decreases with averaging 
(Section 11.3.1.1 and AR4, Section 10.5.4.3). This tendency can be seen 
in Figure 11.11 by comparing the median value of the histograms for 
area averages with the area average of the median ToE inferred from 
the maps (e.g., for Region 2). The large range of values for ToE implied 
by different CMIP5 models, which can be as much as 30 years, is a con-
sequence of differences in both the magnitude of the warming signal 
simulated by the models (i.e., uncertainty in the climate response, see 
Section 11.3.1.1) and in the amplitude of simulated natural internal 
variability (Hawkins and Sutton, 2012).

Figure 11.11 |  Time of Emergence (ToE) of significant local warming derived from 37 CMIP5 models under the RCP4.5 scenario. Warming is quantified as the half-year mean 
temperature anomaly relative to 1986–2005, and the noise as the standard deviation of half-year mean temperature derived from a control simulation of the relevant model. Central 
panels show the median time at which the signal-to-noise ratio exceeds a threshold value of 1 for (left) the October to March half year and (right) the April to September half year, 
using a spatial resolution of 2.5° × 2.5°. Histograms show the distribution of ToE for area averages over the regions indicated obtained from the different CMIP5 models. Full details 
of the methodology may be found in Hawkins and Sutton (2012).
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In summary, it is very likely that anthropogenic warming of surface air 
temperature over the next few decades will proceed more rapidly over 
land areas than over oceans, and that the warming over the Arctic in 
winter will be greater than the global mean warming over the same 
period. Relative to background levels of natural internal variability, 
near-term increases in seasonal mean and annual mean temperatures 
are expected to occur more rapidly in the tropics and subtropics than 
in mid-latitudes (high confidence).

11.3.2.2 Free Atmospheric Temperature

Changes in zonal mean temperature for the near-term period (2016–
2035 compared to the base period 1986–2005) for the multi-model 
CMIP5 ensemble show a pattern similar to that in the CMIP3, with 
warming in the troposphere and cooling in the stratosphere of a couple 
of degrees that is significant even in the near term period. There is 
 relatively greater warming in the tropical upper troposphere and 
northern high latitudes. A more detailed assessment of observed and 
simulated changes in free atmospheric temperatures can be found in 
Sections 10.3.1.2.1 and 12.4.3.2.

11.3.2.3 The Water Cycle

As discussed in the AR4 (Section 10.3.6; Meehl et al., 2007b), the IPCC 
Technical Paper on Climate Change and Water (Bates et al., 2008) 
and the Special Report on Managing the Risks of Extreme Events and 
Disasters to Advance Climate Change Adaptation (Seneviratne et al., 
2012), a general intensification of the global hydrological cycle, and 
of precipitation extremes, are expected for a future warmer climate 
(e.g., (Huntington, 2006; Williams et al., 2007; Wild et al., 2008; Chou 
et al., 2009; Dery et al., 2009; O’Gorman and Schneider, 2009; Lu and 
Fu, 2010; Seager et al., 2010; Wu et al., 2010; Kao and Ganguly, 2011; 
Muller et al., 2011; Durack et al., 2012). In this section, projected 
changes in the time-mean hydrological cycle are discussed; changes in 
extremes, are presented in Section 11.3.2.5 while processes underlying 
precipitation changes are treated in Chapter 7.

11.3.2.3.1 Changes in precipitation

AR4 projections of the spatial patterns of precipitation change in 
response to GHG forcing (Chapter 10, Section 10.3.2) showed consist-
ency between models on the largest scales (i.e., zonal means) but large 
uncertainty on smaller scales. The consistent pattern was characterized 
by increases at high latitudes and in wet regions (including the maxima 
in mean precipitation found in the tropics), and decreases in dry regions 
(including large parts of the subtropics). Large uncertainties in the sign 
of projected change were seen especially in regions located on the 
borders between regions of increases and regions of decreases. More 
recent research has highlighted the fact that if models agree that the 
projected change is small in some sense relative to internal variability, 
then agreement on the sign of the change is not expected (Tebaldi et 
al., 2011; Power et al., 2012). This recognition led to the identifica-
tion of subregions within the border regions, where models agree that 
projected changes are either zero or small (Power et al., 2012). This, 
and other considerations, also led to the realization that the consensus 
among models on precipitation projections is more widespread than 
might have been inferred on the basis of the projections described in 

the AR4 (Power et al., 2012). Information on the reliability of near-
term projections can also be obtained from verification of past regional 
trends (Räisänen (2007); Box 11.2)

Since the AR4 there has also been considerable progress in under-
standing the factors that govern the spatial pattern of change in pre-
cipitation (P), precipitation minus evaporation (P – E), and inter-model 
differences in these patterns. The general pattern of wet-get-wetter 
(also referred to as ‘rich-get-richer’, e.g., Held and Soden, 2006; Chou 
et al., 2009; Allan et al., 2010) and dry-get-drier has been confirmed, 
although with deviations in some dry regions at present that are pro-
jected to become wetter by some models, e.g., Northeast Brazil in 
austral summer and East Africa (see Annex I). It has been demon-
strated that the wet-get-wetter pattern implies an enhanced season-
al precipitation range between wet and dry seasons in the tropics, 
and enhanced inter-hemispheric precipitation gradients (Chou et al., 
2007). 

It has recently been proposed that analysis of the energy budget, pre-
viously applied only to the global mean, may provide further insights 
into the controls on regional changes in precipitation (Levermann et 
al., 2009; Muller and O’Gorman, 2011; O’Gorman et al., 2012). Muller 
and O’Gorman (2011) argue in particular that changes in radiative and 
surface sensible heat fluxes provide a guide to the local precipitation 
response over land. Projected and observed patterns of oceanic pre-
cipitation change in the tropics tend to follow patterns of SST change 
because of local changes in atmospheric stability, such that regions 
warming more than the tropics as a whole tend to exhibit an increase 
in local precipitation, while regions warming less tend to exhibit 
reduced precipitation (Johnson and Xie, 2010; Xie et al., 2010).

AR4 (Section 10.3.2 and Chapter 11) showed that, especially in 
the near term, and on regional or smaller scales, the magnitude of 
 projected changes in mean precipitation was small compared to the 
magnitude of natural internal variability (Christensen et al., 2007). 
Recent work has confirmed this result, and provided more quantifi-
cation (e.g., Hawkins and Sutton, 2011; Hoerling et al., 2011; Rowell, 
2011; Deser et al., 2012; Power et al., 2012). Hawkins and Sutton 
(2011) presented further analysis of CMIP3 results and found that, on 
spatial scales of the order of 1000 km, internal variability contributes 
50 to 90% of the total uncertainty in all regions for projections of dec-
adal and seasonal mean precipitation change for the next decade, and 
is the most important source of uncertainty for many regions for lead 
times up to three decades ahead (Figure 11.8). Thereafter, response 
uncertainty is generally dominant. Forcing uncertainty (except for that 
relating to aerosols, see Section 11.4.7) is generally negligible for near-
term projections. The S/N ratio for projected changes in seasonal mean 
precipitation is highest in the subtropics and at high latitudes. Rowell 
(2011) found that the contribution of response uncertainty to the total 
uncertainty (response plus internal variability) in local precipitation 
change is highest in the deep tropics, particularly over South Amer-
ica, Africa, the east and central Pacific, and the Atlantic. Over trop-
ical land and summer mid-latitude continents the representation of 
SST  changes,  atmospheric processes, land surface processes, and the 
terrestrial carbon cycle all contribute to the uncertainty in projected 
changes in rainfall.
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In addition to the response to GHG forcing, forcing from natural and 
anthropogenic aerosols may exert significant impacts on regional pat-
terns of precipitation change as well as on global mean temperature 
(Bollasina et al., 2011; Yue et al., 2011; Fyfe et al., 2012). Precipitation 
changes may arise as a consequence of temperature and stratification 
changes driven by aerosol-induced radiative effects, and/or as indirect 
aerosol effects on cloud microphysics (Chapter 7). Future emissions of 
aerosols and aerosol precursors are subject to large uncertainty, and 

Seasonal mean percentage precipitation change (RCP4.5: 2016-2035)

further large uncertainties arise in assessing the responses to these 
emissions. These issues are discussed in Section 11.3.6.

Figures 11.12 and 11.13a present projections of near-term changes 
in precipitation from CMIP5. Regional maps and time series are pre-
sented in Annex I. The basic pattern of wet regions tending to get 
wetter and dry regions tending to get dryer is apparent, although 
with some regional deviations as mentioned previously. However, the 

Figure 11.12 |  CMIP5 multi-model ensemble mean of projected changes (%) in precipitation for 2016–2035 relative to 1986–2005 under RCP4.5 for the four seasons. The 
number of CMIP5 models used is indicated in the upper right corner. Hatching and stippling as in Figure 11.10.
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large response uncertainty is evident in the substantial spread in the 
magnitude of projected change simulated by different climate models 
(Figure 11.13a). In addition, it is important to recognize—as discussed 
in previous sections—that models may agree and still be in error (e.g., 
Power et al. 2012). In particular, there is some evidence from com-
paring observations with simulations of the recent past that climate 
models might be underestimating the magnitude of changes in precip-
itation in many regions (Pincus et al., 2008; Liepert and Previdi, 2009; 
Schaller et al., 2011; Joetzjer et al., 2012) This evidence is discussed 
in detail in Chapter 9 (Section 9.4.1) and Box 11.2, and could imply 
that projected changes in precipitation are underestimated by current 
models. However, the magnitude of any underestimation has yet to be 
quantified, and is subject to considerable uncertainty.

Figures 11.12 and 11.13a also highlight the large amplitude of the nat-
ural internal variability of mean precipitation. On regional scales, mean 
projected changes are almost everywhere smaller than the estimated 
standard deviation of natural internal variability. The only exceptions 
are the northern high latitudes and the equatorial Pacific Ocean (Figure 
11.12). For zonal means (Figure 11.13a) and at high latitudes only, 
the projected changes relative to the recent past exceed the estimated 
standard deviation of internal variability. 

Overall, zonal mean precipitation will very likely increase in high and 
some of the mid latitudes, and will more likely than not decrease in 
the subtropics. At more regional scales precipitation changes may be 
influenced by anthropogenic aerosol emissions and will be strongly 
influenced by natural internal variability. 

11.3.2.3.2 Changes in evaporation, evaporation minus precipitation, 
 runoff, soil moisture, relative humidity and specific 
 humidity

Because the variability of the atmospheric moisture storage is negli-
gible, global mean increases in evaporation are required to balance 
increases in precipitation in response to anthropogenic forcing (Meehl 
et al., 2007a; Trenberth et al., 2007; Bates et al., 2008; Lu and M. Cai, 
2009). The global atmospheric water content is constrained by the 
Clausius–Clapeyron equation to increase at around 7% K–1; howev-
er, both the global precipitation and evaporation in global warming 
simulations increase at 1 to 3% K–1 (Lambert and Webb, 2008; Lu and 
M.Cai, 2009). 

Changes in evapotranspiration over land are influenced not only by the 
response to RF, but also by the vegetation response to elevated CO2 
concentrations. Physiological effects of CO2 may involve both the sto-
matal response, which acts to restrict transpiration (Field et al., 1995; 
Hungate et al., 2002; Cao et al., 2009, 2010; Lammertsma et al., 2011), 
and an increase in plant growth and leaf area, which acts to increase 
evapotranspiration (El Nadi, 1974; Bounoua et al., 2010). Simulation of 
the latter process requires the inclusion of vegetation models that allow 
spatial and temporal variability in the amount of active biomass, either 
by changes in the phenological cycle or changes in the biome structure.

In response to GHG forcing, dry land areas tend to show a reduction 
of evaporation and often precipitation, accompanied by a drying of the 
soil and an increase of surface temperature, in response to decreases 

in latent heat fluxes from the surface (e.g., Fischer et al., 2007; Sen-
eviratne et al., 2010). Jung et al. (2010) use a mixture of observations 
and models to illustrate a recent global mean decline in land surface 
evaporation due to soil-moisture limitations. Accompanying precipita-
tion effects are more subtle, as there are significant uncertainties and 
large geographical variations regarding the soil-moisture precipitation 
feedback (Hohenegger et al., 2009; Taylor et al., 2011). AR4 projec-
tions (Meehl et al. (2007b) of annual mean soil moisture changes for 
the 21st century showed a tendency for decreases in the subtropics, 
southern South America and the Mediterranean region, and increases 
in limited areas of east Africa and central Asia. Changes seen in other 
regions were mostly not consistent or statistically significant.

AR4 projections of 21st century runoff changes (Meehl et al., 2007b) 
showed consistency in sign among models indicating annual mean 
reductions in southern Europe and increases in Southeast Asia and at 
high northern latitudes. Projected changes in global mean runoff asso-
ciated with the physiological effects of doubled CO2 concentrations 
show increases of 6 to 8% relative to pre-industrial levels, an increase 
that is comparable to that simulated in response to RF changes (11% 
± 6%) (Betts et al., 2007; Cao et al., 2010). Gosling et al. (2011) assess 
the projected impacts of climate change on river runoff from global 
and basin-scale hydrological models obtaining increased runoff with 
global warming in the Liard (Canada), Rio Grande (Brazil) and Xiangxi 
(China) basins and decrease for the Okavango (southwest Africa).

Consideration of hydrological drought conditions employs a range of 
different dryness indicators, such as soil moisture or other drought indi-
ces that integrate precipitation and evaporation effects (Seneviratne et 
al., 2012). There are large uncertainties in regional drought projections 
(Burke and Brown, 2008), and very few studies have addressed the 
near-term future (Sheffield and Wood, 2008; Dai, 2011). In order to 
provide an indication of future changes of water availability, Figure 
11.13b presents zonal mean changes in precipitation minus evapora-
tion (P – E) from CMIP5. As in the case of precipitation (Figure 11.13a), 
the uncertainty is dominated by model differences as opposed to 
natural variability (compare blue versus grey shading). The results are 
 consistent with the wet-get-wetter and dry-get-drier pattern (e.g., Held 
and Soden 2006): In the high latitudes and the tropics, most of the 
models project zonal-mean increases in P – E, which over land would 
need to be compensated by increases in runoff (see next paragraph). 
In contrast, zonal mean projected changes in the subtropics are nega-
tive, indicating decreases in water availability. Although this pattern 
is evident in most or all of the models, and although several studies 
project drought increases in the near term future (Sheffield and Wood, 
2008; Dai, 2011), the assessment is debated in the literature based on 
discrepancies in the recent past and due to natural variability (Senevi-
ratne et al., 2012; Sheffield et al., 2012).

The global distribution of the 2016–2035 changes in annual mean 
evaporation, evaporation minus precipitation (E – P), surface runoff, soil 
moisture, relative humidity and surface-level specific humidity from the 
CMIP5 multi-model ensemble under RCP4.5 are shown in Figure 11.14. 
Changes in evaporation over land (Figure11.14a), are mostly positive 
with the largest values at northern high latitudes, in agreement with 
projected temperature increases (Figure 11.10). Over the oceans, evap-
oration is also projected to increase in most regions. Projected changes 
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are larger than the estimated standard deviation of internal variability 
only at high latitudes and over the tropical oceans. Decreases in evap-
oration over land (i.e., Australia, southern Africa, northeastern South 
America and Mexico) and oceans are smaller than the estimated stand-
ard deviation of internal variability; the only  exception is the western 

North Atlantic, although the model agreement is low in that region. 
Projected changes in (E – P) over land (Figure 11.14b) are generally 
consistent with the zonal mean changes shown in Figure 11.13b. In the 
high northern latitudes and the tropics, (E – P) changes are mostly neg-
ative as dominated by precipitation increases (Figure 11.12), while in 

Figure 11.14 |  CMIP5 multi-model annual mean projected changes for the period 2016–2035 relative to 1986–2005 under RCP4.5 for: (a) evaporation (%), (b) evaporation minus 
precipitation (E – P, mm day–1), (c) total runoff (%), (d) soil moisture in the top 10 cm (%), (e) relative change in specific humidity (%), and (f) absolute change in relative humidity 
(%). The number of CMIP5 models used is indicated in the upper right corner of each panel. Hatching and stippling as in Figure 11.10.
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the subtropics several areas exhibit increases in (E – P), in particular in 
Europe, western Australia and central-western USA. However, in most 
locations changes are smaller than internal variability.

Annual mean shallow soil moisture (Figure 11.14d) shows decreases in 
most subtropical regions (except La Plata basin in South America) and 
in central Europe, and increases in northern mid-to-high latitudes. Pro-
jected changes are larger than the estimated internal variability only 
in southern Africa, the Amazon region and Europe. Projected changes 
in runoff (Figure 11.14c) show decreases in northern Africa, western 
Australia, southern Europe and southwestern USA and increases larger 
than the internal variability in northwestern Africa, southern Arabia 
and southeastern South America associated to the projected changes 
in precipitation (Figure 11.12). Owing to the simplified hydrological 
models in many CMIP5 climate models, the projections of soil moisture 
and runoff have large model uncertainties.

Changes in near-surface specific humidity are positive, with the larg-
est values at northern high latitudes when expressed in percentage 
terms (Figure 11.14e). This is consistent with the projected increases in 
temperature when assuming constant relative humidity. These changes 
are larger than the estimated standard deviation of internal variabil-
ity almost everywhere: the only exceptions are oceanic regions such 
as the northern North Atlantic and around Antarctica. In comparison, 
absolute changes in near-surface relative humidity (Figure 11.14f) are 
much smaller, on the order of a few percent, with general decreases 
over most land areas, and small increases over the oceans. Significant 
decreases relative to natural variability are projected in the Amazonia, 
southern Africa and Europe, although the model agreement in these 
regions is low.

Over the next few decades projected increases in near-surface specific 
humidity are very likely, and projected increases in evaporation are 
likely in many land regions. There is low confidence in projected chang-
es in soil moisture and surface runoff. 

11.3.2.4 Atmospheric Circulation

11.3.2.4.1 Northern Hemisphere extratropical circulation

In the NH extratropics, some Atmosphere–Ocean General Circulation 
Models (AOGCMs) indicate changes to atmospheric circulation from 
anthropogenic forcing by the mid-21st century, including a pole-
ward shift of the jet streams and associated zonal mean storm tracks 
(Miller et al., 2006; Pinto et al., 2007; Paeth and Pollinger, 2010) and 
a strengthening of the Atlantic storm track (Pinto et al., 2007), Figure 
11.15. Consistent with this, the CMIP5 AOGCMs exhibit an ensemble 
mean increase in the North Atlantic Oscillation (NAO) and Northern 
Annular Model (NAM) indices by 2050, especially in autumn and 
winter (Gillett et al., 2013). 

However, there are reasons to be cautious over these near-term projec-
tions. Although models simulate the broad features of the large-scale 
circulation well, there remain quite significant biases in many models 
(see Sections 9.4.1.4.3 and 9.5.3.2). The response of the NH circulation 
can be sensitive to small changes in model formulation (Sigmond et al., 
2007), and to features that are known to be poorly simulated in many 

climate models. These features include high- and low-latitude physics 
(Rind, 2008; Woollings, 2010), ocean circulation (Woollings and Black-
burn, 2012), tropical circulation (Haarsma and Selten, 2012) and strat-
ospheric dynamics (Huebener et al., 2007; Morgenstern et al., 2010; 
Scaife et al., 2012). As a result, there is considerable model uncertainty 
in the response of the NH storm track position (Ulbrich et al., 2008), 
stationary waves (Brandefelt and Kornich, 2008) and the jet streams 
(Miller et al., 2006; Ihara and Kushnir, 2009; Woollings and Blackburn, 
2012). Further, CMIP5 models show that the response of NH extratrop-
ical circulation to even strong GHG forcing remains weak compared to 
recent multidecadal variability and a recent detection and attribution 
study suggests that tropospheric ozone and aerosol changes may have 
been a key driver to NH extratropical circulation changes (Gillett et al., 
2013). Some AOGCMs simulate multi-decadal NAO variability as large 
as that recently observed with no external forcing (Selten et al., 2004; 
Semenov et al., 2008). This suggests that internal variability could dom-
inate the anthropogenically forced response in the near term (Deser et 
al., 2012). 

