Appendix I

Glossary

Editor: A.P.M. Baede

 $A \rightarrow$ indicates that the following term is also contained in this Glossary.

Adjustment time

See: \rightarrow Lifetime; see also: \rightarrow Response time.

Aerosols

A collection of airborne solid or liquid particles, with a typical size between 0.01 and 10 μ m and residing in the atmosphere for at least several hours. Aerosols may be of either natural or anthropogenic origin. Aerosols may influence climate in two ways: directly through scattering and absorbing radiation, and indirectly through acting as condensation nuclei for cloud formation or modifying the optical properties and lifetime of clouds. See: \rightarrow Indirect aerosol effect.

The term has also come to be associated, erroneously, with the propellant used in "aerosol sprays".

Afforestation

Planting of new forests on lands that historically have not contained forests. For a discussion of the term \rightarrow forest and related terms such as afforestation, \rightarrow reforestation, and \rightarrow deforestation: see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000).

Albedo

The fraction of solar radiation reflected by a surface or object, often expressed as a percentage. Snow covered surfaces have a high albedo; the albedo of soils ranges from high to low; vegetation covered surfaces and oceans have a low albedo. The Earth's albedo varies mainly through varying cloudiness, snow, ice, leaf area and land cover changes.

Altimetry

A technique for the measurement of the elevation of the sea, land or ice surface. For example, the height of the sea surface (with respect to the centre of the Earth or, more conventionally, with respect to a standard "ellipsoid of revolution") can be measured from space by current state-of-the-art radar altimetry with centrimetric precision. Altimetry has the advantage of being a measurement relative to a geocentric reference frame, rather than relative to land level as for a \rightarrow tide gauge, and of affording quasi-global coverage.

Anthropogenic

Resulting from or produced by human beings.

Atmosphere

The gaseous envelope surrounding the Earth. The dry atmosphere consists almost entirely of nitrogen (78.1% volume mixing ratio) and oxygen (20.9% volume mixing ratio), together with a number of trace gases, such as argon (0.93% volume mixing ratio), helium, and radiatively active \rightarrow greenhouse gases such as \rightarrow carbon dioxide (0.035% volume mixing ratio), and ozone. In addition the atmosphere contains water vapour, whose amount is highly variable but typically 1% volume mixing ratio. The atmosphere also contains clouds and \rightarrow aerosols.

Attribution

See: \rightarrow Detection and attribution.

Autotrophic respiration

 \rightarrow Respiration by photosynthetic organisms (plants).

Biomass

The total mass of living organisms in a given area or volume; recently dead plant material is often included as dead biomass.

Biosphere (terrestrial and marine)

The part of the Earth system comprising all \rightarrow ecosystems and living organisms, in the atmosphere, on land (terrestrial biosphere) or in the oceans (marine biosphere), including derived dead organic matter, such as litter, soil organic matter and oceanic detritus.

Black carbon

Operationally defined species based on measurement of light absorption and chemical reactivity and/or thermal stability; consists of soot, charcoal, and/or possible light-absorbing refractory organic matter. (Source: Charlson and Heintzenberg, 1995, p. 401.)

Burden

The total mass of a gaseous substance of concern in the atmosphere.

Carbonaceous aerosol

Aerosol consisting predominantly of organic substances and various forms of \rightarrow black carbon. (Source: Charlson and Heintzenberg, 1995, p. 401.)

Carbon cycle

The term used to describe the flow of carbon (in various forms, e.g. as carbon dioxide) through the atmosphere, ocean, terrestrial \rightarrow biosphere and lithosphere.

Carbon dioxide (CO₂)

A naturally occurring gas, also a by-product of burning fossil fuels and \rightarrow biomass, as well as \rightarrow land-use changes and other industrial processes. It is the principal anthropogenic \rightarrow greenhouse gas that affects the earth's radiative balance. It is the reference gas against which other greenhouse gases are measured and therefore has a \rightarrow Global Warming Potential of 1.

Carbon dioxide (CO₂) fertilisation

The enhancement of the growth of plants as a result of increased atmospheric CO₂ concentration. Depending on their mechanism of \rightarrow photosynthesis, certain types of plants are more sensitive to changes in atmospheric CO₂ concentration. In particular, \rightarrow C₃ plants generally show a larger response to CO₂ than \rightarrow C₄ plants.

Charcoal

Material resulting from charring of biomass, usually retaining some of the microscopic texture typical of plant tissues; chemically it consists mainly of carbon with a disturbed graphitic structure, with lesser amounts of oxygen and hydrogen. See: \rightarrow Black carbon; Soot particles. (Source: Charlson and Heintzenberg, 1995, p. 402.)

Climate

Climate in a narrow sense is usually defined as the "average weather", or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The classical period is 30 years, as defined by the World Meteorological Organization (WMO). These quantities are most often surface variables such as temperature, precipitation, and wind. Climate in a wider sense is the state, including a statistical description, of the \rightarrow climate system.

Climate change

Climate change refers to a statistically significant variation in

either the mean state of the climate or in its variability, persisting for an extended period (typically decades or longer). Climate change may be due to natural internal processes or external forcings, or to persistent anthropogenic changes in the composition of the atmosphere or in land use.

Note that the \rightarrow Framework Convention on Climate Change (UNFCCC), in its Article 1, defines "climate change" as: "a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods". The UNFCCC thus makes a distinction between "climate change" attributable to human activities altering the atmospheric composition, and "climate variability" attributable to natural causes.

See also: \rightarrow Climate variability.

Climate feedback

An interaction mechanism between processes in the \rightarrow climate system is called a climate feedback, when the result of an initial process triggers changes in a second process that in turn influences the initial one. A positive feedback intensifies the original process, and a negative feedback reduces it.

Climate model (hierarchy)

A numerical representation of the \rightarrow climate system based on the physical, chemical and biological properties of its components, their interactions and feedback processes, and accounting for all or some of its known properties. The climate system can be represented by models of varying complexity, i.e. for any one component or combination of components a *hierarchy* of models can be identified, differing in such aspects as the number of spatial dimensions, the extent to which physical, chemical or biological processes are explicitly represented, or the level at which empirical \rightarrow parametrizations are involved. Coupled atmosphere/ocean/sea-ice General Circulation Models (AOGCMs) provide a comprehensive representation of the climate system. There is an evolution towards more complex models with active chemistry and biology.

Climate models are applied, as a research tool, to study and simulate the climate, but also for operational purposes, including monthly, seasonal and interannual \rightarrow climate predictions.

Climate prediction

A climate prediction or climate forecast is the result of an attempt to produce a most likely description or estimate of the actual evolution of the climate in the future, e.g. at seasonal, interannual or long-term time scales. See also: \rightarrow Climate projection and \rightarrow Climate (change) scenario.

Climate projection

A \rightarrow projection of the response of the climate system to \rightarrow emission or concentration scenarios of greenhouse gases and aerosols, or \rightarrow radiative forcing scenarios, often based upon simulations by \rightarrow climate models. Climate projections are distinguished from \rightarrow climate predictions in order to emphasise that climate projections depend upon the emission/concentration/ radiative forcing scenario used, which are based on assumptions, concerning, e.g., future socio-economic and technological developments, that may or may not be realised, and are therefore subject to substantial uncertainty.

Climate scenario

A plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships, that has been constructed for explicit use in investigating the potential consequences of anthropogenic \rightarrow climate change, often serving as input to impact models. \rightarrow Climate projections often serve as the raw material for constructing climate scenarios, but climate scenarios usually require additional information such as about the observed current climate. A *climate change scenario* is the difference between a climate scenario and the current climate.

Climate sensitivity

In IPCC Reports, *equilibrium climate sensitivity* refers to the equilibrium change in global mean surface temperature following a doubling of the atmospheric (\rightarrow equivalent) CO₂ concentration. More generally, equilibrium climate sensitivity refers to the equilibrium change in surface air temperature following a unit change in \rightarrow radiative forcing (°C/Wm⁻²). In practice, the evaluation of the equilibrium climate sensitivity requires very long simulations with Coupled General Circulation Models (\rightarrow Climate model).

The *effective climate sensitivity* is a related measure that circumvents this requirement. It is evaluated from model output for evolving non-equilibrium conditions. It is a measure of the strengths of the \rightarrow feedbacks at a particular time and may vary with forcing history and climate state. Details are discussed in Section 9.2.1 of Chapter 9 in this Report.

Climate system

The climate system is the highly complex system consisting of five major components: the \rightarrow atmosphere, the \rightarrow hydrosphere, the \rightarrow cryosphere, the land surface and the \rightarrow biosphere, and the interactions between them. The climate system evolves in time under the influence of its own internal dynamics and because of external forcings such as volcanic eruptions, solar variations and human-induced forcings such as the changing composition of the atmosphere and \rightarrow land-use change.

Climate variability

Climate variability refers to variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate on all temporal and spatial scales beyond that of individual weather events. Variability may be due to natural internal processes within the climate system (*internal variability*), or to variations in natural or anthropogenic external forcing (*external variability*). See also: \rightarrow Climate change.

Cloud condensation nuclei

Airborne particles that serve as an initial site for the condensation of liquid water and which can lead to the formation of cloud droplets. See also: \rightarrow Aerosols.

CO₂ fertilisation

See \rightarrow Carbon dioxide (CO₂) fertilisation

Cooling degree days

The integral over a day of the temperature above $18^{\circ}C$ (e.g. a day with an average temperature of $20^{\circ}C$ counts as 2 cooling degree days). See also: \rightarrow Heating degree days.

Cryosphere

The component of the \rightarrow climate system consisting of all snow, ice and permafrost on and beneath the surface of the earth and ocean. See: \rightarrow Glacier; \rightarrow Ice sheet.

C₃ plants

Plants that produce a three-carbon compound during photosynthesis; including most trees and agricultural crops such as rice, wheat, soyabeans, potatoes and vegetables.

C₄ plants

Plants that produce a four-carbon compound during photosynthesis; mainly of tropical origin, including grasses and the agriculturally important crops maize, sugar cane, millet and sorghum.

Deforestation

Conversion of forest to non-forest. For a discussion of the term \rightarrow forest and related terms such as \rightarrow afforestation, \rightarrow reforestation, and deforestation: see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000).

Desertification

Land degradation in arid, semi-arid, and dry sub-humid areas resulting from various factors, including climatic variations and human activities. Further, the UNCCD (The United Nations Convention to Combat Desertification) defines land degradation as a reduction or loss, in arid, semi-arid, and dry sub-humid areas, of the biological or economic productivity and complexity of rain-fed cropland, irrigated cropland, or range, pasture, forest, and woodlands resulting from land uses or from a process or combination of processes, including processes arising from human activities and habitation patterns, such as: (i) soil erosion caused by wind and/or water; (ii) deterioration of the physical, chemical and biological or economic properties of soil; and (iii) long-term loss of natural vegetation.

Detection and attribution

Climate varies continually on all time scales. **Detection** of \rightarrow climate change is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. **Attribution** of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence.

Diurnal temperature range

The difference between the maximum and minimum temperature during a day.

Dobson Unit (DU)

A unit to measure the total amount of ozone in a vertical column above the Earth's surface. The number of Dobson Units is the thickness in units of 10^{-5} m, that the ozone column would occupy if compressed into a layer of uniform density at a pressure of 1013 hPa, and a temperature of 0°C. One DU corresponds to a column of ozone containing 2.69×10^{20} molecules per square meter. A typical value for the amount of ozone in a column of the Earth's atmosphere, although very variable, is 300 DU.

Ecosystem

A system of interacting living organisms together with their physical environment. The boundaries of what could be called an ecosystem are somewhat arbitrary, depending on the focus of interest or study. Thus the extent of an ecosystem may range from very small spatial scales to, ultimately, the entire Earth.