Some studies have predicted a shift to the negative phase of the Atlan-
tic Multi-decadal Oscillation (AMO) over the coming few decades, with 
potential impacts on atmospheric circulation around the Atlantic sector 
(Knight et al., 2005; Sutton and Hodson, 2005; Folland et al., 2009). It 
has also been suggested that there may be significant changes in solar 
forcing over the next few decades, which could have an influence on 
NAO-related atmospheric circulation (Lockwood et al., 2011), although 
these predictions are highly uncertain (see Section 11.3.6.2.2).

There is only medium confidence in near-term projections of a north-
ward shift of NH storm track and westerlies, and an increase of the 
NAO/NAM because of the large response uncertainty and the poten-
tially large influence of internal variability.

11.3.2.4.2 Southern Hemisphere extratropical circulation

Increases in GHGs, and related dynamical processes, are projected 
to lead to poleward shifts in the annual mean position of Southern 
 Hemisphere (SH) extratropical storm tracks and winds (Figure 11.17; 
Chapters 10 and 12). A key issue in projections of near-term SH extra-
tropical circulation change is the extent to which changes driven by 
stratospheric ozone recovery will counteract changes driven by increas-
ing GHGs. Several observational and modeling studies (Gillett and 
Thompson, 2003; Shindell and Schmidt, 2004; Arblaster and Meehl, 
2006; Roscoe and Haigh, 2007; Fogt et al., 2009; Polvani et al., 2011a; 
Gillett et al., 2013) indicate that, over the late 20th and early 21st cen-
turies, the observed summertime poleward shift of the westerly jet (a 
positive Southern Annular Mode (SAM)) has been caused primarily by 
the depletion of stratospheric ozone, with increasing GHGs contributing 
only a smaller fraction to the observed trends. The latest generation 
of climate models project substantially smaller poleward trends in SH 
atmospheric circulation in austral summer over the coming half century 
compared to those over the late 20th century, as the recovery of strat-
ospheric ozone will oppose the effects of continually increasing GHGs 
(Arblaster et al., 2011; McLandress et al., 2011; Polvani et al., 2011a; 
Eyring et al., 2013). Locally, internal variability may be a dominant con-
tributor to near-term changes in lower-tropospheric zonal winds (Figure 
11.17). The average 2016–2035 SH extratropical storm tracks and zonal 
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winds are likely to shift poleward relative to 1986–2005. However, even 
though a full recovery of the ozone hole is not expected until the 2060s 
to 2070s (Table 5.4; WMO, 2010; see Chapter 12), it is likely that over 
the near term there will be a reduced rate in the austral summertime 
poleward shift of the SH circumpolar trough, SH extratropical storm 
tracks and winds compared to its movement over the past 30 years, 
including the possibility of no detectable shift.

11.3.2.4.3 Tropical circulation

Increases in GHGs are expected to lead to a poleward shift of the 
Hadley Circulation (Lu et al., 2007; Chapter 12, Figure 11.18). Relative 
to the late 20th century, the tendency towards a poleward expansion 
of the Hadley Circulation will start to emerge by the mid-2030s, with 
certain intra-model consensus in the SH expansion, despite the coun-
teracting effect of ozone recovery (Figure 11.18). As with near-term 
changes in SH extratropical circulation, a key for near-term projections 
of the structure of the SH Hadley Circulation is the extent to which 
future stratospheric ozone recovery will counteract the impact of 
GHGs. The poleward expansion of the Hadley Circulation, particularly 
of the SH branch during austral summer, during the later decades of 
the 20th century has been largely attributed to the combined impact 
of stratospheric ozone depletion (Thompson and Solomon, 2002; Son 
et al., 2008, 2009a, 2009b; Polvani et al., 2011a, 2011b; Min and Son, 
2013) and the concurrent increase in GHGs (Arblaster and Meehl, 
2006; Arblaster et al., 2011) as discussed in the previous section. The 

poleward expansion of the Hadley Circulation driven by the response 
of the atmosphere to increasing GHGs (Lu et al., 2007; Kang et al., 
2011; Staten et al., 2011; Butler et al., 2012) would be counteract-
ed in the SH by reduced stratospheric ozone depletion but depends 
on the rate of ozone recovery (UNEP and WMO, 2011). Increases in 
the incoming solar radiation can lead to a widening of the Hadley 
Cell (Haigh, 1996; Haigh et al., 2005) and large volcanic eruption to 

Figure 11.15 |  CMIP5 multi-model ensemble mean of projected changes (m s–1) in 
zonal (west-to-east) wind at 850 hPa for 2016–2035 relative to 1986–2005 under 
RCP4.5. The number of CMIP5 models used is indicated in the upper right corner. Hatch-
ing and stippling as in Figure 11.10.
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Figure 11.16 | Projected changes in the annual averaged poleward edge of the Hadley Circulation (horizontal axis) and sub-tropical dry zones (vertical axis) based on 15 Atmo-
sphere–Ocean General Circulation Models (AOGCMs) from the CMIP5 (Taylor et al., 2012) multi-model ensemble, under 21st century RCP4.5. Orange symbols show the change 
in the northern edge of the Hadley Circulation/dry zones, while blue symbols show the change in the southern edge of the Hadley Circulation/dry zones. Open circles indicate the 
multi-model average, while horizontal and vertical coloured lines indicate the ±1 standard deviation range for internal climate variability estimated from each model. Values refer-
enced to the 1986–2005 climatology. (Figure based on the methodology of Lu et al., 2007.)
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Figure 11.17 |  Global projections of the occurrence of (a) warm days (TX90p), (b) cold days (TX10p) and (c) precipitation amount from very wet days (R95p). Results are shown 
from CMIP5 for the RCP2.6, RCP4.5 and RCP8.5 scenarios. Solid lines indicate the ensemble median and shading indicates the interquartile spread between individual projections 
(25th and 75th percentiles). The specific definitions of the indices shown are (a) percentage of days annually with daily maximum surface air temperature (Tmax) exceeding the 90th 
percentile of Tmax for 1961–1990, (b) percentage of days with Tmax below the 10th percentile and (c) percentage change relative to 1986–2005 of the annual precipitation amount 
from daily events above the 95th percentile. (From Sillmann et al., 2013.)

contraction of the tropics and the tropical circulation (Lu et al., 2007; 
Birner, 2010). So future solar variations and volcanic activities could 
also lead to variations in the width of the Hadley Cell. The poleward 
extent of the Hadley Circulation and associated dry zones can exhibit 
substantial internal variability (e.g., Birner, 2010; Davis and Rosenlof, 
2012) that can be as large as its near-term projected changes (Figure 
11.16). There is also considerable uncertainty in the amplitude of the 
poleward shift of the Hadley Circulation in response to GHGs across 
multiple AOGCMs (Lu et al., 2007; Figure 11.16). It is likely that the 
poleward extent of the Hadley Circulation will increase through the 
mid-21st century. However, because of the counteracting impacts of 
future changes in stratospheric ozone and GHG concentrations, it is 
unlikely that it will continue to expand poleward in the SH as rapidly 
as it did in recent decades. 

The Hadley Cell expansion in the NH has been largely attributed to the 
low-frequency variability of the SST (Hu et al., 2013), the increase of 
black carbon (BC) and tropospheric ozone (Allen and Sherwood, 2011). 
Internal variability in the poleward edge of the NH Hadley Circulation 
is large relative the radiatively forced signal (Figure 11.16. Given the 
complexity in the forcing mechanism of the NH expansion and the 
uncertainties in future concentrations of tropospheric pollutants, there 
is low confidence in the character of near-term changes to the struc-
ture of the NH Hadley Circulation.

Global climate models and theoretical considerations suggest that 
a warming of the tropics should lead to a weakening of the zonally 
asymmetric or Walker Circulation (Knutson and Manabe, 1995; Held 
and Soden, 2006; Vecchi and Soden, 2007; Gastineau et al., 2009). 
Aerosol forcing can modify both Hadley and Walker Circulations, 
which—depending on the details of the aerosol forcing—may lead to 
temporary reversals or enhancements in any GHG-driven weakening 
of the Walker Circulation (Sohn and Park, 2010; Bollasina et al., 2011; 
Merrifield, 2011; DiNezio et al., 2013). Meanwhile, the strength and 
structure of the Walker Circulation are impacted by internal climate 
variations, such as the ENSO (e.g., Battistiand Sarachik, 1995), the PDO 
(e.g., Zhang et al. 1997) and the IPO (Power et al., 1999, 2006; Meehl 
and Hu, 2006; Meehl and Arblaster, 2011; Power and Kociuba, 2011b; 

Meehl and Arblaster, 2012; Meehl et al., 2013a). Even on time scales 
of 30 to 100 years, substantial variations in the strength of the Pacific 
Walker Circulation in the absence of changes in RF are possible (Power 
et al., 2006; Vecchi et al., 2006). Estimated near-term weakening of 
the Walker Circulation from CMIP3 models under the A1B scenario 
(Vecchi and Soden, 2007; Power and Kociuba, 2011a) are very likely to 
be smaller than the impact of internal climate variations over 50-year 
time scales (Vecchi et al., 2006). There is also considerable response 
uncertainty in the amplitude of the weakening of Walker Circulation in 
response to GHG increase across multiple AOGCMs (Vecchi and Soden, 
2007; DiNezio et al., 2009; Power and Kociuba, 2011a, 2011b). Thus, 
there is low confidence in projected near-term changes to the Walker 
Circulation. It is very likely that there will be decades in which the 
Walker Circulation strengthens and weakens due to internal variability 
through the mid-century as the externally forced change is small com-
pared to internally generated decadal variability.

11.3.2.5 Atmospheric Extremes

Extreme events in a changing climate are the subject of Chapter 3 (Sen-
eviratne et al., 2012) of the IPCC Special Report on Extremes (SREX). 
This previous IPCC chapter provides an assessment of more than 1000 
studies. Here the focus is on near-term aspects and an assessment of 
more recent studies is provided.

11.3.2.5.1 Temperature extremes

In the AR4 (Meehl et al., 2007b), cold episodes were projected to 
decrease significantly in a future warmer climate and it was  considered 
very likely that heat waves would be more intense, more frequent and 
last longer towards the end of the 21st century. These conclusions 
have generally been confirmed in subsequent studies addressing both 
global scales (Clark et al., 2010; Diffenbaugh and Scherer, 2011; Caesar 
and Lowe, 2012; Orlowsky and Seneviratne, 2012; Sillmann et al., 
2013) and regional scales (e.g., Gutowski et al., 2008; Alexander and 
Arblaster, 2009; Fischer and Schar, 2009; Marengo et al., 2009; Meehl 
et al., 2009a; Diffenbaugh and Ashfaq, 2010; Fischer and Schar, 2010; 
Cattiaux et al., 2012; Wang et al., 2012). In the SREX assessment it is 
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concluded that increases in the number of warm days and nights and 
decreases in the number of cold days and nights are virtually certain 
on the global scale.

None of the aforementioned studies specifically addressed the near 
term. However, detection and attribution studies (see also Chapter 
10) show that temperature extremes have already increased in many 
regions, consistent with climate change projections, and analyses 
of CMIP5 global projections show that this trend will continue and 
become more notable. The CMIP5 model ensemble exhibits a signifi-
cant decrease in the frequency of cold nights, an increase in the fre-
quency of warm days and nights and an increase in the duration of 
warm spells (Sillmann et al., 2013). These changes are particularly evi-
dent in global mean projections (see Figure 11.17). Figure 11.17 shows 
that for the next few decades—as discussed in the introduction to 
the current chapter—these changes are remarkably insensitive to the 
emission scenario considered (Caesar and Lowe, 2012). In most land 
regions and in the near-term, the frequency of warm days and warm 
nights will thus likely continue to increase, while that of cold days and 
cold nights will likely continue to decrease.

Near-term projections from General Circulation Model–Regional Cli-
mate Model (GCM–RCM) model chains (van der Linden and  Mitchell, 
2009) for Europe are shown in Figure 11.18, displaying near-term 
changes in mean and extreme temperature (left-hand panels) and 
precipitation (right-hand panels) relative to the reference period 1986–
2005. In terms of mean June, July and August (JJA) temperatures (Figure 
11.18a), projections show a warming of 0.6°C to 1.5°C, with highest 
changes over the land portion of the Mediterranean. The north–south 
gradient in the projections is consistent with the AR4. Daytime extreme 
summer temperatures in southern and central Europe are projected to 
warm substantially faster than mean temperatures (compare Figure 
11.18a and b). This difference between changes in mean and extremes 
can be explained by increases in interannual and/or synoptic variability, 
or increases in diurnal temperature range (Gregory and Mitchell, 1995; 
Schar et al., 2004; Fischer and Schar, 2010; Hansen, 2012; Quesada et 
al., 2012; Seneviratne et al., 2012). There is some evidence, however, 
that this effect is overestimated in some of the models (Fischer et al., 
2012; Stegehuis et al., 2012), leading to a potential overestimation of 
the projected Mediterranean summer mean warming (Buser et al., 2009; 
Boberg and Christensen, 2012). With regard to near-term projections of 

(°C) (%)

Figure 11.18 |  European-scale projections from the ENSEMBLES regional climate modelling project for 2016–2035 relative to 1986–2005, with top and bottom panels applicable 
to June, July and August (JJA) and December, January, February (DJF), respectively. For temperature, projected changes (°C) are displayed in terms of ensemble mean changes of (a, 
c) mean seasonal surface temperature, and (b, d) the 90th percentile of daily maximum temperatures. For precipitation, projected changes (%) are displayed in terms of ensemble 
mean changes of (e, g) mean seasonal precipitation and (f, h) the 95th percentile of daily precipitation. The stippling in (e–h) highlights regions where 80% of the models agree in 
the sign of the change (for temperature all models agree on the sign of the change). The analysis includes the following 10 GCM-RCM simulation chains for the SRES A1B scenario 
(naming includes RCM group and GCM simulation): HadRM3Q0-HadCM3Q0, ETHZ-HadCM3Q0, HadRM3Q3-HadCM3Q3, SMHI-HadCM3Q3, HadRM3Q16-HadCM3Q16, SMHI-
BCM, DMI-ARPEGE, KNMI-ECHAM5, MPI-ECHAM5, DMI-ECHAM5. (Rajczak et al., 2013.)
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record heat compared to record cold (Meehl et al., 2009b) show, for one 
model, that over the USA the ratio of daily record high temperatures to 
daily record low temperatures could increase from an early 2000s value 
of roughly 2 to 1 to a mid-century value of about 20 to 1.

In terms of December, January and February (DJF) temperatures (Figure 
11.18c), projections show a warming of 0.3°C to 1.8°C, with the larg-
est changes in the N–NE part of Europe. This characteristic pattern of 
changes tends to persist to the end of century (van der Linden and 
Mitchell, 2009). In contrast to JJA temperatures, daytime high-percen-
tile (i.e., warm) winter temperatures are projected to warm slower than 
mean temperatures (compare Figure 11.18c and Figure 11.18d), while 
low-percentile (i.e., cold) winter temperatures warm faster than the 
mean. This behaviour is indicative of reductions in internal variability, 
which may be linked to changes in storm track activity, reductions in 
diurnal temperature range and changes in snow cover (e.g., Colle et al. 
2013; Dutra et al., 2011).

11.3.2.5.2 Heavy precipitation events

For the 21st century, the AR4 and the SREX concluded that heavy pre-
cipitation events were likely to increase in many areas of the globe 
(IPCC, 2007). Since AR4, a larger number of additional studies have 
been published using global and regional climate models (Fowler et al., 
2007; Gutowski et al., 2007; Sun et al., 2007; Im et al., 2008; O’Gorman 
and Schneider, 2009; Xu et al., 2009; Hanel and Buishand, 2011; Hein-
rich and Gobiet, 2011; Meehl et al., 2012b). For the near term, CMIP5 
global projections (Figure 11.17c) confirm a clear tendency for increas-
es in heavy precipitation events in the global mean, but there are sig-
nificant variations across regions (Sillmann et al., 2013). Past observa-
tions have also shown that interannual and decadal variability in mean 
and heavy precipitation are large, and are in addition strongly affected 
by internal variability (e.g., El Niño), volcanic forcing and anthropogen-
ic aerosol loads (see Section 2.3.1). In general models have difficulties 
in representing these variations, particularly in the tropics (see Section 
9.5.4.2). Thus the frequency and intensity of heavy precipitation events 
will likely increase over many land areas in the near term, but this trend 
will not be apparent in all regions, because of natural variability and 
possible influences of anthropogenic aerosols.

Simulations with regional climate models demonstrate that the 
response in terms of heavy precipitation events to anthropogenic cli-
mate change may become evident in some but not all regions in the 
near term. For instance, ENSEMBLES projections for Europe (see Figure 
11.18e–h) confirm the previous IPCC results that changes in mean 
precipitation as well as heavy precipitation events are characterized 
by a pronounced north–south gradient in the extratropics, especially 
in the winter season, with precipitation increases in the higher lati-
tudes and decreases in the subtropics. Although this pattern starts to 
emerge in the near term, the projected changes are statistically signif-
icant only in a fraction of the domain. The results are affected by both 
changes in water vapour content as induced by large-scale warming 
and large-scale circulation changes. Figure 11.18e–h also shows that 
mid- and high-latitude projections for changes in DJF extremes and 
means are qualitatively similar in the near term, at least for the event 
size considered.

Previous work reviewed in AR4 has established that extreme 
 precipitation events may increase substantially stronger than mean 
precipitation amounts. More specifically, extreme events may increase 
with the atmospheric water vapour content, that is, up to the rate 
of the Clausius–Clapeyron (CC) relationship (e.g., Allen and Ingram, 
2002). More recent work suggests that increases beyond this threshold 
may occur for short-term events associated with thunderstorms (Len-
derink and Van Meijgaard, 2008; Lenderink and Meijgaard, 2010) and 
tropical convection (O’Gorman, 2012). A number of studies showed 
strong dependencies on location and season, but confirm the exist-
ence of significant deviations from the CC scaling (e.g., Lenderink et 
al., 2011; Mishra et al., 2012; Berg et al., 2013). Studies with cloud-re-
solving models generally support the existence of temperature-precip-
itation relations that are close to or above (up to about twice) the CC 
relation (Muller et al., 2011; Singleton and Toumi, 2012). 

11.3.2.5.3 Tropical cyclones

The projected response of tropical cyclones (TCs) at the end of the 21st 
century is summarized in Section 14.6.1 and the IPCC Special Report 
on Extremes (SREX) (Seneviratne et al., 2012). Relative to the number 
of studies focussing on projections of TC activity at the end of the 21st 
century (Section 14.6.1; Knutson et al., 2010; Seneviratne et al., 2012 
there are fewer studies that have explored near-term projections of TC 
activity (Table 11.2); the North Atlantic (NA) stands out as the basin 
with most studies. In the NA, there are mixed projections for basin-
wide TC frequency, suggesting significant decreases (Knutson et al., 
2013a) or non-significant changes (Villarini et al., 2011; Villarini and 
Vecchi, 2012). Multi-model mean projected NA TC frequency chang-
es based on CMIP3 and CMIP5 over the first half of the 21st century 
were smaller than the overall uncertainty estimated from the Coupled 
General Circulation Models (CGCMs), with internal climate variability 
being a leading source of uncertainty through the mid-21st century 
(Villarini et al., 2011; Villarini and Vecchi, 2012). Therefore, based on 
the limited literature available, the conflicting near-term projections 
in basins with more than one study, the large influence of internal 
variability, the lack of confidently detected/attributed changes in TC 
activity (Chapter 10) and the conflicting projections for basin-wide TC 
frequency even at the end of the 21st century (Chapter 14), there is 
currently low confidence in basin-scale and global projections of trends 
in tropical cyclone frequency to the mid-21st century.

Exploring different hurricane intensity measures, two studies project 
near-term increases of NA hurricane intensity (Knutson et al., 2013a; 
Villarini and Vecchi, 2013), driven in large part by projected reductions 
in NA tropospheric aerosols in CMIP5 future forcing scenarios. Studies 
project near-term increases in the frequency Category 4–5 TCs in the 
NA (Knutson et al., 2013a) and southwest Pacific (Leslie et al., 2007). 
Published studies agree in the sign of projected mid-century intensity 
change (intensification), but the only basin with more than one study 
exploring intensity is the NA. For the NA, an estimate of the time scale 
of emergence of projected changes in intense TC frequency exceeds 60 
years (Bender et al., 2010), although that estimate depends crucially 
on the amplitude of internal climate variations of intense hurricane fre-
quency (e.g., Emanuel, 2011), which remains poorly constrained at the 
moment. Therefore, there is low confidence in near-term TC intensity 
projections in all TC basins.
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Modes of climate variability that in the past have led to variations in 
the intensity, frequency and structure of tropical cyclones across the 
globe—such as the ENSO (e.g., Zhang and Delworth, 2006; Wang et 
al., 2007; Callaghan and Power, 2011; Chapter 14)—are very likely to 
continue influencing TC activity through the mid-21st century. There-
fore, it is very likely that over the next few decades tropical cyclone 
frequency, intensity and spatial distribution globally, and in individual 
basins, will vary from year to year and decade to decade.

11.3.3 Near-term Projected Changes in the Ocean

11.3.3.1 Temperature

Globally averaged surface and near-surface ocean temperatures are 
projected by AOGCMs to warm over the early 21st century, in response 
to both present day atmospheric concentrations of GHGs (‘committed 
warming’; e.g., Meehl et al., 2006) and projected future changes in RF 
(Figure 11.19). Globally averaged SST shows substantial year-to-year 
and decade-to-decade variability (e.g., Knutson et al., 2006; Meehl et 
al., 2011), whereas the variability of depth-averaged ocean tempera-
tures is much less (e.g., Meehl et al., 2011; Palmer et al., 2011). The rate 
at which globally averaged surface and depth-averaged temperatures 
rise in response to a given scenario for RF shows a considerable spread 
between models (an example of response uncertainty; see Section 
11.2), due to differences in climate sensitivity and ocean heat uptake 
(e.g., Gregory and Forster, 2008). In the CMIP5 models under all RCP 
forcing scenarios, globally averaged SSTs are projected to be warmer 
over the near term relative to 1986–2005 (Figure 11.20).

A key uncertainty in the future evolution of globally averaged oceanic 
temperature are possible future large volcanic eruptions, which could 

impact the radiative balance of the planet for 2 to 3 years after their 
eruption and act to reduce oceanic temperature for decades into the 
future (Delworth et al., 2005; Stenchikov et al., 2009; Gregory, 2010). 
An estimate using the GFDL-CM2.1 coupled AOGCM (Stenchikov et al., 
2009) suggests that a single Tambora (1815)-like volcano could erase 
the projected global ocean depth-averaged temperature increase for 
many years to a decade. A Pinatubo (1991)-like volcano could erase 
the projected increase for 2 to 10 years. See Section 11.3.6 for further 
discussion.

TC Basin 
Explored Projected Change in TC Activity Reported Notes Reference

Global
Reduced global, Northern Hemisphere and Southern Hemisphere frequency 
2016–2035 relative to 1986–2005.

High-resolution atmospheric model forced by CMIP3 
SRES A1B multi-model SST change 2004–2099.

Sugi and Yoshimura 
(2012) 

N.W. Pacific
Over first half of 21st century: Reduced Activity over South China Sea, 
Increased Activity near subtropical Asia

Statistical downscale of five CMIP3 
models under SRES A1B.

Wang et al. (2011) 

N.W. Pacific
Over 2001–2040, a decrease in TC frequency in the East China Sea, and a frequen-
cy decrease and increase in intensity of Yangze River Basin landfalling typhoons.

Statistical downscaling of CGCM forced 
by CMIP3 SRES A1B scenario.

Orlowsky and 
Seneviratne (2012)  

S.W. Pacific Differences of 2000–2050 with 1970–2000. Negligible change in overall 
frequency. Significant (~15%) increase in number of Category 4–5 TCs.

Dynamical regional downscale of coupled AOGCM 
forced with IPCC IS92a increasing CO2 scenario.

Leslie et al. (2007) 

N. Atlantic
Linear trend in TC frequency 2001–2050: Ensemble-mean non-significant 
decrease in TC frequency (–5%). Ensemble range of –50% to +30%.

Statistical downscaling of CMIP3 
models under A1B scenario.

Villarini et al. (2011) 

N. Atlantic
TC frequency averaged 2016–2035 minus 1986–2005: Ensemble-mean non-
significant increase for RCP2.6 (4%), non-significant decrease for RCP4.5 (–2%) 
and RCP8.5 (–1%). Ensemble range of –30% to 27% across all scenarios/models.

Statistical downscaling of CMIP5 
RCP2.6, RCP4.5 and RCP8.5

Villarini and 
Vecchi (2012) 

N. Atlantic
Power Dissipation Index averaged 2016–2035 minus 1986–2005: Ensemble mean 
significant increase for RCP2.6 (23%) and RCP8.5 (17%), non-significant increase 
for RCP4.5 (10%). Ensemble range of –43% to 78% across all scenarios/models.

Statistical downscaling of CMIP5 
RCP2.6, RCP4.5 and RCP4.5

Villarini and 
Vecchi (2013) 

N. Atlantic

Difference 2016–2035 minus 1986–2005 averages: Significant decrease 
(–20%) to overall TC and hurricane frequency. Significant increase 
(+45%) in number of Category 4–5 TCs. Significant increase in pre-
cipitation of hurricanes (11%) and tropical storms (18%).

Double dynamical refinement of CMIP5 RCP4.5 
multi-model ensemble projections.

Knutson et al. (2013a) 

Table 11.2 |  Summary of studies exploring near-term projections of tropical cyclone (TC) activity. First column lists the TC basin explored, the second column summarizes the 
changes in TC activity reported in each study, the third column presents notes on the methodology and the fourth column provides a reference to the study.

Global sea surface temperature change

(°
C

)

Figure 11.19 |  Projected changes in annual averaged, globally averaged, surface 
ocean temperature based on 12 Atmosphere–Ocean General Circulation Models 
(AOGCMs) from the CMIP5 (Meehl et al., 2007b) multi-model ensemble, under 21st 
century scenarios RCP2.6, RCP4.5, RCP6.0 and RCP8.5. Shading indicates the 90% 
range of projected annual global mean surface temperature anomalies. Anomalies com-
puted against the 1986–2005 average from the historical simulations of each model.
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In the absence of multiple major volcanic eruptions (see Section 
11.3.6.2), it is very likely that globally averaged surface and depth-av-
eraged temperatures averaged 2016–2035 will be warmer than those 
averaged over 1986–2005.

There are regional variations in the projected amplitude of ocean tem-
perature change (Figure 11.20) which are influenced by ocean circula-
tion as well as surface heating (Timmermann et al., 2007; Vecchi and 
Soden, 2007; DiNezio et al., 2009; Yin et al., 2009; Xie et al., 2010; Yin 
et al., 2010), including changes in tropospheric aerosol concentrations 
(e.g., Booth et al., 2012; Villarini and Vecchi, 2012). Inter-decadal vari-
ability of upper ocean temperatures is larger in mid-latitudes, particu-
larly in the NH, than in the tropics. A consequence of this contrast is 
that it will take longer in the mid-latitudes than in the tropics for the 
anthropogenic warming signal to emerge from the noise of internal 
variability (Wang et al., 2010).

Projected changes to thermal structure of the tropical Indo-Pacific 
are strongly dependent on the future behaviour of the Walker Circu-
lation (Vecchi and Soden, 2007; DiNezio et al., 2009; Timmermann et 
al., 2010), in addition to changes in heat transport and changes in 
surface heat fluxes. It is likely that internal climate variability will be a 
dominant contributor to changes in the depth and tilt of the equatorial 
thermocline, and the strength of the east–west gradient of SST across 
the Pacific through the mid-21st century; thus it is likely there will be 
multi-year periods with increases or decreases in these measures.

11.3.3.2 Salinity

Changes in sea surface salinity are expected in response to changes 
in precipitation, evaporation and runoff (see Section 11.3.2.3), as well 
as ocean circulation; in general (but not in every region), salty regions 
are expected to become saltier and fresh regions fresher (e.g., Durack 
et al. 2012; Terray et al. 2012; Figure 11.20). As discussed in Chapter 
10 (Section 10.4.2), observation-based and attribution studies have 
found some evidence of an emerging anthropogenic signal in salin-
ity change (Section 10.4.2), in particular increases in surface  salinity 

in the subtropical North Atlantic, and decreases in the west Pacific 
warm pool region (Stott et al., 2008; Cravatte et al., 2009; Durack and 
Wijffels, 2010; Durack et al., 2012; Pierce et al., 2012; Terray et al., 
2012). Models generally predict increases in salinity in the tropical and 
(especially) subtropical Atlantic, and decreases in the western tropical 
Pacific over the next few decades (Figure 11.20) (Durack et al., 2012; 
Terray et al., 2012). These projected decreases in the Atlantic and in the 
western tropical Pacific are considered likely.

Projected near-term increases in freshwater flux into the Arctic Ocean 
produce a fresher surface layer and increased transport of fresh water 
into the North Atlantic (Holland et al., 2006; Holland et al., 2007; Vavrus 
et al., 2012). Such contributions to decreased density of the ocean sur-
face layer in the North Atlantic could act to reduce deep ocean con-
vection there and contribute to a near-term reduction of strength of 
Atlantic Meridional Ocean Circulation (AMOC). However, the strength 
of the AMOC can also be modulated by changes in temperature, such 
as those from changing RF (Delworth and Dixon, 2006).

11.3.3.3 Circulation

As discussed in previous assessment reports, the AMOC is generally 
projected to weaken over the next century in response to increase in 
atmospheric GHG. However, the rate and magnitude of weakening 
is very uncertain. Response uncertainty is a major contributor in the 
near term, but the influence of anthropogenic aerosols and natural RFs 
(solar, volcanic) cannot be neglected, and could be as important as the 
influence of GHGs (e.g., Delworth and Dixon, 2006; Stenchikov et al., 
2009). For example, the rate of weakening of the AMOC in two models 
with different climate sensitivities is quite different, with the less 
sensitive model (CCSM4) showing less weakening and a more rapid 
recovery than the more sensitive model (Community Earth System 
Model 1/Community Atmosphere Model 5 (CESM1/CAM5; Meehl et 
al., 2013c). In addition, the natural variability of the AMOC on dec-
adal time scales is poorly known and poorly understood, and could 
dominate any anthropogenic response in the near term (Drijfhout and 
Hazeleger, 2007). The AMOC is known to play an important role in the 

Figure 11.20 |  CMIP5 multi-model ensemble mean of projected changes in sea surface temperature (right panel; °C) and sea surface salinity (left panel; practical salinity units) for 
2016–2035 relative to 1986–2005 under RCP4.5. The number of CMIP5 models used is indicated in the upper right corner. Hatching and stippling as in Figure 11.10.
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decadal variability of the North Atlantic Ocean, but climate models 
show large differences in their simulation of both the amplitude and 
spectrum of AMOC variability (e.g., Bryan et al., 2006; Msadek et al., 
2010). In some AOGCMs changes in SH surface winds influence the 
evolution of the AMOC on time scales of many decades (Delworth and 
Zeng, 2008), so the delayed response to SH wind changes, driven by 
the historical reduction in stratospheric ozone along with its projected 
recovery, could be an additional confounding issue (Section 11.3.2.3). 
Overall, it is likely that there will be some decline in the AMOC by 2050, 
but decades during which the AMOC increases are also to be expect-
ed. There is low confidence in projections of when an anthropogenic 
influence on the AMOC might be detected (Baehr et al., 2008; Roberts 
and Palmer, 2012).

Projected changes to oceanic circulation in the Indo-Pacific are strongly 
dependent on future response of the Walker Circulation (Vecchi and 
Soden, 2007; DiNezio et al., 2009), the near-term projected weaken-
ing of which is smaller than the expected variability on time scales of 
decades to years (Section 11.3.2.4.3). Taking variability into account, 
there is medium confidence in a weakening of equatorial Pacific cir-
culation, including equatorial upwelling and the shallow subtropical 
overturning in the Pacific, and the Indonesian Throughflow over the 
coming decades.

11.3.4 Near-term Projected Changes in the Cryosphere

This section assesses projected near-term changes of elements of the 
cryosphere. These consist of sea ice, snow cover and near-surface per-
mafrost (frozen ground), changes to the Arctic Ocean and possible 
abrupt changes involving the cryosphere. Glaciers and ice sheets are 
addressed in Chapter 13. Here near-term changes in the geographi-
cal coverage of sea ice, snow cover and near-surface permafrost are 
assessed. 

Trends due to changes in external forcing exist alongside consider-
able interannual and decadal variability. This complicates our ability 
to make specific, precise short-term projections, and delays the emer-
gence of a forced signal above the noise. 

11.3.4.1 Sea Ice

Though most of the CMIP5 models project a nearly ice-free Arctic (sea 
ice extent less than 1 × 106 km2 for at least 5 consecutive years) at the 
end of summer by 2100 in the RCP8.5 scenario (see Section 12.4.6.1), 
some show large changes in the near term as well. Some previous 
models project an ice-free summer period in the Arctic Ocean by 2040 
(Holland et al., 2006), and even as early as the late 2030s using a 
criterion of 80% sea ice area loss (e.g., Zhang, 2010). By scaling six 
CMIP3 models to recent observed September sea ice changes, a nearly 
ice-free Arctic in September is projected to occur by 2037, reaching the 
first quartile of the distribution for timing of September sea ice loss by 
2028 (Wang and Overland, 2009). However, a number of models that 
have fairly thick Arctic sea ice produce a slower near-term decrease in 
sea ice extent compared to observations (Stroeve et al., 2007). Based 
on a linear extrapolation into the future of the recent sea ice volume 
trend from a hindcast simulation conducted with a regional model of 
the Arctic sea ice–ocean system (Maslowski et al., 2012) projected that 

it would take only until about 2016 to reach a nearly ice-free Arctic 
Ocean in summer. However, such an approach not only neglects the 
effect of year-to-year or longer-term variability (Overland and Wang, 
2013) but also ignores the negative feedbacks that can occur when 
the sea ice cover becomes thin (Notz, 2009). Mahlstein and Knutti 
(2012) estimated the annual mean global surface warming threshold 
for nearly ice-free Arctic conditions in September to be ~2°C above the 
present derived from both CMIP3 models and observations. 

An analysis of CMIP3 model simulations indicates that for near-term 
predictions the dominant factor for decreasing sea ice is increased ice 
melt, and reductions in ice growth play a secondary role (Holland et 
al., 2010). Arctic sea ice has larger volume loss when there is thicker 
ice initially across the CMIP3 models, with a projected accumulated 
mass loss of about 0.5 m by 2020, and roughly 1.0 m by 2050, with 
considerable model spread (Holland et al., 2010). The CMIP3 models 
tended to under-estimate the observed rapid decline of summer Arctic 
sea ice during the satellite era, but these recent trends are more accu-
rately simulated in the CMIP5 models (see Section 12.4.6.1). For CMIP3 
models, results indicate that the changes in Arctic sea ice mass budget 
over the 21st century are related to the late 20th century mean sea 
ice thickness distribution (Holland et al., 2010), average sea ice thick-
ness (Bitz, 2008; Hodson et al., 2012), fraction of thin ice cover (Boe 
et al., 2009) and oceanic heat transport to the Arctic (Mahlstein et al., 
2011). Acceleration of sea ice drift observed over the last three dec-
ades, underestimated in CMIP3 projections (Rampal et al., 2011), and 
the presence of fossil-fuel and biofuel soot in the Arctic environment 
(Jacobson, 2010), could also contribute to ice-free late summer condi-
tions over the Arctic in the near term. Details on the transition to an 
ice-free summer over the Arctic are presented in Chapter 12 (Sections 
12.4.6.1 and 12.5.5.7).

The discussion in Section 12.4.6.1 makes the case for assessing near-
term projections of Arctic sea ice by weighting/recalibrating the models 
based on their present-day Arctic sea ice simulations, with a credible 
underlying physical basis in order to increase confidence in the results, 
and accounting for the potentially large imprint of natural variabili-
ty on both observations and model simulations (see Section 9.8.3). A 
subselection of a set of CMIP5 models that fits those criteria, following 
the methodology proposed by Massonnet et al. (2012), is applied in 
Chapter 12 (Section 12.4.6.1) to the full set of models that provid-
ed the CMIP5 database with sea ice output. Among the five selected 
models, four project a nearly ice-free Arctic Ocean in September (sea 
ice extent less than 1 × 106 km2 for at least 5 consecutive years) before 
2050 for RCP8.5, the earliest and latest years of near disappearance of 
the sea ice pack being about 2040 and about 2060, respectively. The 
potential irreversibility of the Arctic sea ice loss and the possibility of 
an abrupt transition toward an ice-free Arctic Ocean are discussed in 
Section 12.5.5.7.

In light of all these results and others discussed in greater detail in Sec-
tion 12.4.6.1, it is very likely that the Arctic sea ice cover will continue 
to shrink and thin all year round during the 21st century as the annual 
mean global surface temperature rises. It is also likely that the Arctic 
Ocean will become nearly ice-free in September before the middle of 
the century for high GHG emissions such as those corresponding to 
RCP8.5 (medium confidence).
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In early 21st century simulations, Antarctic sea ice cover is projected 
to decrease in the CMIP5 models, though CMIP3 and CMIP5 models 
simulate recent decreases in Antarctic sea ice extent compared to 
slight increases in the observations (Section 12.4.6.1). However, there 
is the possibility that melting of the Antarctic ice sheet could be chang-
ing the vertical ocean temperature stratification around Antarctica 
and encourage sea ice growth (Bintanja et al., 2013). This and other 
evidence discussed in Section 12.4.6.1 leads to the assessment that 
there is low confidence in Antarctic sea ice model projections that 
show near-term decreases of sea ice cover because of the wide range 
of model responses and the inability of almost all of the models to 
reproduce the mean seasonal cycle, interannual variability and overall 
increase of the Antarctic sea ice areal coverage observed during the 
satellite era (see Section 9.4.3).