El Niño-Southern Oscillation (ENSO)

El Niño, in its original sense, is a warm water current which periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. This oceanic event is associated with a fluctuation of the intertropical surface pressure pattern and circulation in the Indian and Pacific oceans, called the Southern Oscillation. This coupled atmosphere-ocean phenomenon is collectively known as El Niño-Southern Oscillation, or ENSO. During an El Niño event, the prevailing trade winds weaken and the equatorial countercurrent strengthens, causing warm surface waters in the Indonesian area to flow eastward to overlie the cold waters of the Peru current. This event has great impact on the wind, sea surface temperature and precipitation patterns in the tropical Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world. The opposite of an El Niño event is called *La Niña*.

Emission scenario

A plausible representation of the future development of emissions of substances that are potentially radiatively active (e.g. \rightarrow greenhouse gases, \rightarrow aerosols), based on a coherent and internally consistent set of assumptions about driving forces (such as demographic and socio-economic development, technological change) and their key relationships.

Concentration scenarios, derived from emission scenarios, are used as input into a climate model to compute \rightarrow climate projections.

In IPCC (1992) a set of emission scenarios was presented which were used as a basis for the \rightarrow climate projections in IPCC (1996). These emission scenarios are referred to as the IS92 scenarios. In the IPCC Special Report on Emission Scenarios (Nakićenović *et al.*, 2000) new emission scenarios, the so called \rightarrow SRES scenarios, were published some of which were used, among others, as a basis for the climate projections presented in Chapter 9 of this Report. For the meaning of some terms related to these scenarios, see \rightarrow SRES scenarios.

Energy balance

Averaged over the globe and over longer time periods, the energy budget of the \rightarrow climate system must be in balance. Because the

climate system derives all its energy from the Sun, this balance implies that, globally, the amount of incoming \rightarrow solar radiation must on average be equal to the sum of the outgoing reflected solar radiation and the outgoing \rightarrow infrared radiation emitted by the climate system. A perturbation of this global radiation balance, be it human induced or natural, is called \rightarrow radiative forcing.

Equilibrium and transient climate experiment

An *equilibrium climate experiment* is an experiment in which a \rightarrow climate model is allowed to fully adjust to a change in \rightarrow radiative forcing. Such experiments provide information on the difference between the initial and final states of the model, but not on the time-dependent response. If the forcing is allowed to evolve gradually according to a prescribed \rightarrow emission scenario, the time dependent response of a climate model may be analysed. Such experiment is called a *transient climate experiment*. See: \rightarrow Climate projection.

Equivalent CO₂ (carbon dioxide)

The concentration of \rightarrow CO₂ that would cause the same amount of \rightarrow radiative forcing as a given mixture of CO₂ and other \rightarrow greenhouse gases.

Eustatic sea-level change

A change in global average sea level brought about by an alteration to the volume of the world ocean. This may be caused by changes in water density or in the total mass of water. In discussions of changes on geological time-scales, this term sometimes also includes changes in global average sea level caused by an alteration to the shape of the ocean basins. In this Report the term is not used with that sense.

Evapotranspiration

The combined process of evaporation from the Earth's surface and transpiration from vegetation.

External forcing

See: \rightarrow Climate system.

Extreme weather event

An extreme weather event is an event that is rare within its statistical reference distribution at a particular place. Definitions of "rare" vary, but an extreme weather event would normally be as rare as or rarer than the 10th or 90th percentile. By definition, the characteristics of what is called *extreme weather* may vary from place to place.

An *extreme climate event* is an average of a number of weather events over a certain period of time, an average which is itself extreme (e.g. rainfall over a season).

Faculae

Bright patches on the Sun. The area covered by faculae is greater during periods of high \rightarrow solar activity.

Feedback

See: \rightarrow Climate feedback.

Flux adjustment

To avoid the problem of coupled atmosphere-ocean general circulation models drifting into some unrealistic climate state, adjustment terms can be applied to the atmosphere-ocean fluxes of heat and moisture (and sometimes the surface stresses resulting from the effect of the wind on the ocean surface) before these fluxes are imposed on the model ocean and atmosphere. Because these adjustments are precomputed and therefore independent of the coupled model integration, they are uncorrelated to the anomalies which develop during the integration. In Chapter 8 of this Report it is concluded that present models have a reduced need for flux adjustment.

Forest

A vegetation type dominated by trees. Many definitions of the term forest are in use throughout the world, reflecting wide differences in bio-geophysical conditions, social structure, and economics. For a discussion of the term forest and related terms such as \rightarrow afforestation, \rightarrow reforestation, and \rightarrow deforestation: see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000).

Fossil CO₂ (carbon dioxide) emissions

Emissions of CO_2 resulting from the combustion of fuels from fossil carbon deposits such as oil, gas and coal.

Framework Convention on Climate Change See: \rightarrow United Nations Framework Convention on Climate Change (UNFCCC).

General Circulation

The large scale motions of the atmosphere and the ocean as a consequence of differential heating on a rotating Earth, aiming to restore the \rightarrow energy balance of the system through transport of heat and momentum.

General Circulation Model (GCM)

See: \rightarrow Climate model.

Geoid

The surface which an ocean of uniform density would assume if it were in steady state and at rest (i.e. no ocean circulation and no applied forces other than the gravity of the Earth). This implies that the geoid will be a surface of constant gravitational potential, which can serve as a reference surface to which all surfaces (e.g., the Mean Sea Surface) can be referred. The geoid (and surfaces parallel to the geoid) are what we refer to in common experience as "level surfaces".

Glacier

A mass of land ice flowing downhill (by internal deformation and sliding at the base) and constrained by the surrounding topography e.g. the sides of a valley or surrounding peaks; the bedrock topography is the major influence on the dynamics and surface slope of a glacier. A glacier is maintained by accumulation of snow at high altitudes, balanced by melting at low altitudes or discharge into the sea.

Global surface temperature

The global surface temperature is the area-weighted global average of (i) the sea-surface temperature over the oceans (i.e. the subsurface bulk temperature in the first few meters of the ocean), and (ii) the surface-air temperature over land at 1.5 m above the ground.

Global Warming Potential (GWP)

An index, describing the radiative characteristics of well mixed \rightarrow greenhouse gases, that represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in absorbing outgoing \rightarrow infrared radiation. This index approximates the time-integrated warming effect of a unit mass of a given greenhouse gas in today's atmosphere, relative to that of \rightarrow carbon dioxide.

Greenhouse effect

 \rightarrow Greenhouse gases effectively absorb \rightarrow infrared radiation, emitted by the Earth's surface, by the atmosphere itself due to the same gases, and by clouds. Atmospheric radiation is emitted to all sides, including downward to the Earth's surface. Thus greenhouse gases trap heat within the surface-troposphere system. This is called the *natural greenhouse effect*.

Atmospheric radiation is strongly coupled to the temperature of the level at which it is emitted. In the \rightarrow troposphere the temperature generally decreases with height. Effectively, infrared radiation emitted to space originates from an altitude with a temperature of, on average, -19° C, in balance with the net incoming solar radiation, whereas the Earth's surface is kept at a much higher temperature of, on average, $+14^{\circ}$ C.

An increase in the concentration of greenhouse gases leads to an increased infrared opacity of the atmosphere, and therefore to an effective radiation into space from a higher altitude at a lower temperature. This causes a \rightarrow radiative forcing, an imbalance that can only be compensated for by an increase of the temperature of the surface-troposphere system. This is the *enhanced greenhouse effect*.

Greenhouse gas

Greenhouse gases are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of infrared radiation emitted by the Earth's surface, the atmosphere and clouds. This property causes the \rightarrow greenhouse effect. Water vapour (H₂O), carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄) and ozone (O₃) are the primary greenhouse gases in the Earth's atmosphere. Moreover there are a number of entirely human-made greenhouse gases in the atmosphere, such as the \rightarrow halocarbons and other chlorine and bromine containing substances, dealt with under the \rightarrow Montreal Protocol. Beside CO₂, N₂O and CH₄, the \rightarrow Kyoto Protocol deals with the greenhouse gases sulphur hexafluoride (SF₆), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).

Gross Primary Production (GPP)

The amount of carbon fixed from the atmosphere through \rightarrow photosynthesis.

Grounding line/zone

The junction between \rightarrow ice sheet and \rightarrow ice shelf or the place where the ice starts to float.

Halocarbons

Compounds containing either chlorine, bromine or fluorine and carbon. Such compounds can act as powerful \rightarrow greenhouse gases in the atmosphere. The chlorine and bromine containing halocarbons are also involved in the depletion of the \rightarrow ozone layer.

Heating degree days

The integral over a day of the temperature below $18^{\circ}C$ (e.g. a day with an average temperature of $16^{\circ}C$ counts as 2 heating degree days). See also: \rightarrow Cooling degree days.

Heterotrophic respiration

The conversion of organic matter to CO_2 by organisms other than plants.

Hydrosphere

The component of the climate system comprising liquid surface and subterranean water, such as: oceans, seas, rivers, fresh water lakes, underground water etc.

Ice cap

A dome shaped ice mass covering a highland area that is considerably smaller in extent than an \rightarrow ice sheet.

Ice sheet

A mass of land ice which is sufficiently deep to cover most of the underlying bedrock topography, so that its shape is mainly determined by its internal dynamics (the flow of the ice as it deforms internally and slides at its base). An ice sheet flows outwards from a high central plateau with a small average surface slope. The margins slope steeply, and the ice is discharged through fast-flowing ice streams or outlet glaciers, in some cases into the sea or into ice-shelves floating on the sea. There are only two large ice sheets in the modern world, on Greenland and Antarctica, the Antarctic ice sheet being divided into East and West by the Transantarctic Mountains; during glacial periods there were others.

Ice shelf

A floating \rightarrow ice sheet of considerable thickness attached to a coast (usually of great horizontal extent with a level or gently undulating surface); often a seaward extension of ice sheets.

Indirect aerosol effect

 \rightarrow Aerosols may lead to an indirect \rightarrow radiative forcing of the \rightarrow climate system through acting as condensation nuclei or modifying the optical properties and lifetime of clouds. Two indirect effects are distinguished:

First indirect effect

A radiative forcing induced by an increase in anthropogenic aerosols which cause an initial increase in droplet concentration and a decrease in droplet size for fixed liquid water content, leading to an increase of cloud \rightarrow albedo. This effect is also known as the *Twomey effect*. This is sometimes referred to as the *cloud albedo effect*. However this is highly misleading since the second indirect effect also alters cloud albedo.

Second indirect effect

A radiative forcing induced by an increase in anthropogenic aerosols which cause a decrease in droplet size, reducing the precipitation efficiency, thereby modifying the liquid water content, cloud thickness, and cloud life time. This effect is also known as the *cloud life time effect* or *Albrecht effect*.

Industrial revolution

A period of rapid industrial growth with far-reaching social and economic consequences, beginning in England during the second half of the eighteenth century and spreading to Europe and later to other countries including the United States. The invention of the steam engine was an important trigger of this development. The industrial revolution marks the beginning of a strong increase in the use of fossil fuels and emission of, in particular, fossil carbon dioxide. In this Report the terms *pre-industrial* and *industrial* refer, somewhat arbitrarily, to the periods before and after 1750, respectively.

Infrared radiation

Radiation emitted by the earth's surface, the atmosphere and the clouds. It is also known as terrestrial or long-wave radiation. Infrared radiation has a distinctive range of wavelengths ("spectrum") longer than the wavelength of the red colour in the visible part of the spectrum. The spectrum of infrared radiation is practically distinct from that of \rightarrow solar or short-wave radiation because of the difference in temperature between the Sun and the Earth-atmosphere system.

Integrated assessment

A method of analysis that combines results and models from the physical, biological, economic and social sciences, and the interactions between these components, in a consistent framework, to evaluate the status and the consequences of environmental change and the policy responses to it.

Internal variability

See: \rightarrow Climate variability.

Inverse modelling

A mathematical procedure by which the input to a model is estimated from the observed outcome, rather than *vice versa*. It is, for instance, used to estimate the location and strength of sources and sinks of CO_2 from measurements of the distribution of the CO_2 concentration in the atmosphere, given models of the global \rightarrow carbon cycle and for computing atmospheric transport.

Isostatic land movements

Isostasy refers to the way in which the \rightarrow lithosphere and mantle respond to changes in surface loads. When the loading of the lithosphere is changed by alterations in land ice mass, ocean mass, sedimentation, erosion or mountain building, vertical isostatic adjustment results, in order to balance the new load.

Kyoto Protocol

The Kyoto Protocol to the United Nations \rightarrow Framework Convention on Climate Change (UNFCCC) was adopted at the Third Session of the Conference of the Parties (COP) to the United Nations \rightarrow Framework Convention on Climate Change, in 1997 in Kyoto, Japan. It contains legally binding commitments, in addition to those included in the UNFCCC. Countries included in Annex B of the Protocol (most OECD countries and countries with economies in transition) agreed to reduce their anthropogenic \rightarrow greenhouse gas emissions (CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆) by at least 5% below 1990 levels in the commitment period 2008 to 2012. The Kyoto Protocol has not yet entered into force (April 2001).

Land use

The total of arrangements, activities and inputs undertaken in a certain land cover type (a set of human actions). The social and economic purposes for which land is managed (e.g., grazing, timber extraction, and conservation).

Land-use change

A change in the use or management of land by humans, which may lead to a change in land cover. Land cover and land-use change may have an impact on the \rightarrow albedo, \rightarrow evapotranspiration, \rightarrow sources and \rightarrow sinks of \rightarrow greenhouse gases, or other properties of the \rightarrow climate system and may thus have an impact on climate, locally or globally. See also: the IPCC Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000).

La Niña

See: →El Niño-Southern Oscillation.

Lifetime

Lifetime is a general term used for various time-scales characterising the rate of processes affecting the concentration of trace gases. The following lifetimes may be distinguished:

Turnover time (T) is the ratio of the mass M of a reservoir (e.g., a gaseous compound in the atmosphere) and the total rate of removal S from the reservoir: T = M/S. For each removal process separate turnover times can be defined. In soil carbon biology this is referred to as *Mean Residence Time (MRT)*.

Adjustment time or response time (T_a) is the time-scale characterising the decay of an instantaneous pulse input into the reservoir. The term *adjustment time* is also used to characterise the adjustment of the mass of a reservoir following a step change in the source strength. *Half-life* or *decay constant* is used to quantify a first-order exponential decay process. See: \rightarrow Response time, for a different definition pertinent to climate variations. The term *lifetime* is sometimes used, for simplicity, as a surrogate for *adjustment time*.

In simple cases, where the global removal of the compound is directly proportional to the total mass of the reservoir, the adjustment time equals the turnover time: $T = T_a$. An example is CFC-11 which is removed from the atmosphere only by photochemical processes in the stratosphere. In more complicated cases, where several reservoirs are involved or where the removal is not proportional to the total mass, the equality $T = T_a$ no longer holds.

 \rightarrow Carbon dioxide (CO₂) is an extreme example. Its turnover time is only about 4 years because of the rapid exchange between atmosphere and the ocean and terrestrial biota. However, a large part of that CO₂ is returned to the atmosphere within a few years. Thus, the adjustment time of CO₂ in the atmosphere is actually determined by the rate of removal of carbon from the surface layer of the oceans into its deeper layers. Although an approximate value of 100 years may be given for the adjustment time of CO₂ in the atmosphere, the actual adjustment is faster initially and slower later on. In the case of methane (CH₄) the adjustment time is different from the turnover time, because the removal is mainly through a chemical reaction with the hydroxyl radical OH, the concentration of which itself depends on the CH₄ concentration. Therefore the CH₄ removal S is not proportional to its total mass M.

Lithosphere

The upper layer of the solid Earth, both continental and oceanic, which comprises all crustal rocks and the cold, mainly elastic, part of the uppermost mantle. Volcanic activity, although part of the lithosphere, is not considered as part of the \rightarrow climate system, but acts as an external forcing factor. See: \rightarrow Isostatic land movements.

LOSU (Level of Scientific Understanding)

This is an index on a 4-step scale (High, Medium, Low and Very Low) designed to characterise the degree of scientific understanding of the radiative forcing agents that affect climate change. For each agent, the index represents a subjective judgement about the reliability of the estimate of its forcing, involving such factors as the assumptions necessary to evaluate the forcing, the degree of knowledge of the physical/ chemical mechanisms determining the forcing and the uncertainties surrounding the quantitative estimate.

Mean Sea Level

See: \rightarrow Relative Sea Level.

Mitigation

A human intervention to reduce the \rightarrow sources or enhance the \rightarrow sinks of \rightarrow greenhouse gases.

Mixing ratio

See: \rightarrow Mole fraction.

Model hierarchy

See: \rightarrow Climate model.

Mole fraction

Mole fraction, or *mixing ratio*, is the ratio of the number of moles of a constituent in a given volume to the total number of moles of all constituents in that volume. It is usually reported for dry air. Typical values for long-lived \rightarrow greenhouse gases are in the order of μ mol/mol (parts per million: ppm), nmol/mol (parts per billion: ppb), and fmol/mol (parts per trillion: ppt). Mole fraction differs from *volume mixing ratio*, often expressed in ppmv etc., by the corrections for non-ideality of gases. This correction is

significant relative to measurement precision for many greenhouse gases. (Source: Schwartz and Warneck, 1995).

Montreal Protocol

The Montreal Protocol on Substances that Deplete the Ozone Layer was adopted in Montreal in 1987, and subsequently adjusted and amended in London (1990), Copenhagen (1992), Vienna (1995), Montreal (1997) and Beijing (1999). It controls the consumption and production of chlorine- and bromine-containing chemicals that destroy stratospheric ozone, such as CFCs, methyl chloroform, carbon tetrachloride, and many others.

Net Biome Production (NBP)

Net gain or loss of carbon from a region. NBP is equal to the \rightarrow Net Ecosystem Production minus the carbon lost due to a disturbance, e.g. a forest fire or a forest harvest.

Net Ecosystem Production (NEP)

Net gain or loss of carbon from an \rightarrow ecosystem. NEP is equal to the \rightarrow Net Primary Production minus the carbon lost through \rightarrow heterotrophic respiration.

Net Primary Production (NPP)

The increase in plant \rightarrow biomass or carbon of a unit of a landscape. NPP is equal to the \rightarrow Gross Primary Production minus carbon lost through \rightarrow autotrophic respiration.

Nitrogen fertilisation

Enhancement of plant growth through the addition of nitrogen compounds. In IPCC Reports, this typically refers to fertilisation from anthropogenic sources of nitrogen such as humanmade fertilisers and nitrogen oxides released from burning fossil fuels.

Non-linearity

A process is called "non-linear" when there is no simple proportional relation between cause and effect. The \rightarrow climate system contains many such non-linear processes, resulting in a system with a potentially very complex behaviour. Such complexity may lead to \rightarrow rapid climate change.

North Atlantic Oscillation (NAO)

The North Atlantic Oscillation consists of opposing variations of barometric pressure near Iceland and near the Azores. On average, a westerly current, between the Icelandic low pressure area and the Azores high pressure area, carries cyclones with their associated frontal systems towards Europe. However, the pressure difference between Iceland and the Azores fluctuates on time-scales of days to decades, and can be reversed at times.

Organic aerosol

 \rightarrow Aerosol particles consisting predominantly of organic compounds, mainly C, H, O, and lesser amounts of other elements. (Source: Charlson and Heintzenberg, 1995, p. 405.) See: \rightarrow Carbonaceous aerosol.

Ozone

Ozone, the triatomic form of oxygen (O_3) , is a gaseous atmospheric constituent. In the \rightarrow troposphere it is created both naturally and by photochemical reactions involving gases resulting from human activities ("smog"). Tropospheric ozone acts as a \rightarrow greenhouse gas. In the \rightarrow stratosphere it is created by the interaction between solar ultraviolet radiation and molecular oxygen (O₂). Stratospheric ozone plays a decisive role in the stratospheric radiative balance. Its concentration is highest in the \rightarrow ozone layer.

Ozone hole

See: \rightarrow Ozone layer.

Ozone layer

The \rightarrow stratosphere contains a layer in which the concentration of ozone is greatest, the so called ozone layer. The layer extends from about 12 to 40 km. The ozone concentration reaches a maximum between about 20 and 25 km. This layer is being depleted by human emissions of chlorine and bromine compounds. Every year, during the Southern Hemisphere spring, a very strong depletion of the ozone layer takes place over the Antarctic region, also caused by human-made chlorine and bromine compounds in combination with the specific meteorological conditions of that region. This phenomenon is called the *ozone hole*.

Parametrization

In \rightarrow climate models, this term refers to the technique of representing processes, that cannot be explicitly resolved at the spatial or temporal resolution of the model (sub-grid scale processes), by relationships between the area or time averaged effect of such sub-grid scale processes and the larger scale flow.

Patterns of climate variability

Natural variability of the \rightarrow climate system, in particular on seasonal and longer time-scales, predominantly occurs in preferred spatial patterns, through the dynamical non-linear characteristics of the atmospheric circulation and through interactions with the land and ocean surfaces. Such spatial patterns are also called "regimes" or "modes". Examples are the \rightarrow North Atlantic Oscillation (NAO), the Pacific-North American pattern (PNA), the \rightarrow El Niño-Southern Oscillation (ENSO), and the Antarctic Oscillation (AO).

Photosynthesis

The process by which plants take CO_2 from the air (or bicarbonate in water) to build carbohydrates, releasing O_2 in the process. There are several pathways of photosynthesis with different responses to atmospheric CO_2 concentrations. See: \rightarrow Carbon dioxide fertilisation.

Pool

See: \rightarrow Reservoir.

Post-glacial rebound

The vertical movement of the continents and sea floor following

the disappearance and shrinking of \rightarrow ice sheets, e.g. since the Last Glacial Maximum (21 ky BP). The rebound is an \rightarrow isostatic land movement.

Ppm, ppb, ppt

See: \rightarrow Mole fraction.

Precursors

Atmospheric compounds which themselves are not \rightarrow greenhouse gases or \rightarrow aerosols, but which have an effect on greenhouse gas or aerosol concentrations by taking part in physical or chemical processes regulating their production or destruction rates.

Pre-industrial

See: \rightarrow Industrial revolution.

Projection (generic)

A projection is a potential future evolution of a quantity or set of quantities, often computed with the aid of a model. Projections are distinguished from *predictions* in order to emphasise that projections involve assumptions concerning, e.g., future socioeconomic and technological developments that may or may not be realised, and are therefore subject to substantial uncertainty. See also \rightarrow Climate projection; \rightarrow Climate prediction.

Proxy

A proxy climate indicator is a local record that is interpreted, using physical and biophysical principles, to represent some combination of climate-related variations back in time. Climate related data derived in this way are referred to as proxy data. Examples of proxies are: tree ring records, characteristics of corals, and various data derived from ice cores.

Radiative forcing

Radiative forcing is the change in the net vertical irradiance (expressed in Watts per square metre: Wm^{-2}) at the \rightarrow tropopause due to an internal change or a change in the external forcing of the \rightarrow climate system, such as, for example, a change in the concentration of \rightarrow carbon dioxide or the output of the Sun. Usually radiative forcing is computed after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with all tropospheric properties held fixed at their unperturbed values. Radiative forcing is called *instantaneous* if no change in stratospheric temperature is accounted for. Practical problems with this definition, in particular with respect to radiative forcing associated with changes, by aerosols, of the precipitation formation by clouds, are discussed in Chapter 6 of this Report.