11.3.4.2 Snow Cover

Decreases of snow cover extent (SCE, defined over ice-free land areas) 
are strongly connected to a shortening of seasonal snow cover dura-
tion (Brown and Mote, 2009) and are related to both precipitation and 
temperature changes (see Section 12.4.6.2). This has implications for 
snow on sea ice where loss of sea ice area in autumn delays snowfall 
accumulation, with CMIP5 multi-model mean values of snow depth in 
April north of 70°N reduced from about 28 cm to roughly 18 cm for 
the 2031–2050 period compared to the 1981–2000 average (Hezel et 
al., 2012). The snow accumulation season by mid-century in one model 
is projected to begin later in autumn, with the melt season initiated 
earlier in the spring (Lawrence and Slater, 2010). As discussed in great-
er detail in Section 12.4.6.2, projected increases in snowfall across 
much of the northern high latitudes act to increase snow amounts, 
but warming reduces the fraction of precipitation that falls as snow. 
In addition, the reduction of Arctic sea ice also provides an increased 
moisture source for snowfall (Liu et al., 2012). Whether the average 
SCE decreases or increases by mid-century depends on the balance 
between these competing factors. The dividing line where models tran-
sition from simulating increasing or decreasing maximum snow water 
equivalent roughly coincides with the –20°C isotherm in the mid-20th 
century November to March mean surface air temperature (Raisanen, 
2008). The projected change of SCE over some regions is inconsistent 
with that of extreme snowfall, a major contributor to SCE. For instance, 
SCE is projected to decrease over northern China by the mid-21st 
century (Shi et al., 2011), while the extreme snowfall events over the 
region are projected to increase (Sun et al., 2010).

Time series of projected changes in relative SCE (for NH ice-free land 
areas) are shown in Figure 12.32. Multi-model averages from the 
CMIP5 archive (Brutel-Vuilmet et al., 2013) show percentage decreas-
es of NH SCE ± 1 standard deviation for the 2016–2035 time period 
for a March to April average using a 15% extent threshold for the four 
RCP scenarios as follows: RCP2.6: –5.2% ± 1.9% (21 models); RCP4.5: 
–5.3% ± 1.5% (24 models); RCP6.0: –4.5% ± 1.2% (16 models); 
RCP8.5: –6.0% ± 2.0% (24 models). 

11.3.4.3 Near Surface Permafrost 

Virtually all near-term projections indicate a substantial amount of 
near-surface permafrost degradation (typically taking place in the upper 

2 to 3 m; see Callaghan et al. (2011) and see glossary for detailed defi-
nition), and thaw depth deepening over much of the permafrost area 
(Sushama et al., 2006; Lawrence et al., 2008; Guo and Wang, 2012).
As discussed in more detail in Section 12.4.6.2, these projections have 
increased credibility compared to the previous generation of models 
assessed in the AR4 because current climate models represent perma-
frost more accurately (Alexeev et al., 2007; Nicolsky et al., 2007; Law-
rence et al., 2008). The reduction in annual mean near-surface perma-
frost area for the 2016–2035 time period compared to the 1986–2005 
reference period for the CMIP5 models (Slater and Lawrence, 2013) for 
the NH for the four RCP scenarios is 21% ± 5% (RCP2.6), 18% ± 6% 
(RCP4.5), 18% ± 3% (RCP6.0) and 20% ± 5% (RCP8.5).

11.3.5 Projections for Atmospheric Composition and Air 
Quality to 2100

The future evolution of atmospheric composition is determined by 
the chemical–physical processes in the atmosphere, forced primarily 
by anthropogenic and natural emissions and by interactions with the 
biosphere and ocean (Chapters 2, 6, 7, 8 and 12). Twenty-first century 
projections of the chemically reactive GHGs, including methane (CH4), 
nitrous oxide (N2O) and ozone (O3), as well as aerosols, are assessed 
here (Section 11.3.5.1). Future air pollution, specifically ground-level 
O3 and PM2.5 (particulate matter with a diameter of less than 2.5 μm, 
a measure of aerosol concentration), is also assessed here (Section 
11.3.5.2). The impact of changes in natural emissions and deposition 
through altered land use (Heald et al., 2008; Chen et al., 2009a; Cook 
et al., 2009; Wu et al., 2012) and production of food or biofuels (Chap-
ter 6) on atmospheric composition and air quality are not assessed 
here. Projected CO2 abundances are discussed in Chapters 6 and 12.

Projections for the 21st century are based predominantly on the CMIP5 
models that included atmospheric chemistry and the related ACCMIP 
(Atmospheric Chemistry and Climate Model Intercomparison Project) 
models, driven by the RCP emission and climate scenarios. These and 
the earlier SRES scenarios include only direct anthropogenic emis-
sions. Natural emissions may also change with biosphere feedbacks 
in response to climate or land use change (Chapters 6, 8). Emphasis is 
placed on evaluating the 21st-century RCP scenarios from emissions 
to abundance, summarized in tables in Annex II. For the well-mixed 
greenhouse gases (WMGHGs), the effective radiative forcing (ERF) in 
both RCP and SRES scenarios increases similarly before 2040 with little 
spread (±16% in ERF; see Tables AII.6.1 to AII.6.10), but by 2050 the 
RCP2.6 scenario diverges, falling well below the envelope containing 
both the SRES and other RCP scenarios. 

National and regional regulations implemented on emissions con-
tributing to ground-level ozone and PM2.5 pollution influence global 
atmospheric chemistry and climate (NRC, 2009; HTAP, 2010a), as was 
recognized in the TAR (Jacob et al., 1993; Penner et al., 1993; Johnson 
et al., 1999; Prather et al., 2001). Ozone and aerosols are radiatively 
active species (Chapters 7 and 8) and many of their precursors serve 
as indirect GHGs (e.g., nitrogen oxides (NOx), carbon monoxide (CO), 
Non Methane Volatile Organic Compounds (NMVOC)) by changing the 
atmospheric oxidative capacity, and thereby the lifetimes and abun-
dances of CH4, hydrofluorocarbons (HFCs) and tropospheric O3 (Chap-
ter 8). Consequently their evolution can influence near-term climate 
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both regionally and globally (Section 11.3.6.1 and FAQ 8.2). The RCP 
and SRES scenarios differ greatly in terms of the short-lived air pollut-
ants and aerosol climate forcing. The CMIP3 climate simulations driven 
by the SRES scenarios projected a wide range of future air pollutant 
trajectories, including unconstrained growth that resulted in very 
large tropospheric O3 increases (Prather et al., 2003). Subsequently, 
the near-term projections of current legislation (CLE) and maximum 
feasible reductions (MFR) emissions illustrated the impacts of air pollu-
tion control strategies on air quality, global atmospheric chemistry and 
near-term climate (Dentener et al., 2005, 2006; Stevenson et al., 2006). 
The RCP scenarios applied in the CMIP5 climate models all assume a 
continuation of current trends in air pollution policies (van Vuuren et 
al., 2011) and thus do not cover the range of future pollutant emissions 
found in the literature, specifically those with higher pollutant emis-
sions (Dentener et al., 2005; Kloster et al., 2008; Pozzer et al., 2012); 
see Chapter 8. 

The new RCP emissions are compared to the older SRES and other 
published emission scenarios in Annex II (Tables AII.2.1 to AII.2.22) and 
Figures 8.2 and 8.SM.1. By 2030 the RCP aerosol and ozone precursor 
emissions are smaller than SRES by factors of 1.2 to 3. For these short-
lived air pollutants, the spread across RCPs by 2030 is much smaller 
than the range between the CLE and MFR scenarios: ±12% vs. ±31% 
for nitrogen oxides; ±17% vs. ±60% for sulphate; ±5% vs. ±11% 
for carbon monoxide. BC aerosol emissions also vary little across the 
RCPs: ±4% range in 2030; ±15% in 2100. Most of this spread is due to 
uncertain projections for the rapidly industrializing nations. From 2000 
to 2030, sulphur dioxide (SO2) emissions decline in the RCPs by –15% 
to –8% per decade, within the range of the MFR and CLE scenarios 
(–23% to +2% per decade), but far below the SRES range (+4% to 
+21% per decade). Evaluation of recent trends in SO2 emissions shows 
a trend similar to the near-term RCP projections (Smith et al., 2011; 
Klimont et al., 2013), but independent estimates for recent trends in 
other aerosol species are not available. The RCP trend in NOx emissions 
(–5% to +2% per decade) is likewise within the CLE-MFR range, but 
far below the SRES trends (+10% to +30% per decade). For OC and BC 
emissions, the RCP trend lies between the SRES B1/A2 range. A simple 
sum of the main four aerosol emissions (N, S, OC, BC; Tables AII.2.18 
to AII.2.22) in the SRES vs. RCP scenarios indicates that the CMIP3 
simulations driven by the SRES scenarios have about 40% more aero-
sols in 2000 than the CMIP5 simulations driven by the RCP scenarios. 
On average, these aerosols increase by 9% per decade in the SRES 
scenarios but decrease by 5% per decade in the RCP scenarios over 
the near term. By 2030, the CMIP3 models thus include up to three 
times more anthropogenic aerosols under the SRES scenarios than the 
CMIP5 models driven by the RCP scenarios (high confidence).

11.3.5.1 Reactive Greenhouse Gases and Aerosols

The IPCC has assessed previous emission-based scenarios for future 
GHGs and aerosols in the SAR (IS92) and TAR/AR4 (SRES). The new 
RCP scenarios are different in that they embed a simple, parametric 
model of atmospheric chemistry and biogeochemistry that maps emis-
sions onto atmospheric abundances (the ‘concentration pathways’) 
(Lamarque et al., 2011; Meinshausen et al., 2011a, 2011b; van Vuuren 
et al., 2011). As an integrated product, the RCP-prescribed emissions, 
abundances and RF used in the CMIP5 model ensembles do not reflect 

the current best understanding of natural and anthropogenic emis-
sions, atmospheric chemistry and biogeochemistry and RF of climate 
(Chapters 2, 6 and 8) (see, e.g., Dlugokencky et al., 2011; Prather et al., 
2012; Lamarque et al., 2013; Stevenson et al., 2013; Voulgarakis et al., 
2013; Young et al., 2013). Rather, the best estimates of atmospheric 
abundances and associated RF include a more complete atmospheric 
chemistry description and a fuller set of uncertainties than considered 
in the RCPs provided to the CMIP5 models. While this widens the range 
of climate forcing for each individual scenario, this uncertainty general-
ly remains smaller than the range across the four RCP scenarios. 

11.3.5.1.1 Methane, nitrous oxide and the fluorinated gases

Kyoto GHG abundances projected to year 2100 are given in Annex II 
(Tables AII.4.1–AII.4.15) as both RCP published values (Meinshausen 
et al., 2011b) and derived from the RCP anthropogenic emissions path-
ways. The latter includes current best estimates of atmospheric chem-
istry and natural sources, with uncertainties (denoted RCP&). Emissions 
of CH4 and N2O, primarily from the agriculture, forestry and other land 
use sectors (AFOLU) are uncertain, typically by 25% or more (Prather 
et al., 2009; NRC, 2010). Following the method of Prather et al. (2012) 
a best estimate and uncertainty range for the year 2011 anthropogenic 
and natural emissions of CH4 and N2O are derived using updated AR5 
values (see Chapters 2, 5 and 6). The re-scaled RCP& anthropogenic-on-
ly emissions of CH4 and N2O are given in Tables AII.2.2 and AII.2.3 and 
differ from the published RCPs by a single scale factor for each species. 
An uncertainty range for 2011 values (likely, ±1 standard deviation 
in %, based on Prather et al. 2012) is applied to all subsequent years. 
Abundances are then integrated using these rescaled RCP& anthropo-
genic emissions, the best estimate for natural emissions, and a model 
projecting changes in tropospheric OH (see Holmes et al., 2013; for 
details). Similar scaling to match current observational constraints 
(harmonization) was done for the SRES emissions (Prather et al., 2001) 
and the RCPs (Meinshausen et al., 2011b). However, these earlier har-
monizations used older values for lifetimes and natural sources, and 
did not provide estimates of uncertainty.

Combining CH4 observations, lifetime estimates for the present day, 
the ACCMIP studies, plus estimated limits on changing natural sourc-
es, gives a year 2011 total anthropogenic CH4 emission of 354 ± 45 
Tg(CH4) yr–1 (Montzka et al., 2011; Prather et al., 2012) (Chapters 2, 
6 and 8). The RCP total emission lies within 10% of this value, and 
thus the scaling factor between the RCP& and RCP total emission, is 
small (Table AII.2.2). Projection of the tropospheric OH lifetime of CH4 
(AII.5.8) is based on the ACCMIP simulations of the RCPs for 2100 time 
slice simulations (Voulgarakis et al., 2013), other modelling studies 
(Stevenson et al., 2006; John et al., 2012) and multi-model sensitiv-
ity analyses of key factors (Holmes et al., 2013) that includes uncer-
tainties in emissions from agricultural, forest and land use sources, in 
atmospheric lifetimes, and in chemical feedbacks and loss. Lifetimes, 
and thus future CH4 abundances, decrease slowly under RCP2.6 and 
RCP4.5, remain almost constant under RCP6.0 and increase slowly 
under RCP8.5. Future changes in natural sources of CH4 due to land 
use and climate change are included in a few CMIP5 models and may 
alter future CH4 abundances (Chapter 6), but there is limited evidence, 
and thus these changes are not included in the RCP& projections. 
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The resulting best estimates of total CH4 anthropogenic emissions and 
abundances (RCP&) are compared with RCP values in Figure 11.21. 
For RCP2.6, the CH4 abundance is projected to decline continuously 
over the century by about 30%, whereas in RCP 4.5 and 6.0 it peaks 
mid-century and then declines to below the year 2011 abundance by 
the end of the century. Throughout the century, the uncertainty in CH4 
abundance for an individual scenario is less than range from RCP2.6 
to RCP8.5. For example, by year 2020 the spread in CH4 abundance 
across the RCPs is already large, 1720 to 1920 ppb, with uncertainty in 
each scenario estimated at only ±20 ppb. The likely range for RCP& CH4 
is 30% wider than that in the RCP CH4 abundances used to force the 
CMIP5 models (Figure 11.21): by year 2100 the likely range of RCP8.5& 
CH4 abundance extends 520 ppb above the single-valued RCP8.5 CH4 
abundance, and RCP2.6& CH4 extends 230 ppb below RCP2.6 CH4.

Substantial effort has gone into identifying and quantifying individual 
sources of N2O (see Chapter 6) but less into evaluating its lifetime and 
chemical feedbacks. Recent multi-model, chemistry–climate studies 

(CCMVal) project a more vigorous stratospheric overturning by 2100 
that is expected to shorten the N2O lifetime (Oman et al., 2010; Strahan 
et al., 2011), but no evaluation of the lifetime is reported. Here we com-
bine observations of N2O (pre-industrial, present, and present trends; 
Chapter 2), with two modern studies of the lifetime (Hsu and Prather, 
2010; Fleming et al., 2011), and a Monte Carlo method (Prather et al., 
2012) to estimate a year 2011 total anthropogenic emission of 6.7 ± 
1.3 TgN(N2O) yr–1 (Table AII.2.3). All RCP N2O (anthropogenic) emis-
sions are reduced by 20% so that year 2011 values are consistent with 
an observationally constrained budget using a longer lifetime than 
adopted by the RCPs (Table AII.2.3). The N2O lifetime (Table AII.5.9) 
is projected to decrease by 2 to 4% by year 2100, due to changing 
 circulation and chemistry in the stratosphere (Fleming et al., 2011) and 
to the negative chemical feedback on its own lifetime (Prather and 
Hsu, 2010). In the near term, the spread in N2O across RCP&s is small: 
330 to 332 ± 4 ppb in year 2020; 346 to 365 ± 11 ppb in year 2050. By 
year 2100, the range of best-estimate N2O concentrations across the 
RCP&s (354–425 ppb) is 20% smaller than that across the RCPs (344–
435 ppb), but the likely range in RCP&s encompasses the RCP range. 

Recent measurements show some discrepancies with bottom-up 
inventories of the industrially produced, synthetic fluorinated (F) gases 
(AII.2.4 to AII.2.15). European HFC-23 emissions are greatly under-re-
ported (Keller et al., 2011) while HFC-125 and 152a are roughly con-
sistent with emissions inventories (Brunner et al., 2012). Globally, HFC-
365mfc and HFC-245fa emissions are overestimated (Vollmer et al., 
2011) while SF6 appears to be under-reported (Levin et al., 2010). For 
HFC-134a, combining current measurements and lifetimes (Table 2.1, 
Chapter 8; WMO, 2010; Prather et al., 2012) gives an estimate of 2010 
emissions (~150 Gg yr–1) that is consistent with the RCP range (139 to 
153 Gg yr–1). Without clear guidance on how to correct or place uncer-
tainty on the RCP F-gas emissions, the RCP emissions are reported 
without uncertainty estimates in Annex II Tables AII.2.4 to AII.2.15. For 
the very long-lived SF6 and perfluorocarbons (CF4, C2F6, C6F10) uncer-
tainty in lifetimes does not significantly affect the projected abundanc-
es over the 21st century (AII.4.4 to AII.4.7). Projected HFC abundances 
depend on the changes in tropospheric OH, which determines their 
atmospheric lifetime (Chapter 8). The relative change in hydroxyl rad-
ical (OH), as indicated by the projected OH lifetime of CH4 (AII.5.8), is 
used to project HFCs including uncertainties (likely range) (AII.4.8 to 
AII.4.15) (Prather et al., 2012). 

Scenarios for the ozone-depleting GHG under control of the Montreal 
Protocol (chlorofluorocarbons (CFCs), HCFCs, halons in AII.4.16) follow 
scenario A1 of the 2010 WMO Ozone Assessment (WMO, 2010; Table 
5-A3). All CFC abundances decline throughout the century, but some 
HCFC abundances increase to 2030 before their phase-out and decline. 
The summed ERF of all these F-gases is approximately constant (0.35 
to 0.39 W m–2) up to year 2040 for all RCPs but declines thereafter. In 
RCP8.5, the drop in ERF from the Montreal Protocol gases is nearly 
made up by the growth in HFCs (Tables AII.6.4 to AII.6.6, Chapter 8).

11.3.5.1.2 Tropospheric and stratospheric O3

Projected O3 changes are broken into tropospheric and stratospheric 
columns (Dobson Unit (DU); see AII.5.1 and AII.5.2) because each has 
different driving factors and RF efficiencies (Chapter 8). Tropospheric 

Figure 11.21 |  Projections for CH4 (a) anthropogenic emissions (MtCH4 yr–1) and (b) 
atmospheric abundances (ppb) for the four RCP scenarios (2010–2100). Natural emis-
sions in 2010 are estimated to be 202 ± 35 MtCH4 yr–1 (see Chapter 8). The thick solid 
lines show the published RCP2.6 (light blue), RCP4.5 (dark blue), RCP6.0 (orange) and 
RCP8.5 (red) values. Thin lines with markers show values from this assessment (denot-
ed as RCPn.n&, following methods of Prather et al. (2012) and Holmes et al. (2013): 
red plus, RCP8.5; orange square, RCP6.0; light blue circle, RCP4.5; dark blue asterisk, 
RCP2.6. The shaded region shows the likely range from the Monte Carlo calculations 
that consider uncertainties, including in current anthropogenic emissions.
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O3 changes are driven by anthropogenic emissions of CH4, NOx, CO, 
NMVOC (AII.2.2.16 to AII.2.2.18). Small changes (<10%) are project-
ed over the next few decades. By 2100 tropospheric O3 decreases in 
RCP2.6, 4.5 and 6.0 but increases in RCP8.5 due to CH4 increases. 
Higher tropospheric temperatures and humidity drive a decline in trop-
ospheric O3, but stratospheric O3 recovery and increased stratosphere–
troposphere exchange can counter that (Shindell et al., 2006; Zeng et 
al., 2008, 2010; Kawase et al., 2011; Lamarque et al., 2011). The latter 
effect is difficult to quantify but it is included in some of the ACCMIP 
and CMIP5 models used to project tropospheric O3. Changes in natu-
ral emissions of NOx, particularly soil and lightning NOx, and biogenic 
NMVOC may also alter tropospheric O3 abundances (Wild, 2007; Wu et 
al., 2007). However, global estimates of their change with climate (e.g., 
Kesik et al., 2006; Monson et al., 2007; Butterbach-Bahl et al., 2009; 
Price, 2013) remain highly uncertain. 