Radiative forcing scenario

A plausible representation of the future development of \rightarrow radiative forcing associated, for example, with changes in atmospheric composition or land-use change, or with external factors such as variations in \rightarrow solar activity. Radiative forcing scenarios can be used as input into simplified \rightarrow climate models to compute \rightarrow climate projections.

Radio-echosounding

The surface and bedrock, and hence the thickness, of a glacier can be mapped by radar; signals penetrating the ice are reflected at the lower boundary with rock (or water, for a floating glacier tongue).

Rapid climate change

The \rightarrow non-linearity of the \rightarrow climate system may lead to rapid climate change, sometimes called *abrupt events* or even *surprises*. Some such abrupt events may be imaginable, such as a dramatic reorganisation of the \rightarrow thermohaline circulation, rapid deglaciation, or massive melting of permafrost leading to fast changes in the \rightarrow carbon cycle. Others may be truly unexpected, as a consequence of a strong, rapidly changing, forcing of a non-linear system.

Reforestation

Planting of forests on lands that have previously contained forests but that have been converted to some other use. For a discussion of the term \rightarrow forest and related terms such as \rightarrow afforestation, reforestation, and \rightarrow deforestation: see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000).

Regimes

Preferred \rightarrow patterns of climate variability.

Relative Sea Level

Sea level measured by a \rightarrow tide gauge with respect to the land upon which it is situated. Mean Sea Level (MSL) is normally defined as the average Relative Sea Level over a period, such as a month or a year, long enough to average out transients such as waves.

(Relative) Sea Level Secular Change

Long term changes in relative sea level caused by either \rightarrow eustatic changes, e.g. brought about by \rightarrow thermal expansion, or changes in vertical land movements.

Reservoir

A component of the \rightarrow climate system, other than the atmosphere, which has the capacity to store, accumulate or release a substance of concern, e.g. carbon, a \rightarrow greenhouse gas or a \rightarrow precursor. Oceans, soils, and \rightarrow forests are examples of reservoirs of carbon. *Pool* is an equivalent term (note that the definition of pool often includes the atmosphere). The absolute quantity of substance of concerns, held within a reservoir at a specified time, is called the *stock*.

Respiration

The process whereby living organisms convert organic matter to CO_2 , releasing energy and consuming O_2 .

Response time

The response time or *adjustment time* is the time needed for the \rightarrow climate system or its components to re-equilibrate to a new state, following a forcing resulting from external and internal processes or \rightarrow feedbacks. It is very different for various

components of the climate system. The response time of the \rightarrow troposphere is relatively short, from days to weeks, whereas the \rightarrow stratosphere comes into equilibrium on a time-scale of typically a few months. Due to their large heat capacity, the oceans have a much longer response time, typically decades, but up to centuries or millennia. The response time of the strongly coupled surface-troposphere system is, therefore, slow compared to that of the stratosphere, and mainly determined by the oceans. The \rightarrow biosphere may respond fast, e.g. to droughts, but also very slowly to imposed changes.

See: \rightarrow Lifetime, for a different definition of response time pertinent to the rate of processes affecting the concentration of trace gases.

Scenario (generic)

A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of assumptions about driving forces and key relationships. Scenarios may be derived from \rightarrow projections, but are often based on additional information from other sources, sometimes combined with a "narrative storyline". See also: \rightarrow SRES scenarios; \rightarrow Climate scenario; \rightarrow Emission scenarios.

Sea level rise

See: \rightarrow Relative Sea Level Secular Change; \rightarrow Thermal expansion.

Sequestration

See: \rightarrow Uptake.

Significant wave height

The average height of the highest one-third of all sea waves occurring in a particular time period. This serves as an indicator of the characteristic size of the highest waves.

Sink

Any process, activity or mechanism which removes a \rightarrow greenhouse gas, an \rightarrow aerosol or a precursor of a greenhouse gas or aerosol from the atmosphere.

Soil moisture

Water stored in or at the land surface and available for evaporation.

Solar activity

The Sun exhibits periods of high activity observed in numbers of \rightarrow sunspots, as well as radiative output, magnetic activity, and emission of high energy particles. These variations take place on a range of time-scales from millions of years to minutes. See: \rightarrow Solar cycle.

Solar ("11 year") cycle

A quasi-regular modulation of \rightarrow solar activity with varying amplitude and a period of between 9 and 13 years.

Solar radiation

Radiation emitted by the Sun. It is also referred to as short-wave radiation. Solar radiation has a distinctive range of wavelengths

(spectrum) determined by the temperature of the Sun. See also: \rightarrow Infrared radiation.

Soot particles

Particles formed during the quenching of gases at the outer edge of flames of organic vapours, consisting predominantly of carbon, with lesser amounts of oxygen and hydrogen present as carboxyl and phenolic groups and exhibiting an imperfect graphitic structure. See: \rightarrow Black carbon; Charcoal. (Source: Charlson and Heintzenberg, 1995, p. 406.)

Source

Any process, activity or mechanism which releases a greenhouse gas, an aerosol or a precursor of a greenhouse gas or aerosol into the atmosphere.

Spatial and temporal scales

Climate may vary on a large range of spatial and temporal scales. Spatial scales may range from local (less than 100,000 km²), through regional (100,000 to 10 million km²) to continental (10 to 100 million km²). Temporal scales may range from seasonal to geological (up to hundreds of millions of years).

SRES scenarios

SRES scenarios are \rightarrow emission scenarios developed by Nakićenović *et al.* (2000) and used, among others, as a basis for the climate projections in Chapter 9 of this Report. The following terms are relevant for a better understanding of the structure and use of the set of SRES scenarios:

(Scenario) Family

Scenarios that have a similar demographic, societal, economic and technical-change storyline. Four scenario families comprise the SRES scenario set: A1, A2, B1 and B2.

(Scenario) Group

Scenarios within a family that reflect a consistent variation of the storyline. The A1 scenario family includes four groups designated as A1T, A1C, A1G and A1B that explore alternative structures of future energy systems. In the Summary for Policymakers of Nakićenović *et al.* (2000), the A1C and A1G groups have been combined into one 'Fossil Intensive' A1FI scenario group. The other three scenario families consist of one group each. The SRES scenario set reflected in the Summary for Policymakers of Nakićenović *et al.* (2000) thus consist of six distinct scenario groups, all of which are equally sound and together capture the range of uncertainties associated with driving forces and emissions.

Illustrative Scenario

A scenario that is illustrative for each of the six scenario groups reflected in the Summary for Policymakers of Nakićenović *et al.* (2000). They include four revised 'scenario markers' for the scenario groups A1B, A2, B1, B2, and two additional scenarios for the A1FI and A1T groups. All scenario groups are equally sound.

(Scenario) Marker

A scenario that was originally posted in draft form on the SRES website to represent a given scenario family. The choice of markers was based on which of the initial quantifications best reflected the storyline, and the features of specific models. Markers are no more likely than other scenarios, but are considered by the SRES writing team as illustrative of a particular storyline. They are included in revised form in Nakićenović *et al.* (2000). These scenarios have received the closest scrutiny of the entire writing team and via the SRES open process. Scenarios have also been selected to illustrate the other two scenario groups (see also 'Scenario Group' and 'Illustrative Scenario').

(Scenario) Storyline

A narrative description of a scenario (or family of scenarios) highlighting the main scenario characteristics, relationships between key driving forces and the dynamics of their evolution.

Stock

See: →Reservoir.

Storm surge

The temporary increase, at a particular locality, in the height of the sea due to extreme meteorological conditions (low atmospheric pressure and/or strong winds). The storm surge is defined as being the excess above the level expected from the tidal variation alone at that time and place.

Stratosphere

The highly stratified region of the atmosphere above the \rightarrow troposphere extending from about 10 km (ranging from 9 km in high latitudes to 16 km in the tropics on average) to about 50 km.

Sunspots

Small dark areas on the Sun. The number of sunspots is higher during periods of high \rightarrow solar activity, and varies in particular with the \rightarrow solar cycle.

Thermal expansion

In connection with sea level, this refers to the increase in volume (and decrease in density) that results from warming water. A warming of the ocean leads to an expansion of the ocean volume and hence an increase in sea level.

Thermohaline circulation

Large-scale density-driven circulation in the ocean, caused by differences in temperature and salinity. In the North Atlantic the thermohaline circulation consists of warm surface water flowing northward and cold deep water flowing southward, resulting in a net poleward transport of heat. The surface water sinks in highly restricted sinking regions located in high latitudes.

Tide gauge

A device at a coastal location (and some deep sea locations) which continuously measures the level of the sea with respect to the adjacent land. Time-averaging of the sea level so recorded gives the observed \rightarrow Relative Sea Level Secular Changes.

Transient climate response

The globally averaged surface air temperature increase, averaged over a 20 year period, centred at the time of CO_2 doubling, i.e., at

year 70 in a 1% per year compound CO_2 increase experiment with a global coupled \rightarrow climate model.

Tropopause

The boundary between the \rightarrow troposphere and the \rightarrow stratosphere.

Troposphere

The lowest part of the atmosphere from the surface to about 10 km in altitude in mid-latitudes (ranging from 9 km in high latitudes to 16 km in the tropics on average) where clouds and "weather" phenomena occur. In the troposphere temperatures generally decrease with height.

Turnover time

See: \rightarrow Lifetime.

Uncertainty

An expression of the degree to which a value (e.g. the future state of the climate system) is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from quantifiable errors in the data to ambiguously defined concepts or terminology, or uncertain projections of human behaviour. Uncertainty can therefore be represented by quantitative measures (e.g. a range of values calculated by various models) or by qualitative statements (e.g., reflecting the judgement of a team of experts). See Moss and Schneider (2000).

United Nations Framework Convention on Climate Change (UNFCC)

The Convention was adopted on 9 May 1992 in New York and signed at the 1992 Earth Summit in Rio de Janeiro by more than 150 countries and the European Community. Its ultimate objective is the "stabilisation of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system". It contains commitments for all Parties. Under the Convention, Parties included in Annex I aim to return greenhouse gas emissions not controlled by the Montreal Protocol to 1990 levels by the year 2000. The convention entered into force in March 1994. See: \rightarrow Kyoto Protocol.

Uptake

The addition of a substance of concern to a \rightarrow reservoir. The uptake of carbon containing substances, in particular carbon dioxide, is often called (carbon) *sequestration*.

Volume mixing ratio

See: \rightarrow Mole fraction.

Sources:

Charlson, R. J., and J. Heintzenberg (Eds.): *Aerosol Forcing of Climate*, pp. 91-108, copyright 1995 ©John Wiley and Sons Limited. Reproduced with permission.