Best estimates for projected tropospheric O3 change following the RCP 
scenarios (Table AII.5.2) are based on ACCMIP time slice simulations 
for 2030 and 2100 with chemistry–climate models (Young et al., 2013) 
and the CMIP5 simulations (Eyring et al., 2013). There is high confi-
dence in these results because similar estimates are obtained when 
projections are made using the response of tropospheric O3 to key 
forcing factors that vary across scenarios (Prather et al., 2001; Steven-
son et al., 2006; Oman et al., 2010; Wild et al., 2012). The ACCMIP 
models show a wide range in tropospheric O3 burden changes from 
2000 to 2100: –5 DU (–15%) in RCP2.6 to +5 DU in RCP8.5. The CMIP5 
results are similar but not identical: –3 DU (–9%) to +10 DU (+30%). 
The 2030 and 2100 multi-model mean estimates are more robust for 
ACCMIP which includes 5 to 11 models (range depends on time slice 
and scenario) than for CMIP5 (4 models). Tropospheric O3 changes in 
the near term (2030–2040) are small (±2 DU), except for RCP8.5 (>3 
DU), which shows continued growth through to 2100 driven primarily 
by CH4 increases. The ERF from tropospheric O3 changes (AII.6.7b) par-
allels the O3 burden change (Stevenson et al., 2013).

Stratospheric O3 is being driven by declining chlorine levels, changing 
N2O and CH4, cooler temperatures from increased CO2, and a more 
vigorous overturning circulation in the stratosphere driven by more 
wave propagation under climate change (Butchart et al., 2006; Eyring 
et al., 2010; Oman et al., 2010). Overall stratospheric O3 is expected 
to increase in the coming decades, reversing the majority of the loss 
that occurred between 1980 and 2000. Best estimates for global mean 
stratospheric O3 change under the RCP scenarios (Table AII.5.1) are 
taken from the CMIP5 results (Eyring et al., 2013). By 2100 stratospher-
ic O3 columns show a 5 to 7% increase above 2000 levels for all RCPs, 
recovering to within 1% of the pre-ozone hole 1980 levels by 2050, but 
with latitudinal differences.

11.3.5.1.3 Aerosols

Aerosol species can be emitted directly (mineral dust, sea salt, BC 
and some organic carbon (OC)) or indirectly through precursor gases 
(SO2, ammonia, nitrogen oxides, hydrocarbons); see Chapter 7. CMIP5 
models (Lamarque et al., 2011; Shindell et al., 2013) have projected 
changes in aerosol burden (Tg) and aerosol optical depth (AOD) to year 
2100 using RCP emissions for anthropogenic source (Tables AII.5.3 to 
AII.5.8). Total AOD is dominated by dust and sea salt, but absorbing 

aerosol optical depth (AAOD) is primarily of anthropogenic origin 
(Chapter 7). Uniformly, anthropogenic aerosols decrease under RCPs 
as expected from the declining emissions (11.3.5, Figure 8.2, AII.2.17 
to AII.2.22). From years 2010 to 2030 the aerosol burdens decrease 
across the RCPs but at varied rates: for sulphate from 6% (RCP8.5) 
to 23% (RCP2.6); for BC from 5% (RCP4.5) to 15% (RCP2.6), and for 
OC from 0% (RCP6.0) to 11% (RCP4.5). The summed aerosol load-
ing of these three anthropogenic components drop from year 2010 to 
year 2030 by 5% to 12% (across RCPs), and by year 2100 this drop is 
24% to 39% (Tables AII.5.5 to AII.5.7). These evolving aerosol loadings 
reduce the magnitude of the negative aerosol forcing (Chapter 8; Table 
AII.6.9) even in the near term (11.3.6.1). 

11.3.5.2 Projections of Air Quality for the 21st Century

Future air quality depends on anthropogenic emissions (local, regional 
and global), natural biogenic emissions and the physical climate (e.g., 
Steiner et al., 2006, 2010; Meleux et al., 2007; Tao et al., 2007; Wu et al., 
2008; Doherty et al., 2009; Carlton et al., 2010; Tai et al., 2010; Hoyle 
et al., 2011). This assessment focuses on O3 and PM2.5 in surface air, 
reflecting the preponderance of published literature and multi-model 
assessments for these air pollutants (e.g., HTAP, 2010a) plus the chem-
istry–climate CMIP5 and ACCMIP model simulations. Nitrogen and acid 
deposition is addressed in Chapter 6. Toxic atmospheric species such as 
mercury and persistent organic pollutants are outside this assessment 
(Jacob and Winner, 2009; NRC, 2009; HTAP, 2010b, 2010c). 

The global and continental-scale surface O3 and PM2.5 changes assessed 
here include (1) the impact of climate change (Section 11.3.5.2.1), and 
(2) the impact of changing global and regional anthropogenic emis-
sions (Section 11.3.5.2.2). Changes in local emissions within a met-
ropolitan region or surrounding air basin on local air quality projec-
tions are not assessed here. Anthropogenic emissions of O3 precursors 
include NOx, CH4, CO, and NMVOC; PM2.5 is both directly emitted (OC, 
BC) and produced photochemically from precursor emissions (NOx, 
NH3, SO2, NMVOC) (see Tables AII.2.2,16-22). Recent reviews describe 
the impact of temperature-driven processes on O3 and PM2.5 air qual-
ity from observational and modelling evidence (Isaksen et al., 2009; 
Jacob and Winner, 2009; Fiore et al., 2012). Projecting future air quality 
empirically from a mean surface warming using the observed correla-
tion with temperature is problematic, as there is little evidence that 
future pollution episodes can be simply modelled as all else being 
equal except for a uniform temperature shift. Air quality relationships 
with synoptic conditions may be more robust (e.g., Dharshana et al., 
2010; Appelhans et al., 2012; Tai et al., 2012a, 2012b), but require the 
ability to project changes in key conditions such as blocking and stag-
nation episodes. The response of blocking frequency to global warming 
is complex, with summertime increases possible over some regions, 
but models are generally biased compared to observed blocking sta-
tistics, and indicate even larger uncertainty in projecting changes in 
blocking intensity and persistence (Box 14.2). 

11.3.5.2.1 Climate-driven changes 

Projecting regional air quality faces the challenge of simulating 
first the changes in regional climate and then the feedbacks from 
atmospheric chemistry and the biosphere. The air pollution response 
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to  climate-driven changes in the biosphere is uncertain as to sign 
because of competing effects: for example, plants currently emit more 
NMVOC with warmer temperatures; with higher CO2 and water stress 
plants may emit less; with a warmer climate the vegetation types may 
shift to emit either more or less NMVOC; shifting vegetation types 
may also alter surface uptake of ozone and aerosols; and our under-
standing of chemical oxidation pathways for biogenic emissions is 
incomplete (e.g., Monson et al., 2007; Carlton et al., 2009; Hallquist 
et al., 2009; Ito et al., 2009; Pacifico et al., 2009, 2012; Paulot et al., 
2009). Although studies have split the cause of air quality changes 
into climate versus emissions, these attributions are difficult to assess 
for several reasons: the global-to-regional down-scaling of meteorol-
ogy that is model dependent (see Chapters 9 and 14; also Manders 
et al., 2012), the brief simulations that preclude clear separation of 
climate change from climate variability (Nolte et al., 2008; Fiore et al., 
2012; Langner et al., 2012a), and the lack of systematically explored 
standard scenarios for local anthropogenic emissions, land use change 
and biogenic emissions. 

Ozone
Globally, a warming climate decreases baseline surface O3 almost every-
where but increases O3 levels in some polluted regions and seasons. 
The surface ozone response to climate change alone between 2000 
and 2030 is shown in Figure 11.22 (CLIMATE), where the ranges reflect 
multi-model differences in spatial averages (solid green lines) and spa-
tial variability within a single model (dashed green lines). There is high 
confidence that in unpolluted regions, higher water vapour abundances 
and temperatures enhance O3 destruction, leading to lower baseline O3 
levels in a warmer climate (e.g., global average in Figure 11.22). Higher 
CH4 levels such as in RCP8.5 can offset this climate-driven decrease in 
baseline O3. Other large-scale factors that could increase baseline O3 in 
a warming climate include increased lightning NOx and stratospheric 
influx of O3 (see Section 11.3.5.1). Evidence and agreement are lim-
ited regarding the impact of climate change on long-range transport 
of pollutants (Wu et al., 2008; HTAP, 2010a; Doherty et al., 2013). The 
global chemistry-climate models assessed here (Figures 11.22, 11.23ab) 
include most of these feedback processes, but a systematic evaluation 
of their relative impacts is lacking. 
In polluted regions, observations show that high-O3 episodes correlate 
with high temperatures (e.g., Lin et al., 2001; Bloomer et al., 2009; Ras-
mussen et al., 2012), but these episodes also coincide with cloud-free 
enhanced photochemistry and with air stagnation that concentrates 
pollution near the surface (e.g., AR4 Box 7.4). Other temperature-re-
lated factors, such as biogenic emissions from vegetation and soils, 
volatilization of NMVOC, thermal decomposition of organic nitrates to 
NOx and wildfire frequency may increase with a warming climate and 
are expected to increase surface O3

 (e.g., Doherty et al., 2013; Skjøth 
and Geels, 2013; and as reviewed by Isaksen et al. (2009), Jacob and 
Winner (2009) and Fiore et al. (2012)), although some of these process-
es are known to have optimal temperature ranges (e.g., Sillman and 
Samson, 1995; Guenther et al., 2006; Steiner et al., 2010). Overall, the 
integrated effect of these processes on O3 remains poorly understood, 
and they have been implemented with varying levels of complexity in 
the models assessed here. 

Models show that a warmer atmosphere can lead to local O3 increas-
es during the peak pollution season (e.g., by 2 to 6 ppb within Cen-

tral Europe by 2030; green dashed line for Europe in Figure 11.22). 
Regional models projecting summer daytime statistics tend to simu-
late a wider range of climate-driven changes (e.g., Zhang et al., 2008; 
Avise et al., 2012; Kelly et al., 2012), with most studies focusing on 
2050 (Fiore et al., 2012) or beyond. For example, summer tempera-
ture extremes over parts of Europe are projected to warm more than 
the corresponding mean local temperatures due to enhanced variabil-
ity at interannual to intraseasonal time scales (see Section 12.4.3.3). 
Several modelling studies note a longer season for O3 pollution in a 
warmer world (Nolte et al., 2008; Racherla and Adams, 2008). For some 
regions, models agree on the sign of the O3 response to a warming 
climate (e.g., increases in northeastern USA and southern Europe; 
decreases in northern Europe), but they often disagree (e.g., the mid-
west, southeast, and western USA (Jacob and Winner, 2009; Weaver et 
al., 2009; Langner et al., 2012a; Langner et al., 2012b; Manders et al., 
2012)). Several studies have suggested a role for changing synoptic 
meteorology on future air pollution levels (Leibensperger et al., 2008; 
Jacob and Winner, 2009; Weaver et al., 2009; Lang and Waugh, 2011; 
Tai et al., 2012a, 2012b; Turner et al., 2013), but projected regional 
changes in synoptic conditions are uncertain (see Sections 11.3.2.4, 
12.4.3.3 and Box 14.2). Observational and modelling evidence togeth-
er indicate that, all else being equal, a warming climate is expected to 
increase surface O3 in polluted regions (medium confidence), although 
a systematic evaluation of all the factors driving extreme pollution epi-
sodes is lacking. 

Aerosols
Evaluations as to whether climate change will worsen or improve 
aerosol pollution are model-dependent. Assessments are confound-
ed by opposing influences on the individual species contributing to 
total PM2.5 and large interannual variability caused by the small-scale 
meteorology (e.g., convection and precipitation) that controls aerosol 
concentrations (Mahmud et al., 2010). For a full discussion, see Chap-
ter 7. Higher temperatures generally decrease nitrate aerosol through 
enhanced volatility but increase sulphate aerosol through faster pro-
duction, although observed PM2.5–temperature correlations also reflect 
humidity and synoptic meteorology (e.g., Aw and Kleeman, 2003; Liao 
et al., 2006; Racherla and Adams, 2006; Unger et al., 2006a; Hedegaard 
et al., 2008; Jacobson, 2008; Kleeman, 2008; Pye et al., 2009; Tai et 
al., 2012b). Natural aerosols may increase with temperature, particu-
larly carbonaceous aerosol from wildfires, mineral dust, and biogenic 
secondary organic aerosol (SOA; Section 7.3.5;  Mahowald and Luo, 
2003; Tegen et al., 2004; Jickells et al., 2005; Woodward et al., 2005; 
Mahowald et al., 2006; Liao et al., 2007; Mahowald, 2007; Tagaris et 
al., 2007; Heald et al., 2008; Spracklen et al., 2009; Jiang et al., 2010; 
Yue et al., 2010; Carvalho et al., 2011; Fiore et al., 2012). SOA formation 
also depends on anthropogenic emissions and atmospheric oxidizing 
capacity (Carlton et al., 2010; Jiang et al., 2010). 

Aerosols are scavenged from the atmosphere by precipitation and 
direct deposition (see Chapter 7). Hence most components of PM2.5 are 
anti-correlated with precipitation (Tai et al., 2010), and aerosol bur-
dens are expected to decrease on average where precipitation increas-
es (Racherla and Adams, 2006; Liao et al., 2007; Tagaris et al., 2007; 
Zhang et al., 2008; Avise et al., 2009; Pye et al., 2009). However, a shift 
in the frequency and type of precipitation may be as important as the 
change in mean precipitation (see Chapter 7). Seasonal and regional 
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differences in aerosol burdens versus precipitation further preclude a 
simple scaling of aerosol response to precipitation changes (Kloster et 
al., 2010; Fang et al., 2011). Climate-driven changes in the frequency 
of drizzle and the mixing depths or ventilation of the surface layer also 
influence projected changes in PM2.5 (e.g., Kleeman, 2008; Dawson et 
al., 2009; Jacob and Winner, 2009; Mahmud et al., 2010), and aerosols 
in turn can influence locally clouds, precipitation and scavenging (e.g., 
Zhang et al., 2010b; see Section 7.6). 

While PM2.5 is expected to decrease in regions where precipitation 
increases, the climate variability at these scales results in only low con-
fidence for projections at best. Further, consensus is lacking on the 
other factors including climate-driven changes in biogenic and mineral 
dust aerosols, leading to no confidence level being attached to the 
overall impact of climate change on PM2.5 distributions.

11.3.5.2.2 Changes driven by regional and global anthropogenic 
 pollutant emissions

Projections for annual-mean surface O3 and PM2.5 for 2000 through 
2100 are shown in Figures 11.23a and 11.25b, respectively. Changes are 
spatially averaged over selected world (land-only) regions and include 
the combined effects of emission and climate changes under the RCPs. 
Results are taken from the ACCMIP models and a subset of the CMIP5 
models that included atmospheric chemistry. Large interannual varia-
tions are evident in the CMIP5 transient simulations, and large regional 
variations occur in both the CMIP5 and the ACCMIP decadal time slice 
simulations (see Lamarque et al., (2013) for ACCMIP overview).

The largest surface O3 changes under the RCP scenarios are much 
smaller than those projected under the older SRES scenarios (Figures 
11.22 and 11.23a; Table AII.7; Lamarque et al., 2011; Wild et al., 2012). 
By 2100, global annual multi-model mean surface O3 rises by 12 ppb 
in SRES A2, but by only 3 ppb in RCP8.5. Much larger O3 decreases 
are projected to occur by 2030 under the MFR scenario (Figure 11.22), 
which assumes that existing control technologies are applied uniform-
ly across the globe (Dentener et al., 2006). 

For RCP2.6, RCP4.5 and RCP6.0, the CMIP5/ACCMIP models pro-
ject that continental-scale spatially averaged near-term surface O3 
decreases or changes little (–4 to +1 ppb) from 2000 to 2030 for all 
regions except South Asia, whereas the long-term change to 2100 is 
a consistent decrease (–14 to –3 ppb) for all regions (Figure 11.23a; 
and Table AII.7.3). For RCP8.5, the CMIP5/ACCMIP models  project 
 continental-scale spatial average surface O3 increases of up to +5 ppb 
for both 2030 and 2100 (Figure 11.23a; Table AII.7.3). The increas-
es under RCP8.5 reflect the prominent rise in methane abundances 
(Kawase et al., 2011; Lamarque et al., 2011; Wild et al., 2012), which 
by 2100 raise background O3 levels by 5 to 14 ppb over continen-
tal-scale regions, and on average by about 8 ppb (25% above current 
levels) above RCP4.5 and RCP6.0 which include more stable methane 
pathways over the 21st century (high confidence). Earlier studies have 
shown that rising CH4 abundances (and global NOx emissions) increase 
baseline O3, and can offset aggressive local emission reductions and 
lengthen the O3 pollution season (Jacob et al., 1999; Prather et al., 
2001, 2003; Fiore et al., 2002, 2009; Hogrefe et al., 2004; Granier et 
al., 2006; Szopa et al., 2006; Tao et al., 2007; Huang et al., 2008; Lin et 
al., 2008; Wu et al., 2008; Avise et al., 2009; Chen et al., 2009b;HTAP, 
2010a; Wild et al., 2012; Lei et al., 2013). 

The O3 changes driven by the RCP emissions scenarios with fixed, 
present-day climate (Figure 11.22; Wild et al., 2012) are similar to the 
changes estimated with the full chemistry–climate models (Figure 
11.23a). Although the regions considered are not identical, the evi-
dence supports a major role for global emissions in determining near-
term O3 concentrations. Overall, the multi-model ranges associated 
with the influence of near-term climate change on global and regional 
O3 air quality are smaller than those across emission scenarios (Figure 
11.22; HTAP, 2010a; Wild et al., 2012).

Aerosol changes driven by anthropogenic emissions depend somewhat 
on oxidant levels (e.g., Unger et al., 2006a; Kleeman, 2008; Leibens-
perger et al., 2011a), but generally sulphate follows SO2 emissions and 
carbonaceous aerosols follow the primary elemental and OC emis-
sions. Competition between sulphate and nitrate for ammonium (see 
Chapter 7) means that reducing SO2 emissions while increasing NH3 
emissions as in the RCPs (Tables AII.2.19 and AII.2.20) would lead to 
near-term nitrate aerosol levels equal to or higher than those of sul-
phate in some regions; see Section 7.3.5.2 (Bauer et al., 2007; Pye et 
al., 2009; Bellouin et al., 2011; Henze et al., 2012).