- **IPCC**, 1992: Climate Change 1992: *The Supplementary Report to the IPCC Scientific Assessment* [J. T. Houghton, B. A. Callander and S. K. Varney (eds.)]. Cambridge University Press, Cambridge, UK, xi + 116 pp.
- IPCC, 1994: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, [J. T. Houghton, L. G. Meira Filho, J. Bruce, Hoesung Lee, B. A. Callander, E. Haites, N. Harris and K. Maskell (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 339 pp.
- IPCC, 1996: Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [J. T. Houghton., L.G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 572 pp.
- IPCC, 1997a: IPCC Technical Paper 2: An introduction to simple climate models used in the IPCC Second Assessment Report, [J. T. Houghton, L.G. Meira Filho, D. J. Griggs and K. Maskell (eds.)]. 51 pp.
- IPCC, 1997b: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (3 volumes) [J. T. Houghton, L. G. Meira Filho, B. Lim, K. Tréanton, I. Mamaty, Y. Bonduki, D. J. Griggs and B. A. Callander (eds.)].
- IPCC, 1997c: IPCC technical Paper 4: Implications of proposed CO₂ emissions limitations. [J. T. Houghton, L.G. Meira Filho, D. J. Griggs and M Noguer (eds.)]. 41 pp.
- **IPCC**, 2000:Land Use, Land-Use Change, and Forestry. Special Report of the IPCC. [R.T. Watson, I.R. Noble, B. Bolin, N.H. Ravindranath and D. J. Verardo, D. J. Dokken, , (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 377 pp.
- Maunder, W. John , 1992: Dictionary of Global Climate Change, UCL Press Ltd.
- Moss, R. and S. Schneider, 2000: *IPCC Supporting Material*, pp. 33-51:Uncertainties in the *IPCC TAR: Recommendations* to Lead Authors for more consistent Assessment and Reporting, [R. Pachauri, T. Taniguchi and K. Tanaka (eds.)]
- Nakićenović, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grübler, T. Y. Jung, T. Kram, E. L. La Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, H. Pitcher, L. Price, K. Raihi, A. Roehrl, H-H. Rogner, A. Sankovski, M. Schlesinger, P. Shukla, S. Smith, R. Swart, S. van Rooijen, N. Victor, Z. Dadi, 2000: *Emissions Scenarios, A Special Report of Working Group III of the Intergovernmental Panel on Climate Change*. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 pp.
- Schwartz, S. E. and P. Warneck, 1995: Units for use in atmospheric chemistry, Pure & Appl. Chem., 67, pp. 1377-1406.

Appendix II

SRES Tables

Contents

Introductio	n	800
II.1: Anthro	pogenic Emissions	801
II.1.1	CO ₂ emissions (PgC/yr)	801
II.1.2	CH ₄ emissions (Tg(CH ₄)/yr)	801
II.1.3	N ₂ O emissions (TgN/yr)	802
II.1.4	PFCs, SF ₆ and HFCs emissions (Gg/yr)	802
II.1.5	NO _x emissions (TgN/yr)	805
II.1.6	CO emissions (Tg(CO)/yr)	806
II.1.7	VOC emissions (Tg/yr)	806
II.1.8	SO ₂ emissions (TgS/yr)	806
II.1.9	BC aerosols emissions (Tg/yr)	807
II.1.10	OC aerosols emissions (Tg/yr)	807
II.2: Abund	ances and Burdens	807
II.2.1	CO ₂ abundances (ppm)	807
II.2.2	CH ₄ abundance (ppb)	809
II.2.3	N ₂ O abundance (ppb)	809
II.2.4	PFCs, SF_6 and HFCs abundances (ppt)	809
II.2.5	Tropospheric O_3 burden (global mean	
	column in DU)	814
II.2.6	Tropospheric OH (as a factor relative to	
	year 2000)	814
II.2.7	SO_4^{2-} aerosols burden (TgS)	814
II.2.8	BC aerosol burden (Tg)	815
II.2.9	OC aerosol burden (Tg)	815
II.2.10	CFCs and HFCs abundances from WMO98	3
	Scenario A1 (baseline) following the	
	Montreal (1997) Amendments (ppt)	816
II.3: Radiat	ive Forcing (Wm ⁻²)	817
II.3.1	CO ₂ radiative forcing (Wm ⁻²)	817

II.3.2	CH ₄ radiative forcing (Wm ⁻²)	818
II.3.3	N ₂ O radiative forcing (Wm ⁻²)	818
II.3.4	PFCs, SF ₆ and HFCs radiative forcing	
	(Wm ⁻²)	819
II.3.5	Tropospheric O ₃ radiative forcing (Wm ⁻²)	822
II.3.6	SO_4^{2-} aerosols (direct effect) radiative	
	forcing (Wm ⁻²)	822
II.3.7	BC aerosols radiative forcing (Wm ⁻²)	822
II.3.8	OC aerosols radiative forcing (Wm ⁻²)	822
II.3.9	CFCs and HFCs following the Montreal (1997) Amendments – radiative	
	forcing (Wm ⁻²)	823
П.3.10	Radiative Forcing (Wm ⁻²) from fosil fuel plus biomass Organic and Black Carbon as used in the Chapter 9 Simple Model SRES	
	Projections	823
II.3.11	Total Radiative Forcing (Wm ⁻²) from GHC	ì
	plus direct and indirect aerosol effects	823
II.4: Surface	e Air Temperature Change (°C)	824
II.5: Sea Lev	vel Change (mm)	824
II.5.1	Total sea level change (mm)	824
II.5.2	Sea level change due to thermal expansion	
	(mm)	825
II.5.3	Sea level change due to glaciers and ice	
TT <i>n</i> (caps (mm)	825
11.5.4	Sea level change due to Greenland (mm)	826
11.5.5	Sea level change due to Antarctica (mm)	826
References		826

Introduction

Appendix II gives, in tabulated form, the values for emissions, abundances and burdens, and, radiative forcing of major greenhouse gases and aerosols based on the SRES¹ scenarios (Nakićenović *et. al.*, 2000). The Appendix also presents global projections of changes in surface air temperature and sea level using these SRES emission scenarios.

The emission values are only anthropogenic emissions and are the ones published in Appendix VII of the SRES Report. Apart from the CO_2 emissions, for which deforestation and land use values are given in the SRES Report, the SRES scenarios for the rest of the gases define only the changes in direct anthropogenic emissions and do not specify the current magnitude of the natural emissions nor the concurrent changes in natural emissions due either to direct human activities such as land-use change or to the indirect impacts of climate change. Emissions for black carbon (BC) aerosols and organic matter carbonaceous (OC) aerosols species not covered in the SRES Report, are calculated by scaling to the SRES anthropogenic CO emissions.

The abundances and burdens for each of the species are calculated with the latest climate chemistry and climate carbon models (see Chapters 3, 4 and 5 for details).

The radiative forcings due to well-mixed greenhouse gases are computed using each of the simplified expressions given in

¹ IPCC Special Report on Emission Scenarios (Nakićenović *et. al.*, 2000), herafter SRES.

Chapter 6, Table 6.2. The radiative forcings associated with future tropospheric O_3 increase are calculated on the basis of the O_3 changes presented in Chapter 4 for the various SRES scenarios. The mean forcing per DU estimated from the various models, and given in Chapter 6, Table 6.3 (i.e., 0.042 Wm⁻²/DU), is used to derive these future forcings. For each aerosol species, the ratio of the column burdens for the particular scenario to that of the year 2000 is multiplied by the "best estimate" of the present day radiative forcing (see Chapter 6 for more details). The radiative forcings for all the species have been calculated since pre-industrial time.

The global mean surface air temperature and sea level projections, based on the SRES scenarios, have been calculated using Simple Climate models which have been "tuned" to get similar responses to the AOGCMs in the global mean (see Chapters 9 and 11 for details).

The results presented are global mean values, every ten years from 2000 to 2100, for a range of scenarios. These scenarios are the final approved Illustrative Marker Scenarios (A1B, A1T, A1FI, A2, B1, and B2); the preliminary marker scenarios (A1p, A2p, B1p, B2p, approved by the IPCC Bureau in June 1998) and, for comparison and for some species, results based on a previous scenario used by IPCC (IS92a) have also been added. For some gases, the values tabulated in the IPCC Second Assessment Report (IPCC, 1996; hereafter SAR), for that IS92a scenario using the previous generation of chemistry and climate models, are also given.

Main Chemical Symbols used in this Appendix:

- CO₂ carbon dioxide
- CH₄ methane
- CFC chlorofluorocarbon
- CO carbon monoxide
- HFC hydrofluorocarbon
- N₂O nitrous oxide
- NO_x the sum of NO (nitric oxide) and NO_2 (nitrogen dioxide)

O₃ ozone OH hydroxyl

- PFC perfluorocarbon
- SO₂ sulphur dioxide
- SO_4^{2-} sulphate ion
- SF₆ sulphur hexafluoride
- VOC volatile organic compound

II.1: Anthropogenic Emissions

II.1.1: CO₂ emissions (PgC/yr)

$\rm CO_2$ emissions from fossil fuel and industrial processes (PgC/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	6.90	6.90	6.90	6.90	6.90	6.90	6.8	6.8	6.8	6.8	7.1
2010	9.68	8.33	8.65	8.46	8.50	7.99	9.7	8.4	7.7	7.9	8.68
2020	12.12	10.00	11.19	11.01	10.00	9.02	12.2	10.9	8.3	8.9	10.26
2030	14.01	12.26	14.61	13.53	11.20	10.15	14.2	13.3	8.4	10.0	11.62
2040	14.95	12.60	18.66	15.01	12.20	10.93	15.2	14.7	9.1	10.8	12.66
2050	16.01	12.29	23.10	16.49	11.70	11.23	16.2	16.4	9.8	11.1	13.7
2060	15.70	11.41	25.14	18.49	10.20	11.74	15.9	18.2	10.4	11.6	14.68
2070	15.43	9.91	27.12	20.49	8.60	11.87	15.6	20.2	10.1	11.8	15.66
2080	14.83	8.05	29.04	22.97	7.30	12.46	15.0	22.7	8.7	12.4	17.0
2090	13.94	6.27	29.64	25.94	6.10	13.20	14.1	25.6	7.5	13.1	18.7
2100	13.10	4.31	30.32	28.91	5.20	13.82	13.2	28.8	6.5	13.7	20.4

CO₂ emissions from deforestation and land use (PgC/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	1.07	1.07	1.07	1.07	1.07	1.07	1.6	1.6	1.6	1.6	1.3
2010	1.20	1.04	1.08	1.12	0.78	0.80	1.5	1.6	0.8	1.8	1.22
2020	0.52	0.26	1.55	1.25	0.63	0.03	1.6	1.7	1.3	1.6	1.14
2030	0.47	0.12	1.57	1.19	-0.09	-0.25	0.7	1.5	0.7	0.3	1.04
2040	0.40	0.05	1.31	1.06	-0.48	-0.24	0.3	1.3	0.6	0.0	0.92
2050	0.37	-0.02	0.80	0.93	-0.41	-0.23	-0.2	1.2	0.5	-0.3	0.8
2060	0.30	-0.03	0.55	0.67	-0.46	-0.24	-0.3	0.7	0.7	-0.2	0.54
2070	0.30	-0.03	0.16	0.40	-0.42	-0.25	-0.3	0.4	0.8	-0.2	0.28
2080	0.35	-0.03	-0.36	0.25	-0.60	-0.31	-0.4	0.3	1.0	-0.2	0.12
2090	0.36	-0.01	-1.22	0.21	-0.78	-0.41	-0.5	0.2	1.2	-0.2	0.06
2100	0.39	0.00	-2.08	0.18	-0.97	-0.50	-0.6	0.2	1.4	-0.2	-0.1

CO₂ emissions - total (PgC/yr)

_		_	-								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	7.97	7.97	7.97	7.97	7.97	7.97	8.4	8.4	8.4	8.4	8.4
2010	10.88	9.38	9.73	9.58	9.28	8.78	11.2	10.0	8.5	9.7	9.9
2020	12.64	10.26	12.73	12.25	10.63	9.05	13.8	12.6	9.6	10.5	11.4
2030	14.48	12.38	16.19	14.72	11.11	9.90	14.9	14.8	9.1	10.3	12.66
2040	15.35	12.65	19.97	16.07	11.72	10.69	15.5	16.0	9.7	10.8	13.58
2050	16.38	12.26	23.90	17.43	11.29	11.01	16.0	17.6	10.3	10.8	14.5
2060	16.00	11.38	25.69	19.16	9.74	11.49	15.6	18.9	11.1	11.4	15.22
2070	15.73	9.87	27.28	20.89	8.18	11.62	15.3	20.6	10.9	11.6	15.94
2080	15.18	8.02	28.68	23.22	6.70	12.15	14.6	23.0	9.7	12.2	17.12
2090	14.30	6.26	28.42	26.15	5.32	12.79	13.6	25.8	8.7	12.9	18.76
2100	13.49	4.32	28.24	29.09	4.23	13.32	12.6	29.0	7.9	13.5	20.3