Regional PM2.5 in the CMIP5 and ACCMIP chemistry–climate models 
following the RCP scenarios generally declines over the 21st centu-
ry, with little difference across the individual scenarios except for the 
South and East Asia regions (Figure 11.23b). The noisy projections 
over Africa, the Middle East and to some extent Australia, reflect dust 

Figure 11.22 |  Changes in surface O3 (ppb) between year 2000 and 2030 driven by 
climate alone (CLIMATE, green) or driven by emissions alone, following current legisla-
tion (CLE, black), maximum feasible reductions (MFR, grey), SRES (blue) and RCP (red) 
emission scenarios. Results are reported globally and for the four northern mid-latitude 
source regions used by the Task Force on Hemispheric Transport of Air Pollution (HTAP, 
2010a). Where two vertical bars are shown (CLE, MFR, SRES ), they represent the multi-
model standard deviation of the annual mean based on (left bar; SRES includes A2 
only) the Atmospheric Composition Change: a European Network (ACCENT)/Photocomp 
study (Dentener et al., 2006) and (right bar) the parametric HTAP ensemble (Wild et 
al., 2012; four SRES and RCP scenarios included). Under Global, the leftmost (dashed 
green) vertical bar denotes the spatial range in climate-only changes from one model 
(Stevenson et al., 2005) while the green square shows global annual mean climate-only 
changes in another model (Unger et al., 2006b). Under Europe, the dashed green bar 
denotes the range of climate-only changes in summer daily maximum O3 in one model 
(Forkel and Knoche 2006). (Adapted from Figure 3 of Fiore et al., 2012.)
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sources and their strong dependence on interannual meteorological 
variability. Over the two Asian regions, different PM2.5 levels between 
the RCPs are due to (1) OC emission trajectories over South Asia and 
(2) combined changes in carbonaceous aerosol and SO2 over East Asia 
(Fiore et al., 2012) (Figure 8.SM.1).

Global emissions of aerosols and precursors can contribute to high-PM 
events. For example, dust trans-oceanic transport events are observed 
to increase aerosols in downwind regions (Prospero, 1999; Grousset 
et al., 2003; Chin et al., 2007; Fairlie et al., 2007; Huang et al., 2008; 
Liu et al., 2009; Ramanathan and Feng, 2009; HTAP, 2010a). The bal-
ance between regional and global anthropogenic emissions versus 

 climate-driven changes for PM2.5 will vary regionally with future chang-
es in precipitation, wildfires, dust and biogenic emissions. 

In summary, lower air pollution levels are projected following the 
RCP emissions as compared to the SRES emissions in the TAR and 
AR4, reflecting implementation of air pollution control measures (high 
confidence). The range in projections of air quality is driven primarily 
by emissions (including CH4) rather than by physical climate change 
(medium confidence). The total emission-driven range in air quality—
including the CLE and MFR scenarios—is larger than that spanned by 
the RCPs (see Section 11.3.5.1 for comparison of RCPs and SRES). 

Figure 11.23a |  Projected changes in annual mean surface O3 (ppb mole fraction) from 2000 to 2100 following the RCP scenarios (8.5, red; 6.0, orange; 4.5, light blue; 2.6, dark 
blue). Results in each box are averaged over the designated coloured land regions. Continuous coloured lines and shading denote the average and full range of four chemistry–cli-
mate models (GFDL-CM3, GISS-E2-R, and NCAR-CAM3.5 from CMIP5 plus LMDz-ORINCA). Coloured dots and vertical black bars denote the average and full range of the ACCMIP 
models (CESM-CAM-superfast, CICERO-OsloCTM2, CMAM, EMAC-DLR, GEOSCCM, GFDL-AM3, HadGEM2, MIROC-CHEM, MOCAGE, NCAR-CAM3.5, STOC-HadAM3, UM-CAM) 
for decadal time slices centred on 2010, 2030, 2050 and 2100. Participation in the decadal slices ranges from 2 to 12 models (see (Lamarque et al., 2013)). Changes are relative to 
the 1986–2005 reference period for the CMIP5 transient simulations, and relative to the average of the 1980 and 2000 decadal time slices for the ACCMIP ensemble. The average 
value and model standard deviation for the reference period is shown in the top of each panel for CMIP5 models (left) and ACCMIP models (right). In cases where multiple ensemble 
members are available from a single model, they are averaged prior to inclusion in the multi-model mean. (Adapted from Fiore et al., 2012.)
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11.3.5.2.3 Extreme weather and air pollution

Extreme air quality episodes are associated with changing weather 
patterns, such as heat waves and stagnation episodes (Logan, 1989; 
Vukovich, 1995; Cox and Chu, 1996; Mickley et al., 2004; Stott et 
al., 2004). Heat waves are generally associated with poor air quality 
(Ordóñez et al., 2005; Vautard et al., 2005; Lee et al., 2006b; Struzewska 
and Kaminski, 2008; Tressol et al., 2008; Vieno et al., 2010; Hodnebrog 
et al., 2012). Although anthropogenic climate change has increased 
the near-term risk of such heat waves (Stott et al., 2004; Clark et al., 
2010; Diffenbaugh and Ashfaq, 2010; Chapter 10; Section 11.3.2.5.1), 
projected changes in the frequency of regional air stagnation events, 
which are largely driven by blocking events, remain difficult to assess: 
the frequency of blocking events with persistent high pressure is 

 projected to decrease in a warming climate but increases may occur 
in some regions, and projected changes in their intensity and duration 
remain uncertain (Chapters 9 and 14; Box 14.2). Projections in regional 
air pollution extremes are necessarily conditioned on projected chang-
es in these weather patterns. The severity of extreme pollution events 
also depends on local emissions (see references in Fiore et al., 2012). 
Feedbacks from vegetation (higher biogenic NMVOC emissions, lower 
stomatal uptake of O3 with higher temperatures) can combine with 
similar positive feedbacks via dust and wildfires to worsen air pollution 
and its impacts during heat waves (Lee et al., 2006a; Jiang et al., 2008; 
Royal Society, 2008; Flannigan et al., 2009; Andersson and Engardt, 
2010; Vieno et al., 2010; Hodnebrog et al., 2012; Jaffe and Wigder, 
2012; Mues et al., 2012). 

Figure 11.23b |  Projected changes in annual mean surface PM2.5 (micrograms per cubic metre of aerosols with diameter less than 2.5 μm) from 2000 to 2100 following the RCP 
scenarios (8.5 red, 6.0 orange, 4.5 light blue, 2.6 dark blue). PM2.5 values are calculated as the sum of individual aerosol components (black carbon + organic carbon + sulphate 
+ secondary organic aerosol + 0.1*dust + 0.25*sea salt). Nitrate was not reported for most models and is not included here. See Figure 11.23a for details, but note that fewer 
models contribute: GISS-E2-R and GFDL-CM3 from CMIP5; CICERO-OsloCTM2, GEOSCCM, GFDL-AM3, HadGEM2, MIROC-CHEM, and NCAR-CAM3.5 from ACCMIP. (Adapted 
from Fiore et al., 2012.)
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There is high agreement across numerous modelling studies projecting 
increases in extreme O3 pollution events over the USA and Europe, 
but the projections do not consistently agree at the regional level 
(Kleeman, 2008; Jacob and Winner, 2009; Jacobson and Streets, 2009; 
Weaver et al., 2009; Huszar et al., 2011; Katragkou et al., 2011; Langner 
et al., 2012b) because they depend on accurate projections of local 
emissions, regional climate and poorly understood biospheric feed-
backs. Although observational evidence clearly demonstrates a strong 
statistical correlation between extreme temperatures (heat waves) and 
pollution events, this temperature correlation reflects in part the coin-
cident occurrence of stagnation events and clear skies that also drive 
extreme pollution. Mechanistic understanding of biogenic emissions, 
deposition and atmospheric chemistry is consistent with a tempera-
ture-driven increase in pollution extremes in already polluted regions, 
although these processes may not scale simply with mean tempera-
ture under a changing climate (see Section 11.3.5.2.1), and better pro-
jections of the changing meteorology at regional scales are needed. 
Assuming all else is equal (e.g., local anthropogenic emissions) this 
collective evidence indicates that uniformly higher temperatures in 
polluted environments will trigger regional feedbacks during air stag-
nation episodes that will increase peak pollution (medium confidence).

11.3.6 Additional Uncertainties in Projections of 
Near-term Climate

As discussed in Section 11.3.1, most of the projections presented in 
Sections 11.3.2 to 11.3.4 are based on the RCP4.5 scenario and rely 
on the spread among the CMIP5 ensemble of opportunity as an ad hoc 
measure of uncertainty. It is possible that the real world might follow 
a path outside (above or below) the range projected by the CMIP5 
models. Such an eventuality could arise if there are processes operating 
in the real world that are missing from, or inadequately represented in, 
the models. Two main possibilities must be considered: (1) Future radi-
ative and other forcings may diverge from the RCP4.5 scenario and, 
more generally, could fall outside the range of all the RCP scenarios; (2) 
The response of the real climate system to radiative and other forcing 
may differ from that projected by the CMIP5 models. A third possibility 
is that internal fluctuations in the real climate system are inadequately 
simulated in the models. The fidelity of the CMIP5 models in simulating 
internal climate variability is discussed in Chapter 9. 

Future changes in RF will be caused by anthropogenic and natural 
processes. The consequences for near-term climate of uncertainties 
in anthropogenic emissions and land use are discussed in Section 
11.3.6.1. The uncertainties in natural RF that are most important for 
near-term climate are those associated with future volcanic eruptions 
and variations in the radiation received from the Sun (solar output), 
and are discussed in Section 11.3.6.2. In addition, carbon cycle and 
other biogeochemical feedbacks in a warming climate could poten-
tially lead to abundances of CO2 and CH4 (and hence RF) outside the 
range of the RCP scenarios, but these feedbacks are not expected to 
play a major role in near term climate—see Chapters 6 and 12 for 
further discussion.

The response of the climate system to radiative and other forcing is 
influenced by a very wide range of processes, not all of which are 
 adequately simulated in the CMIP5 models (Chapter 9). Of particular 

concern for projections are mechanisms that could lead to major ‘sur-
prises’ such as an abrupt or rapid change that affects global-to-con-
tinental scale climate. Several such mechanisms are discussed in this 
assessment report; these include: rapid changes in the Arctic (Section 
11.3.4 and Chapter 12), rapid changes in the ocean’s overturning cir-
culation (Chapter 12), rapid change of ice sheets (Chapter 13) and 
rapid changes in regional monsoon systems and hydrological climate 
(Chapter 14). Additional mechanisms may also exist as synthesized in 
Chapter 12. These mechanisms have the potential to influence climate 
in the near term as well as in the long term, albeit the likelihood of 
substantial impacts increases with global warming and is generally 
lower for the near term. Section 11.3.6.3 provides an overall assess-
ment of projections for global mean surface air temperature, taking 
into account all known quantifiable uncertainties.

11.3.6.1 Uncertainties in Future Anthropogenic Forcing 
and the Consequences for Near-term Climate

Climate projections for periods prior to year 2050 are not very sensi-
tive to available alternative scenarios for anthropogenic CO2 emissions 
(see Section 11.3.2.1.1; Stott and Kettleborough, 2002; Meehl et al., 
2007b). Near-term projections, however, may be sensitive to changes 
in emissions of climate forcing agents with lifetimes shorter than CO2, 
particularly the GHGs CH4 (lifetime of a decade), tropospheric O3 (life-
time of weeks), and tropospheric aerosols (lifetime of days). Although 
the RCPs and SRES scenarios span a similar range of total effective 
radiative forcing (ERF, see Section 7.5, Figure 7.3, Chapter 8), they 
include different ranges of ERF from aerosol, CH4, and tropospheric O3 
(see Section 11.3.5.1, Tables AII.6.2 and AII.6.7 to AII.6.10). From years 
2000 to 2030 the change in ERF across the RCPs ranges from –0.05 to 
+0.14 W m–2 for CH4 and from –0.04 to +0.08 W m–2 for tropospheric O3 
(Tables AII.6.2 and AII.6.7; Stevenson et al., 2013). From years 2000 to 
2030 the total aerosol ERF becomes less negative, increasing by +0.26 
W m–2 for RCP8.5 (only RCP evaluated; for ACCMIP results see Table 
AII.6.9; Shindell et al., 2013). Total ERF change across scenarios derived 
from the CMIP5 ensemble can be compared only beginning in 2010. 
For the period 2010 to 2030, total ERF in the CMIP5 decadal averages 
increases by +0.5 to +1.0 W m–2 (RCP2.6 and RCP6.0 to RCP8.5; Table 
AII.6.10) while total ERF from the published RCPs increases by +0.7 
to +1.1 W m–2 (RCP2.6 and RCP6.0 to RCP8.5, Table AII.6.8). Here we 
re-examine the near-term temperature increases projected from the 
RCPs (see Section 11.3.2.1.1) and assess the potential for changes in 
near-term anthropogenic forcing to induce climate responses that fall 
outside these scenarios.

For the different RCP pathways the increase in global mean surface 
temperature by 2026–2035 relative to the reference period 1986-2005 
ranges from 0.74°C (RCP2.6 and RCP6.0) to 0.94°C (RCP8.5) (median 
of CMIP5 models, see Figure 11.24, Table AII.7.5). This inter-scenario 
range of 0.20°C is smaller than the inter-model spread for an indi-
vidual scenario: 0.33°C to 0.52°C (defined as the 17 to 83% range 
of the decadal means of the models). This RCP inter-scenario spread 
may be too narrow as discussed in Section 11.3.5.1. The temperature 
increase of the most rapidly warming scenario (RCP8.5) emerges from 
inter-model spread (i.e., becomes greater than two times the 17 to 
83% range) by about 2040, due primarily to increasing CH4 and CO2. 
By 2050 the inter-scenario spread is 0.8ºC whereas the model spread 
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for each scenario is only 0.6ºC. At 2040 the ERF in the published RCPs 
ranges from 2.6 (RCP2.6) to 3.6 (RCP8.5) W m–2, and about 40% of this 
difference is due to the steady increases in CH4 and tropospheric O3 
found only in RCP8.5. RCP6.0 has the lowest ERF and thus warms less 
rapidly than other RCPs up to 2030 (Table AII.6.8). 

In terms of geographic patterns of warming, differences between 
RCP8.5 and RCP2.6 are within ±0.5°C over most of the globe for both 
summer and winter seasons for 2016–2035 (Figure 11.24b), but by 
2036–2055 RCP8.5 is projected to be warmer than RCP2.6 by 0.5°C 
to 1.0°C over most continents, and by more than 1.0°C over the Arctic 
in winter. Although studies suggest that the Arctic response is complex 
and particularly sensitive to BC aerosols (Flanner et al., 2007; Quinn 
et al., 2008; Jacobson, 2010; Ramana et al., 2010; Bond et al., 2013; 
Sand et al., 2013), the difference in ERF between RCP2.6 and RCP8.5 
is dominated by the GHGs, as the BC atmospheric burden is decreas-
ing through the century with little difference across the RCPs (Table 
AII.5.7). 

Large changes in emissions of the well-mixed greenhouse gases 
(WMGHGs) produce only modest changes in the near term because 
these gases are long lived: For example, a 50% cut in Kyoto-gas emis-
sions beginning in 1990 offsets the warming that otherwise would 
have occurred by only –0.11°C ± 0.03°C after 12 years (Prather et al., 
2009). In contrast, many studies have noted the large potential for air 
pollutant emission reductions to influence near-term climate because 
RF from these species responds almost immediately to changes in 
emissions. Decreases in sulphate aerosol have occurred through miti-
gation of both air pollution and fossil-fuel emissions, and are expected 
to produce a near-term rise in surface temperatures (e.g., Jacobson and 

Streets, 2009; Raes and Seinfeld, 2009; Wigley et al., 2009; Kloster et 
al., 2010; Makkonen et al., 2012). 

Because global mean aerosol forcing decreases in all RCP scenarios 
(AII.5.3 to AII.5.7, AII.6.9; see Section 11.3.5), the potential exists for 
a systematic difference between the CMIP3 models forced with the 
SRES scenarios and the CMIP5 models forced with the RCP scenarios. 
One study directly addressed the impacts of aerosols on climate under 
the RCP4.5 scenario, and found that the aerosol emission reductions 
induce about a 0.2°C warming in the near term compared with fixed 
2005 aerosol levels (more indicative of the SRES CMIP3 aerosols) (Levy 
et al., 2013). The cooling over the period 1951–2010 that is attribut-
ed to non-WMGHG anthropogenic forcing in the CMIP5 models (Fig-
ures 10.4 and 10.5) has a likely range of –0.25°C ± 0.35°C compared 
to +0.9°C ± 0.4°C for WMGHG. The non-WMGHG forcing generally 
includes the influence of non-aerosol warming agents over the histor-
ical period such as tropospheric ozone, and a simple correction would 
give an aerosol-only cooling that is about 50% larger in magnitude 
(see ERF components, Chapter 8). The near-term reductions in total 
aerosol emissions, however, even under the MFR scenario, are at most 
about 50% (AII.2.17 to AII.2.22), indicating a maximum near-term 
temperature response of about half that induced by the addition of 
aerosols over the last century. Hence, the evidence indicates that dif-
ferences in aerosol loading from the SRES (conservatively assuming 
roughly constant aerosols) to the RCP scenarios can increase warming 
in the CMIP5 models relative to the CMIP3 models by up to 0.2°C in 
the near term for the same WMGHG forcing (medium confidence).

Many studies show that air pollutants influence climate and identi-
fy approaches to mitigate both air pollution and global warming by 
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Figure 11.24a | Near-term increase in global mean surface air temperatures (°C) across scenarios. Increases in 10-year mean (2016–2025, 2026–2035, 2036–2045 and 
2046–2055) relative to the reference period (1986–2005) of the globally averaged surface air temperatures. Results are shown for the CMIP5 model ensembles (see Annex I for 
listing of models included) for RCP2.6 (dark blue), RCP4.5 (light blue), RCP6.0 (orange), and RCP8.5 (red) and the CMIP3 model ensemble (22 models) for SRES A1b (black). The 
multi-model median (square), 17 to 83% range (wide boxes), 5 to 95% range (whiskers) across all models are shown for each decade and scenario. Values are provided in Table 
AII.7.5. Also shown are best estimates for a UNEP scenario (UNEP-ref, grey upward triangles) and one that implements technological controls on methane emissions (UNEP CH4, red 
downward-pointing triangles) (UNEP and WMO, 2011; Shindell et al., 2012a). Both UNEP scenarios are adjusted to reflect the 1986–2005 reference period. The right-hand floating 
axis shows increases in global mean surface air temperature relative to the early instrumental period (0.61°C), defined from the difference between 1850–1900 and 1986–2005 in 
the Hadley Centre/Climate Research Unit gridded surface temperature data set 4 (HadCRUT4) global mean temperature analysis (Chapter 2 and Table AII.1.3). Note that uncertainty 
remains on how to match the 1986–2005 reference period in observations with that in CMIP5 results. See discussion of Figure 11.25.
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decreasing CH4, tropospheric O3 and absorbing aerosols, particularly 
BC (e.g., Hansen et al., 2000; Fiore et al., 2002, 2008, 2009; Dentener 
et al., 2005; West et al., 2006; Royal Society, 2008; Jacobson, 2010; 
Penner et al., 2010; UNEP and WMO, 2011; Anenberg et al., 2012; Shin-
dell et al., 2012b; Unger, 2012; Bond et al., 2013). An alternative set of 
technologically based scenarios (UNEP and WMO, 2011) that examined 
controls on CH4 and BC emissions designed to reduce tropospheric CH4, 
O3 and BC also included reductions of co-emitted species (e.g., CO, OC, 
NOx). These reductions were applied in two CMIP5 models, and then 
those model responses were combined with the AR4 best estimates 
for the range of climate sensitivity and for uncertainty estimates for 
each component of RF (Shindell et al., 2012a). This approach provided a 
near-term best estimate and range of global mean temperature change 
for the reference (UNEP-ref) and CH4-mitigation (UNEP-CH4) scenarios 
(Figure 11.24a, adjusted to reflect the 1986–2005 reference period). 
Under UNEP-CH4, anthropogenic CH4 emissions decrease by 24% from 
2010 to 2030, and global warming is reduced by 0.16°C (best estimate) 
at 2030 and by 0.28°C at 2050. A third UNEP scenario (UNEP-BC+CH4; 
not shown) adds reductions in BC by 78% onto CH4 mitigation and 
reduces warming by an additional 0.12°C (best estimate) at 2030. How-
ever, it greatly increases the uncertainty owing to poor understanding 
of associated cloud adjustments (i.e., semi-direct and indirect effects) 
as well as of the ratio of BC to co-emitted reflective OC aerosols, their 
size distributions and mixing states (see Chapter 7, Section 7.5). Corre-
sponding BC reductions in the RCPs are only 4 to 11%.

Beyond global mean temperature, shifting magnitudes and geographic 
patterns of emissions may induce aerosol-specific changes in region-
al atmospheric circulation and precipitation. See Chapter 7, especially 
Sections 7.6.2 and 7.6.4, for assessment of this work (Roeckner et al., 
2006; Menon and et al., 2008; Ming et al., 2010, 2011; Ott et al., 2010; 
Randles and Ramaswamy, 2010; Allen and Sherwood, 2011; Bollasina 
et al., 2011; Leibensperger et al., 2011b;Fyfe et al., 2012; Ganguly et 

(°C)

al., 2012; Rotstayn et al., 2012; Shindell et al., 2012b; Teng et al., 2012; 
Bond et al., 2013). Recent trends in aerosol–fog interactions and snow-
pack decline are implicated in more rapid regional warming in Europe 
(van Oldenborgh et al., 2010; Ceppi et al., 2012; Scherrer et al., 2012), 
and coupling of aerosols and soil moisture could increase near-term 
local warming in the eastern USA (Mickley et al., 2011). Major changes 
in the tropical circulation and rainfall have been attributed to increas-
ing aerosols, but studies often disagree in sign (see Section 11.3.2.4.3, 
Chapters 10 and 14). The lack of standardization (e.g., different 
regions, different mixtures of reflecting and absorbing aerosols) and 
agreement across studies prevents generalization of these findings to 
project aerosol-induced changes in regional atmospheric circulation or 
precipitation in the near term. 

Land use and land cover change (LULCC; see Chapter 6), including 
deforestation, forest degradation and agricultural expansion for bioen-
ergy (Georgescu et al., 2009; Anderson-Teixeira et al., 2012), can alter 
global climate forcing through changing surface albedo (assessed as 
ERF; Chapter 8), the hydrological cycle, GHGs (for CO2, see Chapters 6 
and 12), or aerosols. The shift from forest to grassland in many places 
since the pre-industrial era has been formally attributed as a cause 
of regionally lower mean and extreme temperatures (Christidis et al., 
2013). RCP CO2 and CH4 anthropogenic emissions include land use 
changes (Hurtt et al., 2011) that vary with the underlying storylines 
and differ across RCPs. These global-scale changes in crop and pasture 
land projected over the near term (+2% for RCP2.6 and RCP8.5; –4% 
for RCP4.5and RCP6.0) are smaller in magnitude than the 1950–2000 
change (+6%) (see Figure 6.23). Overall LULCC has had small impact 
on ERF (–0.15 W m–2; see AII.1.2) and thus as projected is not a major 
factor in near-term climate change on global scales. 

Land use changes can also lead to sustained near-term changes in 
regional climate through modification of the biogeophysical proper-

Figure 11.24b | Global maps of near-term differences in surface air temperature across the RCP scenarios. Differences between (RCP8.5) and low (RCP2.6) scenarios for the CMIP5 
model ensemble (31 models) are shown for averages over 2016–2035 (left) and 2036–2055 (right) in boreal winter (December, January and February; top row) and summer (June, 
July and August; bottom row).



1007

Near-term Climate Change: Projections and Predictability Chapter 11

11

ties that alter the water and energy cycles. Local- and regional-scale 
climate responses to LULCC can exceed those associated with global 
mean warming (Baidya Roy and Avissar, 2002; Findell et al., 2007; 
Pitman et al., 2009, 2012; Pielke et al., 2011; Boisier et al., 2012; 
de Noblet-Ducoudre et al., 2012; Lee and Berbery, 2012). Examples 
of LULCC-driven changes include: Brazilian conversion to sugarcane 
induces seasonal shifts of 1 to 2°C (Georgescu et al., 2013); European 
forested areas experience less severe heat waves (Teuling et al., 2010); 
and deforested regions over the Amazon lack deep convective clouds 
(Wang et al., 2009). Systematic assessment of near-term, local-to-re-
gional climate change is beyond the scope here.

In summary, climate projections for the near term are not very sensitive 
to the range in anthropogenic emissions of CO2 and other WMGHGs. By 
the 2040s the CMIP5 median for global mean temperature ranges from 
a low of +0.9°C (RCP2.6 and RCP6.0) to a high of +1.3°C (RCP8.5) 
above the CMIP5 reference period (Figure 11.24a; Table AII.7.5). See 
discussion below regarding possible offsets between the observed and 
CMIP5 reference periods. Alternative CH4 scenarios incorporating large 
emission reductions outside the RCP range would offset near-term 
warming by –0.2°C (medium confidence). Aerosols remain a major 
source of uncertainty in near-term projections, on both global and 
regional scales. Removal of half of the sulphate aerosol, as projected 
before 2030 in the MFR scenario and by 2050 in most RCPs, would 
increase warming by up to +0.2°C (medium confidence). Actions to 
reduce BC aerosol could reduce warming, but the magnitude is highly 
uncertain, depending on co-emitted (reflective) aerosols and aero-
sol-cloud interactions (Chapter 7; Section 7.5). In addition, near-term 
climate change, including extremes and precipitation, may be driven 
locally by land use change and shifting geographic patterns of aero-
sols; and these regional climatic effects may exceed those induced by 
the global ERF.

11.3.6.2 Uncertainties in Future Natural Radiative Forcing and 
the Consequences for Near-term Climate

11.3.6.2.1 The effects of future volcanic eruptions

As discussed in Chapters 8 and 10, explosive volcanic eruptions are the 
major cause of natural variations in RF on interannual to decadal time 
scales. Most important are large tropical and subtropical eruptions 
that inject substantial amounts of SO2 directly into the stratosphere. 
The subsequent formation of sulphate aerosols leads to a negative RF 
of several watts per metre squared, with a typical lifetime of a year 
(Robock, 2000). The eruption of Mt Pinatubo in 1991 was one of the 
largest in recent times, with a return period of about three times per 
century, but dwarfed by Tambora in 1815 (Gao et al., 2008). Mt Pina-
tubo caused a rapid drop in a global mean surface air temperature 
of several tenths of a degree Celsius over the following year, but this 
signal disappeared over the next five years (Hansen et al., 1992; Soden 
et al., 2002; Bender et al., 2010). In addition to global mean cooling, 
there are effects on the hydrological cycle (e.g., Trenberth and Dai, 
2007), atmosphere and ocean circulation (e.g., Stenchikov et al., 2006; 
Ottera et al., 2010). The surface climate response typically persists for 
a few years, but the subsurface ocean response can persist for dec-
ades or centuries, with consequences for sea level rise (Delworth et al., 
2005; Stenchikov et al., 2009; Gregory, 2010; Timmreck, 2012).

Although it is possible to detect when various existing volcanoes 
become more active, or are more likely to erupt, the precise timing of 
an eruption, the amount of SO2 emitted and its distribution in the strat-
osphere are not predictable until after the eruption. Eruptions compa-
rable to Mt Pinatubo can be expected to cause a short-term cooling 
of the climate with related effects on surface climate that persist for a 
few years before a return to warming trajectories discussed in Section 
11.3.2. Larger eruptions, or several eruptions occurring close together 
in time, would lead to larger and/or more persistent effects.

11.3.6.2.2 The effects of future changes in solar forcing

Some of the future CMIP5 climate simulations using the RCP scenarios 
include an 11-year variation in total solar irradiance (TSI) but no under-
lying trend beyond 2005. Chapter 10 noted that there has been little 
observed trend in TSI during a time period of rapid global warming 
since the late 1970s, but that the 11-year solar cycle does introduce 
a significant and measurable pattern of response in the troposphere 
(Section 10.3.1.1.3). As discussed in Chapter 8 (Section 8.4.1.3), the 
Sun has been in a ‘grand solar maximum’ of magnetic activity on the 
multi-decadal time scale. However, the most recent solar minimum was 
the lowest and longest since 1920, and some studies (e.g., Lockwood, 
2010) suggest there could be a continued decline towards a much qui-
eter period in the coming decades, but there is low confidence in these 
projections (Section 8.4.1.3). Nevertheless, if there is such a reduction 
in solar activity, there is high confidence that the variations in TSI RF 
will be much smaller than the projected increased forcing due to GHGs 
(Section 8.4.1.3). In addition, studies that have investigated the effect 
of a possible decline in TSI on future climate have shown that the asso-
ciated decrease in global mean surface temperature is much smaller 
than the warming expected from increases in anthropogenic GHGs 
(Feulner and Rahmstorf, 2010; Jones et al., 2012; Meehl et al., 2013b) 
However, regional impacts could be more significant (Xoplaki et al., 
2001; Mann et al., 2009; Gray et al., 2010; Ineson et al., 2011).

As discussed in Section 8.4.1, a recent satellite measurement (Harder 
et al., 2009) found much greater than expected reduction at ultraviolet 
(UV) wavelengths in the recent declining solar cycle phase. Changes 
in solar UV drive stratospheric O3 chemistry and can change RF. Haigh 
et al. (2010) show that if these observations are correct, they imply 
the opposite relationship between solar RF and solar activity over that 
period than has hitherto been assumed. These new measurements 
therefore increase uncertainty in estimates of the sign of solar RF, but 
they are not expected to alter estimates of the maximum absolute 
magnitude of the solar contribution to RF, which remains small (Chap-
ter 8). However, they do suggest the possibility of a much larger impact 
of solar variations on the stratosphere than previously thought, and 
some studies have suggested that this may lead to significant regional 
impacts on climate (as discussed in Section 10.3.1.1.3) that are not 
necessarily reflected by the RF metric (see Section 8.4.1).

In summary, possible future changes in solar irradiance could influence 
the rate at which global mean surface air temperature increases, but 
there is high confidence that this influence will be small in comparison 
to the influence of increasing concentrations of GHGs in the atmos-
phere. Understanding of the impacts of changes in solar irradiance on 
continental and sub-continental scale climate remains low.
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Frequently Asked Questions 

FAQ 11.2 |  How Do Volcanic Eruptions Affect Climate and Our Ability to Predict Climate? 

Large volcanic eruptions affect the climate by injecting sulphur dioxide gas into the upper atmosphere (also called 
stratosphere), which reacts with water to form clouds of sulphuric acid droplets. These clouds reflect sunlight back 
to space, preventing its energy from reaching the Earth’s surface, thus cooling it, along with the lower atmosphere. 
These upper atmospheric sulphuric acid clouds also locally absorb energy from the Sun, the Earth and the lower 
atmosphere, which heats the upper atmosphere (see FAQ 11.2, Figure 1). In terms of surface cooling, the 1991 
Mt Pinatubo eruption in the Philippines, for example, injected about 20 million tons of sulphur dioxide (SO2) into 
the stratosphere, cooling the Earth by about 0.5°C for up to a year. Globally, eruptions also reduce precipitation, 
because the reduced incoming shortwave at the surface is compensated by a reduction in latent heating (i.e., in 
evaporation and hence rainfall).

For the purposes of predicting climate, an eruption causing significant global surface cooling and upper atmo-
spheric heating for the next year or so can be expected. The problem is that, while a volcano that has become more 
active can be detected, the precise timing of an eruption, or the amount of SO2 injected into the upper atmosphere 
and how it might disperse cannot be predicted. This is a source of uncertainty in climate predictions.

Large volcanic eruptions produce lots of particles, called ash or tephra. However, these particles fall out of the 
atmosphere quickly, within days or weeks, so they do not affect the global climate. For example, the 1980 Mount 
St. Helens eruption affected surface temperatures in the northwest USA for several days but, because it emitted 
little SO2 into the stratosphere, it had no detectable global climate impacts. If large, high-latitude eruptions inject 
sulphur into the stratosphere, they will have an effect only in the hemisphere where they erupted, and the effects 
will only last a year at most, as the stratospheric cloud they produce only has a lifetime of a few months.

Tropical or subtropical volcanoes produce more global surface or tropospheric cooling. This is because the resulting 
sulphuric acid cloud in the upper atmosphere lasts between one and two years, and can cover much of the globe. 
However, their regional climatic impacts are difficult to 
predict, because dispersion of stratospheric sulphate 
aerosols depends heavily on atmospheric wind condi-
tions at the time of eruption. Furthermore, the surface 
cooling effect is typically not uniform: because conti-
nents cool more than the ocean, the summer monsoon 
can weaken, reducing rain over Asia and Africa. The cli-
matic response is complicated further by the fact that 
upper atmospheric clouds from tropical eruptions also 
absorb sunlight and heat from the Earth, which produc-
es more upper atmosphere warming in the tropics than 
at high latitudes. 

The largest volcanic eruptions of the past 250 years stim-
ulated scientific study. After the 1783 Laki eruption in 
Iceland, there were record warm summer temperatures 
in Europe, followed by a very cold winter. Two large 
eruptions, an unidentified one in 1809, and the 1815 
Tambora eruption caused the ‘Year Without a Summer’ 
in 1816. Agricultural failures in Europe and the USA that 
year led to food shortages, famine and riots.

The largest eruption in more than 50 years, that of 
Agung in 1963, led to many modern studies, including 
observations and climate model calculations. Two subse-
quent large eruptions, El Chichón in 1982 and Pinatubo 
in 1991, inspired the work that led to our current under-
standing of the effects of volcanic eruptions on climate. FAQ 11.2, Figure 1 |  Schematic of how large tropical or sub-tropical volcanoes 

impact upper atmospheric (stratospheric) and lower atmospheric (tropospheric) 
temperatures.
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11.3.6.3 Synthesis of Near-term Projections of Global Mean 
Surface Air Temperature

Figure 11.25 provides a synthesis of near-term projections of global 
mean surface air temperature (GMST) from CMIP5, CMIP3 and studies 
that have attempted to use observations to quantify projection uncer-
tainty (see Section 11.3.2.1). On the basis of this evidence, an attempt 
is made here to assess a likely range for GMST in the period 2016–
2035. Such an overall assessment is not straightforward. The following 
points must be taken into account:

1. No likelihoods are associated with the different RCP scenarios. For 
this reason, previous IPCC Assessment Reports have only present-
ed projections that are conditional on specific scenarios. Here we 
attempt a broader assessment across all four RCP scenarios. This is 
possible only because, as discussed in Section 11.3.6.1, near-term 
projections of GMST are not especially sensitive to these different 
scenarios. 

2. In the near term it is expected that increases in GMST will be 
driven by past and future increases in GHG concentrations and 
future decreases in anthropogenic aerosols, as found in all the RCP 
scenarios. Figure 11.25c shows that in the near term the CMIP3 
projections based on the SRES scenarios are generally cooler than 

the CMIP5 projections based on the RCP scenarios. This difference 
is at least partly attributable to higher aerosol concentrations in 
the SRES scenarios (see Section 11.3.6.1).

3. The CMIP3 and CMIP5 projections are ensembles of opportunity, 
and it is explicitly recognized that there are sources of uncertain-
ty not simulated by the models. Evidence of this can be seen by 
comparing the Rowlands et al. (2012) projections for the A1B sce-
nario, which were obtained using a very large ensemble in which 
the physics parameterizations were perturbed in a single climate 
model, with the corresponding raw multi-model CMIP3 projec-
tions. The former exhibit a substantially larger likely range than 
the latter. A pragmatic approach to addressing this issue, which 
was used in the AR4 and is also used in Chapter 12, is to consider 
the 5 to 95% CMIP3/5 range as a ‘likely’ rather than ‘very likely’ 
range. 

4. As discussed in Section 11.3.6.2, the RCP scenarios assume no 
underlying trend in total solar irradiance and no future volcanic 
eruptions. Future volcanic eruptions cannot be predicted and there 
is low confidence in projected changes in solar irradiance (Chapter 
8). Consequently the possible effects of future changes in natural 
forcings are excluded from the assessment here.

FAQ 11.2 (continued)

Volcanic clouds remain in the stratosphere only for a couple of years, so their impact on climate is correspondingly 
short. But the impacts of consecutive large eruptions can last longer: for example, at the end of the 13th century 
there were four large eruptions—one every ten years. The first, in 1258 CE, was the largest in 1000 years. That 
sequence of eruptions cooled the North Atlantic Ocean and Arctic sea ice. Another period of interest is the three 
large, and several lesser, volcanic events during 1963–1991 (see Chapter 8 for how these eruptions affected atmo-
spheric composition and reduced shortwave radiation at the ground.

Volcanologists can detect when a volcano becomes more active, but they cannot predict whether it will erupt, 
or if it does, how much sulphur it might inject into the stratosphere. Nevertheless, volcanoes affect the ability to 
predict climate in three distinct ways. First, if a violent eruption injects significant volumes of sulphur dioxide into 
the stratosphere, this effect can be included in climate predictions. There are substantial challenges and sources of 
uncertainty involved, such as collecting good observations of the volcanic cloud, and calculating how it will move 
and change during its lifetime. But, based on observations, and successful modelling of recent eruptions, some of 
the effects of large eruptions can be included in predictions.

The second effect is that volcanic eruptions are a potential source of uncertainty in our predictions. Eruptions 
cannot be predicted in advance, but they will occur, causing short-term climatic impacts on both local and global 
scales. In principle, this potential uncertainty can be accounted for by including random eruptions, or eruptions 
based on some scenario in our near-term ensemble climate predictions. This area of research needs further explora-
tion. The future projections in this report do not include future volcanic eruptions.

Third, the historical climate record can be used, along with estimates of observed sulphate aerosols, to test the 
fidelity of our climate simulations. While the climatic response to explosive volcanic eruptions is a useful analogue 
for some other climatic forcings, there are limitations. For example, successfully simulating the impact of one erup-
tion can help validate models used for seasonal and interannual predictions. But in this way not all the mechanisms 
involved in global warming over the next century can be validated, because these involve long term oceanic feed-
backs, which have a longer time scale than the response to individual volcanic eruptions.
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5. As discussed in Section 11.3.2.1.1 observationally constrained 
‘ASK’ projections (Gillett et al., 2013; Stott et al., 2013) are 10 to 
15% cooler (median values for RCP4.5; 6–10% cooler for RCP8.5), 
and have a narrower range, than the corresponding ‘raw’ (unini-
tialized) CMIP5 projections. The reduced rate of warming in the 
ASK projections is related to evidence from Chapter 10 (Section 
10.3.1) that ‘some CMIP5 models have a higher transient response 
to GHGs and a larger response to other anthropogenic forc-
ings (dominated by the effects of aerosols) than the real world 
(medium confidence).’ These models may warm too rapidly as 
GHGs increase and aerosols decline.

6. Over the last two decades the observed rate of increase in GMST 
has been at the lower end of rates simulated by CMIP5 models 
(Figure 11.25a). This hiatus in GMST rise is discussed in detail 
in Box 9.2 (Chapter 9), where it is concluded that the hiatus is 
attributable, in roughly equal measure, to a decline in the rate of 
increase in ERF and a cooling contribution from internal variability 
(expert judgment, medium confidence). The decline in the rate of 
increase in ERF is attributed primarily to natural (solar and vol-
canic) forcing but there is low confidence in quantifying the role 
of forcing trend in causing the hiatus, because of uncertainty in 
the magnitude of the volcanic forcing trend and low confidence in 
the aerosol forcing trend. Concerning the higher rate of warming 
in CMIP5 simulations it is concluded that there is a substantial 
contribution from internal variability but that errors in ERF and 
in model responses may also contribute. There is low confidence 
in this assessment because of uncertainties in aerosol forcing in 
particular. 