II.1.2: CH₄ emissions (Tg(CH₄)/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	323	323	323	323	323	323	347	347	347	347	390
2010	373	362	359	370	349	349	417	394	367	389	433
2020	421	415	416	424	377	384	484	448	396	448	477
2030	466	483	489	486	385	426	547	506	403	501	529
2040	458	495	567	542	381	466	531	560	423	528	580
2050	452	500	630	598	359	504	514	621	444	538	630
2060	410	459	655	654	342	522	464	674	445	544	654
2070	373	404	677	711	324	544	413	732	446	542	678
2080	341	359	695	770	293	566	370	790	447	529	704
2090	314	317	715	829	266	579	336	848	413	508	733
2100	289	274	735	889	236	597	301	913	379	508	762

802

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	7.0	7.0	7.0	7.0	7.0	7.0	6.9	6.9	6.9	6.9	5.5
2010	7.0	6.1	8.0	8.1	7.5	6.2	7.3	7.9	7.4	7.1	6.2
2020	7.2	6.1	9.3	9.6	8.1	6.1	7.7	9.4	8.1	7.1	7.1
2030	7.3	6.2	10.9	10.7	8.2	6.1	7.5	10.5	8.3	6.7	7.7
2040	7.4	6.2	12.8	11.3	8.3	6.2	7.1	11.1	8.6	6.4	8.0
2050	7.4	6.1	14.5	12.0	8.3	6.3	6.8	11.8	8.9	6.0	8.3
2060	7.3	6.0	15.0	12.9	7.7	6.4	6.3	12.7	8.8	5.8	8.3
2070	7.2	5.7	15.4	13.9	7.4	6.6	5.9	13.7	8.7	5.5	8.4
2080	7.1	5.6	15.7	14.8	7.0	6.7	5.5	14.6	8.6	5.4	8.5
2090	7.1	5.5	16.1	15.7	6.4	6.8	5.2	15.5	8.3	5.2	8.6
2100	7.0	5.4	16.6	16.5	5.7	6.9	4.9	16.4	8.0	5.1	8.7

II.1.4: PFCs, SF₆ and HFCs emissions (Gg/yr)

CF₄ emissions (Gg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	12.6	12.6	12.6	12.6	12.6	12.6	26.7	26.7	26.7	26.7
2010	15.3	15.3	15.3	20.3	14.5	21.0	28.4	28.9	27.0	29.9
2020	21.1	21.1	21.1	25.2	15.7	27.1	41.0	35.2	29.6	37.7
2030	30.1	30.1	30.1	31.4	16.6	34.6	59.4	43.0	31.4	47.4
2040	38.2	38.2	38.2	37.9	18.5	43.6	71.7	50.9	33.1	58.9
2050	43.8	43.8	43.8	45.6	20.9	52.7	77.3	60.0	35.5	70.5
2060	48.1	48.1	48.1	56.0	23.1	59.2	76.7	72.6	36.1	78.5
2070	52.1	52.1	52.1	63.6	22.5	63.1	64.2	84.7	29.6	85.1
2080	56.1	56.1	56.1	73.2	21.3	64.2	40.6	97.9	19.7	86.6
2090	58.9	58.9	58.9	82.8	22.5	62.9	46.8	110.9	20.8	84.7
2100	57.0	57.0	57.0	88.2	22.2	59.9	53.0	117.9	20.5	80.6

C₂F₆ emissions (Gg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	1.3	1.3	1.3	1.3	1.3	1.3	2.7	2.7	2.7	2.7
2010	1.5	1.5	1.5	2.0	1.5	2.1	2.8	2.9	2.7	3.0
2020	2.1	2.1	2.1	2.5	1.6	2.7	4.1	3.5	3.0	3.8
2030	3.0	3.0	3.0	3.1	1.7	3.5	5.9	4.3	3.1	4.7
2040	3.8	3.8	3.8	3.8	1.8	4.4	7.2	5.1	3.3	5.9
2050	4.4	4.4	4.4	4.6	2.1	5.3	7.7	6.0	3.6	7.1
2060	4.8	4.8	4.8	5.6	2.3	5.9	7.7	7.3	3.6	7.9
2070	5.2	5.2	5.2	6.4	2.2	6.3	6.4	8.5	3.0	8.5
2080	5.6	5.6	5.6	7.3	2.1	6.4	4.1	9.8	2.0	8.7
2090	5.9	5.9	5.9	8.3	2.2	6.3	4.7	11.1	2.1	8.5
2100	5.7	5.7	5.7	8.8	2.2	6.0	5.3	11.8	2.1	8.1

SF ₆ emis	sions (Gg	/yr)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2
2010	6.7	6.7	6.7	7.6	5.6	7.4	7.2	8.0	6.4	7.7
2020	7.3	7.3	7.3	9.7	5.7	8.4	7.9	10.2	6.5	9.9
2030	10.2	10.2	10.2	11.6	7.2	9.2	10.7	12.0	8.0	12.5
2040	15.2	15.2	15.2	13.7	8.9	11.7	15.8	14.0	9.7	15.8
2050	18.3	18.3	18.3	16.0	10.4	12.1	18.8	16.8	11.2	18.6
2060	19.5	19.5	19.5	18.8	10.9	12.2	20.0	18.7	11.6	20.4
2070	17.3	17.3	17.3	19.8	9.5	11.4	17.8	19.7	10.2	22.0
2080	13.5	13.5	13.5	20.7	7.1	9.6	12.0	20.6	6.8	22.8
2090	13.0	13.0	13.0	23.4	6.5	10.0	13.5	23.3	7.2	23.9
2100	14.5	14.5	14.5	25.2	6.5	10.6	15.0	25.1	7.2	24.4
HFC-23	emissions	s (Ga/yr)								
Vear	Δ1R	$\Delta 1T$	Δ1FI	Δ2	R1	R2	Δln	Δ2n	R1n	B2n
2000	13	13	13	13	13	13	13	13	13	13
2000	15	15	15	15	15	15	15	15	15	15
2010	15	15	15	15	5	15	15	5	5	15
2020	5	5	5	5	5	5	5	5	5	5
2030	2	2	2	2	2	2	2	2	2	2
2040	2	2	2	2	2	2	2	2	2	2
2050	1	1	1	1	1	1	0	0	0	0
2060	1	1	1	1	1	1	0	0	0	0
2070	1	1	1	1	1	1	0	0	0	0
2080	1	1	1	1	1	1	0	0	0	0
2090	1	1	1	1	1	1	0	0	0	0
2100	1	1	1	1	1	1	0	0	0	0
HFC-32	emissions	s (Gg/yr)								
Vaca	A 1 D	A 1T	A 1 FI	Δ2	B1	B2	A1n	A2p	B1n	B2n
rear	AIB	AII	AIIT	112	DI	D2	1110	-	210	DEP
2000	0 0	0	0	0	0	0	2	2	2	2
2000 2010	0 4	0 4	0 4	0 4	0 3	03	2 3	2 3	2 3	2 3
2000 2010 2020	AIB 0 4 8	0 4 8	0 4 8	0 4 6	0 3 6	0 3 6	2 3 8	2 3 6	2 3 6	2 3 7
2000 2010 2020 2030	AIB 0 4 8 14	0 4 8 14	0 4 8 14	0 4 6 9	0 3 6 8	0 3 6 9	2 3 8 14	2 3 6 9	2 3 6 8	2 3 7 10
2000 2010 2020 2030 2040	AIB 0 4 8 14 19	0 4 8 14 19	0 4 8 14 19	0 4 6 9 11	0 3 6 8 10	0 3 6 9 11	2 3 8 14 19	2 3 6 9 10	2 3 6 8 10	2 3 7 10 12
2000 2010 2020 2030 2040 2050	AIB 0 4 8 14 19 24	0 4 8 14 19 24	0 4 8 14 19 24	0 4 6 9 11 14	0 3 6 8 10 14	0 3 6 9 11 14	2 3 8 14 19 24	2 3 6 9 10 13	2 3 6 8 10 14	2 3 7 10 12 16
2000 2010 2020 2030 2040 2050 2060	ATB 0 4 8 14 19 24 28	0 4 8 14 19 24 28	0 4 8 14 19 24 28	0 4 6 9 11 14 17	0 3 6 8 10 14 14	0 3 6 9 11 14 17	2 3 8 14 19 24 26	2 3 6 9 10 13 16	2 3 6 8 10 14 14	2 3 7 10 12 16 19
2000 2010 2020 2030 2040 2050 2060 2070	AIB 0 4 8 14 19 24 28 29 29	All 0 4 8 14 19 24 28 29 29	0 4 8 14 19 24 28 29	0 4 6 9 11 14 17 20	0 3 6 8 10 14 14 14	0 3 6 9 11 14 17 20	2 3 8 14 19 24 26 27	2 3 6 9 10 13 16 19	2 3 6 8 10 14 14 14	2 3 7 10 12 16 19 21
2000 2010 2020 2030 2040 2050 2060 2070 2080	ATB 0 4 8 14 19 24 28 29 30	All 0 4 8 14 19 24 28 29 30	0 4 8 14 19 24 28 29 30	0 4 6 9 11 14 17 20 24	0 3 6 8 10 14 14 14 14	0 3 6 9 11 14 17 20 22	2 3 8 14 19 24 26 27 28	2 3 6 9 10 13 16 19 23	2 3 6 8 10 14 14 14 14	2 3 7 10 12 16 19 21 23
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090	ATB 0 4 8 14 19 24 28 29 30	All O 0 4 8 14 19 24 28 29 30 30	0 4 8 14 19 24 28 29 30 30	0 4 6 9 11 14 17 20 24 29	0 3 6 8 10 14 14 14 14 14 14	0 3 6 9 11 14 17 20 22 24	2 3 8 14 19 24 26 27 28 28	2 3 6 9 10 13 16 19 23 28	2 3 6 8 10 14 14 14 14 14 13	2 3 7 10 12 16 19 21 23 24
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	ATB 0 4 8 14 19 24 28 29 30 30 30	All 0 0 4 8 14 19 24 28 29 30 30 30 30	0 4 8 14 19 24 28 29 30 30 30 30	0 4 6 9 11 14 17 20 24 29 33	0 3 6 8 10 14 14 14 14 14 13	0 3 6 9 11 14 17 20 22 24 26	2 3 8 14 19 24 26 27 28 28 28	2 3 6 9 10 13 16 19 23 28 33	2 3 6 8 10 14 14 14 14 13 13	2 3 7 10 12 16 19 21 23 24 25
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	ATB 0 4 8 14 19 24 28 29 30 30 5 emission	A11 0 4 8 14 19 24 28 29 30 30 30 30 S (Gg/yr)	0 4 8 14 19 24 28 29 30 30 30 30	0 4 6 9 11 14 17 20 24 29 33	0 3 6 8 10 14 14 14 14 14 14 13	0 3 6 9 11 14 17 20 22 24 26	2 3 8 14 19 24 26 27 28 28 28 28	2 3 6 9 10 13 16 19 23 28 33	2 3 6 8 10 14 14 14 14 14 13 13	2 3 7 10 12 16 19 21 23 24 25
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B	A11 0 4 8 14 19 24 28 29 30 30 30 as (Gg/yr) A1T	AIII 0 4 8 14 19 24 28 29 30 30 30	0 4 6 9 11 14 17 20 24 29 33	0 3 6 8 10 14 14 14 14 14 14 13 B1	D 0 3 6 9 11 14 17 20 22 24 26 B2	2 3 8 14 19 24 26 27 28 28 28 28	2 3 6 9 10 13 16 19 23 28 33 A2p	2 3 6 8 10 14 14 14 14 14 13 13 B1p	2 3 7 10 12 16 19 21 23 24 25 B2p
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0	A11 0 4 8 14 19 24 28 29 30 30 30 A1T 0	AIII 0 4 8 14 19 24 28 29 30 30 30 30 0	0 4 6 9 11 14 17 20 24 29 33	0 3 6 8 10 14 14 14 14 14 14 14 13 B1 0	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0	2 3 8 14 19 24 26 27 28 28 28 28 28 7	2 3 6 9 10 13 16 19 23 28 33 A2p 7	2 3 6 8 10 14 14 14 14 14 13 13 B1p 7	2 3 7 10 12 16 19 21 23 24 25 B2p 7
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0 12	A11 0 4 8 14 19 24 28 29 30 30 30 30 A1T 0 12	AIII 0 4 8 14 19 24 28 29 30 30 30 30 30 11 0 12	0 4 6 9 11 14 17 20 24 29 33 A2 0 11	0 3 6 8 10 14 14 14 14 14 14 14 13 B1 0 11	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11	2 3 8 14 19 24 26 27 28 28 28 28 28 7 11	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10	2 3 6 8 10 14 14 14 14 14 13 13 B1p 7 10	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0 12 27	A11 0 4 8 14 19 24 28 29 30 30 30 A1T 0 12 27	AIII 0 4 8 14 19 24 28 29 30 30 30 30 30 12 27	0 4 6 9 11 14 17 20 24 29 33 A2 0 11 21	D1 0 3 6 8 10 14 12	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26	2 3 8 14 19 24 26 27 28 28 28 28 28 7 11 26	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19	2 3 6 8 10 14 14 14 14 14 13 13 B1p 7 10 20	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010 2020 2030	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0 12 27 45	A11 0 4 8 14 19 24 28 29 30 30 30 A1T 0 12 27 45	All 1 0 4 8 14 19 24 28 29 30 30 30 30 30 12 27 45	0 4 6 9 11 14 17 20 24 29 33 A2 0 11 21 29	D1 0 3 6 8 10 14 12 29	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26	2 3 8 14 19 24 26 27 28 28 28 28 28 7 11 26 44	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27	2 3 6 8 10 14 14 14 14 14 13 13 B1p 7 10 20 28	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010 2020 2030 2040	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0 12 27 45 62	A11 0 4 8 14 19 24 28 29 30 30 30 A1T 0 12 27 45 62	All 0 4 8 14 19 24 28 29 30 30 30 30 30 21 27 45 62	0 4 6 9 11 14 17 20 24 29 33 A2 0 11 21 29 35	0 3 6 8 10 14 14 14 14 14 14 14 14 13 B1 0 11 21 29 36	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 30 38	2 3 8 14 19 24 26 27 28 28 28 28 28 7 11 26 44 62	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33	2 3 6 8 10 14 14 14 14 14 13 13 B1p 7 10 20 28 35	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010 2020 2030 2040 2050	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0 12 27 45 62 80	A11 0 4 8 14 19 24 28 29 30 30 30 A1T 0 12 27 45 62 80	All 1 0 4 8 14 19 24 28 29 30 30 30 30 30 30 27 45 62 80	0 4 6 9 11 14 17 20 24 29 33	D1 0 3 6 8 10 14 12 29 36 48	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 30 38 49	2 3 8 14 19 24 26 27 28 28 28 28 28 28 7 11 26 44 62 78	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33 43	2 3 6 8 10 14 14 14 14 14 13 13 B1p 7 10 20 28 35 47	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40 52
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010 2020 2030 2040 2050 2060	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0 12 27 45 62 80 94	A11 0 4 8 14 19 24 28 29 30 30 30 A1T 0 12 27 45 62 80 94	AIII 0 4 8 14 19 24 28 29 30 30 30 30 30 30 30 227 45 62 80 94	0 4 6 9 11 14 17 20 24 29 33 A2 0 11 21 29 35 46 56	D1 0 3 6 8 10 14 15 0 11 21 29 36 48 48	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 30 38 49 58	2 3 8 14 19 24 26 27 28 28 28 28 28 28 7 11 26 44 62 78 84	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33 43 53	2 3 6 8 10 14 14 14 14 14 13 13 B1p 7 10 20 28 35 47 48	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40 52 62
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010 2020 2030 2040 2050 2060 2070	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0 12 27 45 62 80 94 98	A11 0 4 8 14 19 24 28 29 30 30 30 30 A1T 0 12 27 45 62 80 94 98	All 1 0 4 8 14 19 24 28 29 30 30 30 30 30 30 27 45 62 80 94 98	0 4 6 9 11 14 17 20 24 29 33 A2 0 11 21 29 35 46 56 66	0 3 6 8 10 14 13 0 11 21 29 36 48 48 48 48 48 48 48 14 <td>D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 B2 0 11 22 30 38 49 58 67</td> <td>2 3 8 14 19 24 26 27 28 28 28 28 28 28 28 28 28 28</td> <td>2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33 43 53 62</td> <td>2 3 6 8 10 14 14 14 14 14 14 13 13 B1p 7 10 20 28 35 47 48 47</td> <td>2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40 52 62 70</td>	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 B2 0 11 22 30 38 49 58 67	2 3 8 14 19 24 26 27 28 28 28 28 28 28 28 28 28 28	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33 43 53 62	2 3 6 8 10 14 14 14 14 14 14 13 13 B1p 7 10 20 28 35 47 48 47	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40 52 62 70
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010 2020 2030 2040 2050 2060 2070 2080	A1B 0 4 8 14 19 24 28 29 30 30 30 5 emission A1B 0 12 27 45 62 80 94 98 100	All O 0 4 8 14 19 24 28 29 30 30 30 30 AIT 0 12 27 45 62 80 94 98 100	All 1 0 4 8 14 19 24 28 29 30 30 30 30 30 30 30 227 45 62 80 94 98 100	0 4 6 9 11 14 17 20 24 29 33 A2 0 11 21 29 35 46 56 66 79	D1 0 3 6 8 10 14 13 0 11 21 29 36 48 48 48 48 48 48 48 48 48 <td>D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 B2 0 11 22 30 38 49 58 67 76</td> <td>2 3 8 14 19 24 26 27 28 28 28 28 28 28 28 28 28 28</td> <td>2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33 43 53 62 74</td> <td>2 3 6 8 10 14 14 14 14 14 14 13 13 B1p 7 10 20 28 35 47 48 47 46</td> <td>2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40 52 62 70 75</td>	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 B2 0 11 22 30 38 49 58 67 76	2 3 8 14 19 24 26 27 28 28 28 28 28 28 28 28 28 28	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33 43 53 62 74	2 3 6 8 10 14 14 14 14 14 14 13 13 B1p 7 10 20 28 35 47 48 47 46	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40 52 62 70 75
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090	A1B 0 4 8 14 19 24 28 29 30 30 5 emission A1B 0 12 27 45 62 80 94 98 100 101	All O 0 4 8 14 19 24 28 29 30 30 as (Gg/yr) A1T 0 12 27 45 62 80 94 98 100 101	All I 0 4 8 14 19 24 28 29 30 30 30 30 30 30 30 227 45 62 80 94 98 100 101	0 4 6 9 11 14 17 20 24 29 33 A2 0 11 21 29 35 46 56 66 79 94	0 3 6 8 10 14 13 0 11 21 29 36 48 48 48 48 48 46	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 B2 0 11 22 30 38 49 58 67 76 83	2 3 8 14 19 24 26 27 28 28 28 28 28 28 28 28 28 28	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33 43 53 62 74 89	2 3 6 8 10 14 14 14 14 14 14 13 13 B1p 7 10 20 28 35 47 48 47 46 45	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40 52 62 70 75 79
Tean 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-12: Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0 0 4 8 14 19 24 28 29 30 30 5 emission A1B 0 12 27 45 62 80 94 98 100 101	A11 0 4 8 14 19 24 28 29 30 30 30 A1T 0 12 27 45 62 80 94 98 100 101 101	All I 0 4 8 14 19 24 28 29 30 30 30 30 30 30 30 27 45 62 80 94 98 100 101	0 4 6 9 11 14 17 20 24 29 33 A2 0 11 21 29 35 46 56 66 79 94 106	0 3 6 8 10 14 15 0 11 21 29 36 48 48 48 48 48 46 44	D2 0 3 6 9 11 14 17 20 22 24 26 B2 0 11 22 24 26 B2 0 11 22 30 38 49 58 67 76 83 89	2 3 8 14 19 24 26 27 28 28 28 28 28 28 28 28 28 28	2 3 6 9 10 13 16 19 23 28 33 A2p 7 10 19 27 33 43 53 62 74 89 104	2 3 6 8 10 14 14 14 14 14 13 13 B1p 7 10 20 28 35 47 48 47 46 45 43	2 3 7 10 12 16 19 21 23 24 25 B2p 7 10 22 32 40 52 62 70 75 79 83

HFC-1	34a emiss	sions (Gg/	/yr)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	80	80	80	80	80	80	147	147	147	147	148
2010	176	176	176	166	163	166	220	204	206	216	290
2020	326	326	326	252	249	262	427	315	319	359	396
2030	515	515	515	330	326	352	693	412	422	496	557
2040	725	725	725	405	414	443	997	508	545	638	738
2050	931	931	931	506	547	561	1215	635	734	816	918
2050	1076	1076	1076	633	550	679	1213	800	732	991	969
2000	1078	1078	1078	758	544	700	1201	062	718	1133	1020
2070	10/0	10/0	10/0	015	533	010	12/2	1160	608	1202	1020
2080	1001	1001	1001	1107	512	1002	1247	1422	667	1202	1047
2090	1029	1029	1029	1260	J15 106	1002	1204	1422	607	1201	1051
2100	980	980	980	1200	460	1079	1142	10/1	027	1517	1055
HFC-1	43a emiss	sions (Gg	/vr)								
Year	A1B	AIT	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	
2000	0	0	0	0	0	0	6	6	6	6	
2010	9	9	9	9	8	8	8	8	8	8	
2020	21	21	21	16	15	16	20	15	15	17	
2030	34	34	34	22	21	22	34	21	21	24	
2040	47	47	47	27	26	27	48	26	26	30	
2050	61	61	61	35	35	35	60	20	35	30	
2050	70	70	70	43	35	42	64	23 41	35	3) 47	
2000	74	74	74	-1-J 51	35		67	48	35	53	
2070	74	74	74	61	25	49 55	60	40 59	25	55	
2000	75	75	75	72	24	55	70	30 70	22	57	
2090	70	70	70	15	54 20	60	70	/0	22	60	
2100	/0	/0	/0	82	32	00	70	81	32	03	
HFC-1	52a emiss	sions (Gg	/vr)								
Year	A1B	AIT	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	0	0	0	0	0	0	0	0	0	0	0
2010	0	0	0	0	0	0	0	0	0	0	0
2020	0	0	0	0	0	0	0	0	0	0	18
2030	0	0	0	0	0	0	0	0	0	0	114
2040	0	0	0	0	0	0	0	0	0	0	281
2050	0	0	Ő	0	Õ	0	0	Õ	0	0	448
2060	Ő	Ő	Ő	0	Ő	Ő	Ő	Ő	Ő	Õ	495
2070	Õ	0	0	Ő	0	0	0	0	Ő	0	542
2080	0	0	0	0	0	0	0	0	0	0	567
2000	0	0	0	0	0	0	0	0	0	0	568
2090	0	0	0	0	0	0	0	0	0	0	570
2100	0	0	U	U	0	0	U	U	0	0	510
HFC-2	227ea emis	ssions (G	g/yr)								
Year	A1B	A1T	A1FI	A2	<u>B</u> 1	B2	A1p	A2p	B1p	B2p	
2000	0	0	0	0	0	0	8	8	8	8	
2010	13	13	13	12	13	14	12	11	11	12	
2020	22	22	22	17	18	20	21	16	17	18	
2030	34	34	34	21	24	26	33	19	22	25	
2040	48	48	48	26	30	33	48	24	28	32	
2050	62	62	62	32	39	41	57	29	38	41	
2060	72	72	72	40	40	50	60	37	37	49	
2070	71	71	71	48	39	59	60	44	37	57	
2080	68	68	68	58	38	67	59	53	36	60	
2090	65	65	65	70	36	74	56	64	34	63	
2100	61	61	61	80	34	80	53	76	32	66	
2100				/			/	/			