 The observed hiatus has important implications for near-term pro-
jections of GMST. A basic issue concerns the sensitivity of projec-
tions to the choice of reference period. Figure 11.25b and c shows 
the 5 to 95% ranges for CMIP5 projections using a 1986–2005 
reference period (light grey), and the same projections using a 
2006–2012 reference period (dark grey). The latter projections 
are cooler, and the effect of using a more recent reference period 
appears similar to the effect of initialization (discussed in Section 
11.3.2.1.1 and shown in Figure 11.25c for RCP4.5). Using this more 
recent reference period, the 5 to 95% range for the mean GMST 
in 2016–2035 relative to 1986–2005 is 0.36°C to 0.79°C (using 
all RCP scenarios, weighted to ensure equal weights per model 
and using an estimate of the observed GMST anomaly for (2006–
2012)–(1986–2005) of 0.16°C). This range may be compared with 
the range of 0.48°C to 1.15°C obtained from the CMIP5 models 
using the original 1986–2005 reference period. 

7. In view of the sensitivity of projections to the reference period it 
is helpful to consider the possible rate of change of GMST in the 
near term. The CMIP5 5 to 95% ranges for GMST trends in the 
period 2012–2035 are 0.11°C to 0.41°C per decade. This range 
is similar to, though slightly narrower than, the range found by 
Easterling and Wehner (2009) for the CMIP3 SRES A2 scenario over 
the longer period 2000–2050. It may also be compared with recent 
rates in the observational record (e.g., ~0.26°C per decade for 
1984–1998 and ~0.04°C per decade for hiatus period 1998–2012; 
See Box 9.2). The RCP scenarios project that ERF will increase more 

rapidly in the near term than occurred over the hiatus period (see 
Box 9.2 and Annex II), which is consistent with more rapid warm-
ing. In addition, Box 9.2 includes an assessment that internal vari-
ability is more likely than not to make a positive contribution to the 
increase in GMST in the near term. Internal variability is included 
in the CMIP5 projections, but because most of the CMIP5 simu-
lations do not reproduce the observed reduction in global mean 
surface warming over the last 10 to 15 years, the distribution of 
CMIP5 near-term trends will not reflect this assessment and might, 
as a result, be biased low. This uncertainty, however, is somewhat 
counter balanced by the evidence of point 5, which suggests a high 
bias in the distribution of near-term trends. A further projection of 
GMST for the period 2016–2035 may be obtained by starting from 
the observed GMST for 2012 (0.14°C relative to 1986–2005) and 
projecting increases at rates between the 5 to 95% CMIP5 range 
of 0.11°C to 0.41°C per decade. The resulting range of 0.29°C to 
0.69°C, relative to 1986–2005, is shown on Figure 11.25(c). 

Overall, in the absence of major volcanic eruptions—which would 
cause significant but temporary cooling—and, assuming no significant 
future long term changes in solar irradiance, it is likely (>66% prob-
ability) that the GMST anomaly for the period 2016–2035, relative to 
the reference period of 1986–2005 will be in the range 0.3°C to 0.7°C 
(expert assessment, to one significant figure; medium confidence). This 
range is consistent, to one significant figure, with the range obtained 
by using CMIP5 5 to 95% model trends for 2012–2035. It is also con-
sistent with the CMIP5 5 to 95% range for all four RCP scenarios of 
0.36°C to 0.79°C, using the 2006–2012 reference period, after the 
upper and lower bounds are reduced by 10% to take into account the 
evidence noted under point 5 that some models may be too sensitive 
to anthropogenic forcing. The 0.3°C to 0.7°C range includes the likely 
range of the ASK projections and initialized predictions for RCP4.5. It 
corresponds to a rate of change of GMST between 2012 and 2035 in 
the range 0.12°C to 0.42°C per decade. The higher rates of change 
can  be associated with a significant positive contribution from internal 
variability (Box 9.2) and/or high rates of increase in ERF (e.g., as found 
in RCP8.5). Note that an upper limit of 0.8°C on the 2016–2035 GMST 
corresponds to a rate of change over the period 2012–2035 of 0.49°C 
per decade, which is considered unlikely. The assessed rates of change 
are consistent with the AR4 SPM statement that ‘For the next two dec-
ades, a warming of about 0.2°C per decade is projected for a range of 
SRES emission scenarios’. However, the implied rates of warming over 
the period from 1986–2005 to 2016–2035 are lower as a result of the 
hiatus: 0.10°C to 0.23°C per decade, suggesting the AR4 assessment 
was near the upper end of current expectations for this specific time 
interval.

The assessment here provides only a likely range for GMST. Possible 
reasons why the real world might depart from this range include: RF 
departs significantly from the RCP scenarios, due to either natural (e.g., 
major volcanic eruptions, changes in solar irradiance) or anthropogenic 
(e.g., aerosol or GHG emissions) causes; processes that are poorly sim-
ulated in the CMIP5 models exert a significant influence on GMST. The 
latter class includes: a possible strong ‘recovery’ from the recent hiatus 
in GMST; the possibility that models might underestimate decadal vari-
ability (but see Section 9.5.3.1); the possibility that model sensitivity to 
anthropogenic forcing may differ from that of the real world (see point 
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Figure 11.25 |  Synthesis of near-term projections of global mean surface air temperature (GMST). (a) Simulations and projections of annual mean GMST 1986–2050 (anomalies 
relative to 1986–2005). Projections under all RCPs from CMIP5 models (grey and coloured lines, one ensemble member per model), with four observational estimates (Hadley 
Centre/Climate Research Unit gridded surface temperature data set 4 (HadCRUT4): Morice et al., 2012); European Centre for Medium range Weather Forecast (ECMWF) interim 
reanalysis of the global atmosphere and surface conditions (ERA-Interim): Simmons et al., 2010); Goddard Institute of Space Studies Surface Temperature Analysis (GISTEMP): 
Hansen et al., 2010); National Oceanic and Atmospheric Administration (NOAA): Smith et al., 2008)) for the period 1986–2012 (black lines). (b) As (a) but showing the 5 to 95% 
range of annual mean CMIP5 projections (using one ensemble member per model) for all RCPs using a reference period of 1986–2005 (light grey shade) and all RCPs using a 
reference period of 2006–2012, together with the observed anomaly for (2006–2012) to (1986–2005) of 0.16°C (dark grey shade). The percentiles for 2006 onwards have been 
smoothed with a 5-year running mean for clarity. The maximum and minimum values from CMIP5 using all ensemble members and the 1986–2005 reference period are shown 
by the grey lines (also smoothed). Black lines show annual mean observational estimates. The red hatched region shows the indicative likely range for annual mean GMST during 
the period 2016–2035 based on the ‘ALL RCPs Assessed’ likely range for the 20-year mean GMST anomaly for 2016–2035, which is shown as a black bar in both (b) and (c) (see 
text for details). The temperature scale on the right hand side shows changes relative to a reference period of 1850-1900, assuming a warming of GMST between 1850-1900 and 
1986-2005 of 0.61°C estimated from HadCRUT4.The temperature scale relative to the 1850-1900 period on the right-hand side assumes a warming of GMST prior to 1986–2005 
of 0.61°C estimated from HadCRUT4. (c) A synthesis of projections for the mean GMST anomaly for 2016–2035 relative to 1986–2005. The box and whiskers represent the 66% 
and 90% ranges. Shown are unconstrained SRES CMIP3 and RCP CMIP5 projections; observationally constrained projections: Rowlands et al. (2012) for SRES A1B scenario, updated 
to remove simulations with large future volcanic eruptions; Meehl and Teng (2012) for RCP4.5 scenario, updated to include 14 CMIP5 models; Stott et al. (2013), based on six CMIP5 
models with unconstrained 66% ranges for these six models shown as unfilled boxes; unconstrained projections for all four RCP scenarios using two reference periods as in panel 
b (light grey and dark grey shades, consistent with panel b); 90% range estimated using CMIP5 trends for the period 2012–2035 and the observed GMST anomaly for 2012; an 
overall likely (>66%) assessed range for all RCP scenarios. The dots for the CMIP5 estimates show the maximum and minimum values using all ensemble members. The medians 
(or maximum likelihood estimate for Rowlands et al. 2012) are indicated by a grey band.
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5); and the possibility of abrupt changes in climate (see introduction to 
Sections 11.3.6 and 12.5.5).

The assessment here has focused on 20-year mean values of GMST for 
the period 2016–2035. There is no unique method to derive a likely 
range for annual mean values from the range for 20-year means, so 
such calculations necessarily involve additional uncertainties (beyond 
those outlined in the previous paragraph), and lower confidence. Nev-
ertheless, it is useful to attempt to estimate a range for annual mean 
values, which may be compared with raw model projections and, in 
the future, with observations. To do so, the following simple approach 
is used: (1) Starting in 2009 from the observed GMST anomaly for 
2006–2012 of 0.16°C (relative to 1986–2005), linear trends are pro-
jected over the period 2009–2035 with maximum and minimum gra-
dients selected to be consistent with the 0.3°C to 0.7°C range for the 
mean GMST in the period 2016–2035; 2). To take into account the 
expected year-to-year variability of annual mean values, the resulting 
linear trends are offset by ±0.1°C. The value of 0.1°C is based on the 
standard deviation of annual means in CMIP5 control runs (to one sig-
nificant figure). These calculations provide an indicative likely range for 

annual mean GMST, which is shown as the red hatched area in Figure 
11.25b. Note that this range does not take into account the expected 
impact of any future volcanic eruptions.

The assessed likely range for GMST in the period 2016–2035 may also 
be used to assess the likelihood that GMST will cross policy-relevant 
levels, relative to earlier time periods (Joshi et al., 2011). Using the 
1850–1900 period, and the observed temperature rise between 1850–
1900 and 1986–2005 of 0.61°C (estimated from the HadCRUT4 data 
set (Morice et al., 2012) gives a likely range for the GMST anomaly 
in 2016–2035 of 0.91°C–1.31°C, and supports the following conclu-
sions: it is more likely than not that the mean GMST for the period 
2016–2035 will be more than 1°C above the mean for 1850–1900, 
and very unlikely that it will be more than 1.5°C above the 1850–1900 
mean (expert assessment, medium confidence). Additional information 
about the possibility of GMST crossing specific temperature levels is 
provided in Table 11.3, which shows the percentage of CMIP5 models 
for which the projected change in GMST exceeds specific temperature 
levels, under each RCP scenario, in two time periods (early century: 
2016–2035 and mid-century: 2046–2065), and also using the two 
different reference periods discussed under point 6 and illustrated in 
Figure 11.25. However, these percentages should not be interpreted as 
likelihoods because—as discussed in this section—there are sources 
of uncertainty not captured by the CMIP5 ensemble. Note finally that it 
is very likely that specific temperature levels will be crossed temporari-
ly in individual years before a permanent crossing is established (Joshi 
et al., 2011), but Table 11.3 is based on 20-year mean values.

Scenario Early (2016–2035) Mid (2046–2065)

Temperature +1.0°C

RCP 2.6 100% (84%) 100% (94%)

RCP 4.5 98% (93%) 100% (100%)

RCP 6.0 96% (80%) 100% (100%)

RCP 8.5 100% (100%) 100% (100%)

Temperature +1.5°C

RCP 2.6 22% (0%) 56% (28%)

RCP 4.5 17% (0%) 95% (86%)

RCP 6.0 12% (0%) 92% (88%)

RCP 8.5 33% (5%) 100% (100%)

Temperature +2.0°C

RCP 2.6 0% (0%) 16% (3%)

RCP 4.5 0% (0%) 43% (29%)

RCP 6.0 0% (0%) 32% (20%)

RCP 8.5 0% (0%) 95% (90%)

Temperature +3.0°C

RCP 2.6 0% (0%) 0% (0%)

RCP 4.5 0% (0%) 0% (0%)

RCP 6.0 0% (0%) 0% (0%)

RCP 8.5 0% (0%) 21% (5%)

Table 11.3 |  Percentage of CMIP5 models for which the projected change in global 
mean surface air temperature, relative to 1850-1900, crosses the specified temperature 
levels, by the specified time periods and assuming the specified RCP scenarios. The pro-
jected temperature change relative to the mean temperature in the period 1850-1900 is 
calculated using the models’ projected temperature change relative to 1986–2005 plus 
the observed temperature change between 1850–1900 and 1986–2005 of 0.61°C esti-
mated from the Hadley Centre/Climate Research Unit gridded surface temperature data 
set 4 (HadCRUT4; Morice et al., 2012). The percentages in brackets use an alternative 
reference period for the model projections of 2006–2012, together with the observed 
temperature difference between 1986–2005 and 2006–2012 of 0.16°C. The definition 
of crossing is that the 20-year mean exceeds the specified temperature level. Note that 
these percentages should not be interpreted as likelihoods because there are other 
sources of uncertainty (see discussion in Section 11.3.6.3).
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Box 11.2 |  Ability of Climate Models to Simulate Observed Regional Trends

The ability of models to simulate past climate change on regional scales can be used to investigate whether the multi-model ensemble 
spread covers the forcing and model uncertainties. Agreement between observed and simulated regional trends, taking natural variabil-
ity and model spread into account, would build confidence in near-term projections. Although large-scale features are simulated well 
(see Chapter 10), on sub-continental and smaller scales the observed trends are, in general, more often in the tails of the distribution of 
modelled trends than would be expected by chance fluctuations (Bhend and Whetton, 2012; Knutson et al., 2013b; van Oldenborgh et 
al., 2013). Natural variability and model spread are larger at smaller scales (Stott et al., 2010), but this is not enough to bridge the gap 
between models and observations. Downscaling with Regional Climate Models (RCMs) does not affect seasonal mean trends except 
near mountains or coastlines in Europe (van Oldenborgh et al., 2009; van Haren et al., 2012). These results hold for both observed and 
modelled estimates of natural variability and for various analyses of the observations. Given the statistical nature of the comparisons, it 
is currently not possible to say in which regions observed discrepancies are due to coincidental natural variability and in which regions 
they are due to forcing or model deficiencies. These results show that in general the Coupled Model Intercomparison Project Phase 5 
(CMIP5) ensemble cannot be taken as a reliable regional probability forecast, but that the true uncertainty can be larger than the model 
spread indicated in the maps in this chapter and Annex I.

Temperature 
Räisänen (2007) and Yokohata et al. (2012) compared regional linear temperature trends during 1955–2005 (1961–2000) with cor-
responding trends in the CMIP3 ensemble. They found that the range of simulated trends captured the observed trend in nearly all 
locations. Using another metric, Knutson et al., (2013b) found that CMIP5 models did slightly better than CMIP3 in reproducing linear 
trends (see also Figure 10.2, Section 10.3.1.1.2). The linear CMIP5 temperature trends are compared with the observed trends in Box 
11.2, Figure 1a–h. The rank histograms show the warm bias in global mean temperature (see Chapter 10) and some overconfidence, but 
within the inter-model spread. However, the apparent agreement appears to be for the wrong reason. Many of the models that appear 
to correctly simulate observed high regional trends do so because they have a high climate response (i.e., the global temperature rises 
quickly) and do not simulate the observed spatial pattern of trends (Kumar et al., 2013). To address this, Bhend and Whetton (2012) and 
van Oldenborgh et al. (2013) use another definition of the local trend: the regression of the local temperature on the (low-pass filtered) 
global mean temperature. This definition separates the local temperature response pattern from the global mean climate response. 
They find highly significant discrepancies between the CMIP3 and CMIP5 trend patterns and a variety of estimates of observed trend 
estimates. These discrepancies are defined relative to an error model that includes the (modelled or observed) natural variability, model 
spread and spatial autocorrelations. In the following, areas where the observed and modelled trends show marked differences are 
noted. Areas of agreement are covered in Section 10.3.1.1.4.

In December to February the observed Arctic amplification extends further south than modelled in Central Asia and northwestern North 
America. In June to August southern Europe and North Africa have warmed significantly faster than both CMIP3 and CMIP5 models 
simulated (van Oldenborgh et al., 2009); this also holds for the Middle East. The observed Indo-Pacific warm pool trend is significantly 
higher than the modelled trend year-round (Shin and Sardeshmukh, 2011; Williams and Funk, 2011), and the North Pacific and the 
southeastern USA and adjoining ocean trends were lower. Direct causes for many of these discrepancies are known (e.g., December to 
February circulation trends that differ between the observation and the models (Gillett et al., 2005; Gillett and Stott, 2009; van Olden-
borgh et al., 2009; Bhend and Whetton, 2012) or teleconnections from other areas with trend biases (Deser and Phillips, 2009; Meehl 
et al., 2012a), but the causes of the underlying discrepancies are often unknown. Possibilities include observational uncertainties (note, 
however, that the areas where the observations warm more than the models do not correspond to areas of increased urbanization 
or irrigation; cf. Section 2.4.1.3), an underestimation of the low-frequency variability (Knutson et al. (2013b) show evidence that this 
is probably not the case for temperature outside the tropics), unrealistic local forcing (e.g., aerosols (Ruckstuhl and Norris, 2009)), or 
missing or misrepresented processes in models (e.g., fog (Vautard et al., 2009; Ceppi et al., 2012)).

Precipitation 
In spite of the larger variability relative to the trends and observational uncertainties (cf. Section 2.5.1.2), annual mean regional linear 
precipitation trends have been found to differ significantly between observations and CMIP3 models, both in the zonal mean (Allan 
and Soden, 2007; Zhang et al., 2007b) and regionally (Räisänen, 2007). The comparison is shown in Box 11.2, Figure 1i–p for the CMIP5 
half-year seasons used in Annex I, following van Oldenborgh et al. (2013). In both half years the observations fall more often in the 
highest and lowest 5% than expected by chance fluctuations within the ensemble (grey area). The differences larger than the difference 
between the CRU and GPCC analyses (cf. Figure 2.29) are noted below. (continued on next page)
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Box 11.2 (continued)

In Europe there are large-scale differences between observed trends and trends, both in General Circulation Models (GCMs) and RCMs 
(Bhend and von Storch, 2008), which are ascribed to circulation change discrepancies in winter and in summer sea surface temperature 
(SST) trend biases (Lenderink et al., 2009; van Haren et al., 2012) and the misrepresentation of Summer North Atlantic Oscillation (NAO) 
teleconnections (Bladé et al., 2012). Central North America has become much wetter over 1950–2012, especially in winter, which is 
not simulated by the CMIP5 models. Larger observed northwest Australian rainfall increases than in CMIP3 in summer are driven by 
ozone forcings in two climate models (Kang et al., 2011) and aerosols in another (Rotstayn et al., 2012). The Guinea Coast has become 
drier in the observations than in the models. The CMIP5 patterns seem to reproduce the observed patterns somewhat better than the 
CMIP3 patterns (Bhend and Whetton, 2012), but the remaining discrepancies imply that CMIP5 projections cannot be used as reliable 
precipitation forecasts.

Box 11.2, Figure 1 |  (a) Observed linear December to February temperature trend 1950–2012 (Hadley Centre/Climate Research Unit gridded surface temperature 
data set 4.1.1.0 (HadCRUT4.1.1.0, °C per century). ( b) The equivalent CMIP5 ensemble mean trend. (c) Quantile of the observed trend in the ensemble, and (d) the 
corresponding rank histogram, the grey band denotes the 90% band of intermodel fluctuations (following Annan and Hargreaves, 2010). (e–h) Same for June to 
August. (i–l) Same for October to March precipitation (Global Precipitation Climatology Centre (GPCC) v7) 1950–2010, % per century). (m–p) Precipitation in April to 
September. Grid boxes where less than 50% of the years have observations are left white. (Based on Räisänen (2007) and van Oldenborgh et al. (2013).)
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