HFC-245ca emissions (Gg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0	0	0	0	0	0	38	38	38	38
2010	62	62	62	59	60	61	56	52	53	55
2020	100	100	100	79	80	85	98	73	75	84
2030	158	158	158	98	102	112	159	92	97	114
2040	222	222	222	121	131	144	229	113	128	149
2050	292	292	292	149	173	178	281	140	173	188
2060	350	350	350	190	173	216	298	179	172	229
2070	343	343	343	228	170	255	299	216	168	266
2080	330	330	330	276	166	290	287	262	163	280
2090	312	312	312	334	159	323	271	319	155	291
2100	288	288	288	388	150	353	251	376	145	302
HFC43-	10mee em	issions (G	g/yr)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0	0	0	0	0	0	5	5	5	5
2010	7	7	7	7	6	6	6	6	6	6
2020	9	9	9	8	7	7	8	7	7	7
2030	12	12	12	8	8	8	10	7	7	8
2040	15	15	15	9	9	10	13	8	9	9
2050	18	18	18	11	11	11	15	9	10	11
2060	22	22	22	12	11	12	17	11	10	12
2070	24	24	24	14	11	14	20	12	10	13
2070		21	21	11					10	
2070 2080	27	27	27	16	11	15	22	14	10	14
2070 2080 2090	27 29	27 29	27 29	16 19	11 11	15 17	22 24	14 17	10 10	14 15

Note: Table II.1.4 contains supplementary data to the SRES Report (Nakićenović *et. al.*, 2000): The data contained in the SRES Report was insufficient to break down the individual contributions to HFCs, PFCs and SF₆, these emissions were supplied by Lead Authors of the SRES Report and are also available at the CIESIN (Center for International Earth Science Information Network) Website (http://sres.ciesin.org). The sample scenario IS92a is only included for HFC–125, HFC–134a, and HFC–152a. All PFCs, SF₆ and HFCs emissions are the same for family A1 (A1B, A1T and A1FI).

II.1.5: NO_x emissions (TgN/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	32.0	32.0	32.0	32.0	32.0	32.0	32.5	32.5	32.5	32.5	37.0
2010	39.3	38.8	39.7	39.2	36.1	36.7	41.0	39.6	34.8	37.6	43.4
2020	46.1	46.4	50.4	50.3	39.9	42.7	48.9	50.7	39.3	43.4	49.8
2030	50.2	55.9	62.8	60.7	42.0	48.9	52.5	60.8	40.7	48.4	55.2
2040	48.9	59.7	77.1	65.9	42.6	53.4	50.9	65.8	44.8	52.8	59.6
2050	47.9	61.0	94.9	71.1	38.8	54.5	49.3	71.5	48.9	53.7	64.0
2060	46.0	59.6	102.1	75.5	34.3	56.1	47.2	75.6	48.9	55.4	67.8
2070	44.2	51.7	108.5	79.8	29.6	56.3	45.1	80.1	48.9	55.6	71.6
2080	42.7	42.8	115.4	87.5	25.7	59.2	43.3	87.3	48.9	58.5	75.4
2090	41.4	34.8	111.5	98.3	22.2	60.9	41.8	97.9	41.2	60.1	79.2
2100	40.2	28.1	109.6	109.2	18.7	61.2	40.3	109.7	33.6	60.4	83.0

Note: NO_x is the sum of NO and NO_2

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	877	877	877	877	877	877	1036	1036	1036	1036	1048
2010	1002	1003	1020	977	789	935	1273	1136	849	1138	1096
2020	1032	1147	1204	1075	751	1022	1531	1234	985	1211	1145
2030	1109	1362	1436	1259	603	1111	1641	1413	864	1175	1207
2040	1160	1555	1726	1344	531	1220	1815	1494	903	1268	1282
2050	1214	1770	2159	1428	471	1319	1990	1586	942	1351	1358
2060	1245	1944	2270	1545	459	1423	2174	1696	984	1466	1431
2070	1276	2078	2483	1662	456	1570	2359	1816	1026	1625	1504
2080	1357	2164	2776	1842	426	1742	2455	1985	1068	1803	1576
2090	1499	2156	2685	2084	399	1886	2463	2218	1009	1948	1649
2100	1663	2077	2570	2326	363	2002	2471	2484	950	2067	1722

II.1.7: Total VOC emissions (Tg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	141	141	141	141	141	141	151	151	151	151	126
2010	178	164	166	155	141	159	178	164	143	172	142
2020	222	190	192	179	140	180	207	188	151	192	158
2030	266	212	214	202	131	199	229	210	144	202	173
2040	272	229	256	214	123	214	255	221	147	215	188
2050	279	241	322	225	116	217	285	235	150	217	202
2060	284	242	361	238	111	214	324	246	155	214	218
2070	289	229	405	251	103	202	301	260	160	202	234
2080	269	199	449	275	99	192	263	282	165	192	251
2090	228	167	435	309	96	178	223	315	159	178	267
2100	193	128	420	342	87	170	174	352	154	170	283

Note: Volatile Organic Compounds (VOC) include non-methane hydrocarbons (NMHC) and oxygenated NMHC (e.g., alcohols, aldehydes and organic acids).

II.1.8: SO₂ emissions (TgS/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	79.0
2010	87.1	64.7	80.8	74.7	73.9	65.9	87.4	74.7	59.8	68.2	95.0
2020	100.2	59.9	86.9	99.5	74.6	61.3	100.8	99.5	56.2	65.0	111.0
2030	91.0	59.6	96.1	112.5	78.2	60.3	91.4	111.9	53.5	59.9	125.8
2040	68.9	45.9	94.0	109.0	78.5	59.0	77.9	108.1	53.3	58.8	139.4
2050	64.1	40.2	80.5	105.4	68.9	55.7	64.3	105.4	51.4	57.2	153.0
2060	46.9	34.4	56.3	89.6	55.8	53.8	51.2	86.3	51.2	53.7	151.8
2070	35.7	30.1	42.6	73.7	44.3	50.9	44.9	71.7	49.2	51.9	150.6
2080	30.7	25.2	39.4	64.7	36.1	50.0	30.7	64.2	42.2	49.1	149.4
2090	29.1	23.3	39.8	62.5	29.8	49.0	29.1	61.9	33.9	48.0	148.2
2100	27.6	20.2	40.1	60.3	24.9	47.9	27.4	60.3	28.6	47.3	147.0

Note: The SRES emissions for SO₂ are used with a linear offset in all scenarios to 69.0 TgS/yr in year 2000.

II.1.9: BC aerosol emissions (Tg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4
2010	13.9	13.9	14.1	13.6	11.3	13.1	15.2	13.6	10.2	13.6	13.0
2020	14.3	15.6	16.3	14.8	10.9	14.1	18.3	14.8	11.8	14.5	13.6
2030	15.2	18.2	19.1	17.0	9.1	15.2	19.6	16.9	10.3	14.1	14.3
2040	15.8	20.5	22.6	18.0	8.3	16.5	21.7	17.9	10.8	15.2	15.2
2050	16.4	23.1	27.7	19.0	7.5	17.7	23.8	19.0	11.3	16.2	16.1
2060	16.8	25.2	29.1	20.4	7.4	18.9	26.0	20.3	11.8	17.5	17.0
2070	17.2	26.8	31.6	21.8	7.4	20.7	28.2	21.7	12.3	19.4	17.9
2080	18.1	27.8	35.1	24.0	7.0	22.8	29.4	23.8	12.8	21.6	18.7
2090	19.8	27.7	34.0	26.8	6.7	24.5	29.5	26.5	12.1	23.3	19.6
2100	21.8	26.8	32.7	29.7	6.2	25.9	29.6	29.7	11.4	24.7	20.5

Note: Emissions for BC are scaled to SRES anthropogenic CO emissions offset to year 2000.

II.1.10: OC aerosol emissions (Tg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4
2010	91.2	91.3	92.6	89.3	74.5	86.0	100.0	89.3	66.7	89.4	85.2
2020	93.6	102.6	107.1	97.0	71.5	92.8	120.3	97.0	77.4	95.2	89.0
2030	99.6	119.5	125.3	111.4	59.9	99.8	128.9	111.0	67.9	92.3	93.9
2040	103.6	134.7	148.1	118.1	54.2	108.3	142.6	117.4	71.0	99.6	99.8
2050	107.9	151.6	182.1	124.7	49.5	116.1	156.4	124.6	74.0	106.2	105.8
2060	110.3	165.2	190.9	133.9	48.6	124.3	170.8	133.3	77.3	115.2	111.5
2070	112.8	175.8	207.6	143.1	48.3	135.9	185.4	142.7	80.6	127.7	117.2
2080	119.1	182.5	230.6	157.2	46.0	149.4	192.9	156.0	83.9	141.7	122.9
2090	130.3	181.9	223.5	176.2	43.8	160.7	193.5	174.3	79.3	153.1	128.6
2100	143.2	175.7	214.4	195.2	41.0	169.8	194.2	195.2	74.6	162.4	134.4

Note: Emissions for OC are scaled to SRES anthropogenic CO emissions offset to year 2000.

II.2: Abundances and burdens

II.2.1: CO₂ abundances (ppm)

ISAM	SAM model (reference) – CO ₂ abundances (ppm) IS9														
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR			
1970	325	325	325	325	325	325	325	325	325	325	325	326			
1980	337	337	337	337	337	337	337	337	337	337	337	338			
1990	353	353	353	353	353	353	353	353	353	353	353	354			
2000	369	369	369	369	369	369	369	369	369	369	369	372			
2010	391	389	389	390	388	388	393	391	388	390	390	393			
2020	420	412	417	417	412	408	425	419	409	414	415	418			
2030	454	440	455	451	437	429	461	453	429	438	444	446			
2040	491	471	504	490	463	453	499	492	450	462	475	476			
2050	532	501	567	532	488	478	538	535	472	486	508	509			
2060	572	528	638	580	509	504	577	583	497	512	543	544			
2070	611	550	716	635	525	531	615	637	522	539	582	580			
2080	649	567	799	698	537	559	652	699	544	567	623	620			
2090	685	577	885	771	545	589	685	771	563	597	670	664			
2100	717	582	970	856	549	621	715	856	578	630	723	715			

ISAM model (low) - CO₂ abundances (ppm)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	368	368	368	368	368	368	368	368	368	368	368
2010	383	381	381	382	380	380	385	383	380	382	382
2020	405	398	403	402	398	394	409	404	395	400	401
2030	432	419	433	429	416	410	438	431	410	417	423
2040	461	443	473	460	436	427	467	461	425	435	446
2050	493	466	525	493	455	446	498	495	442	454	472
2060	524	486	584	532	470	466	528	534	460	473	499
2070	554	501	647	576	480	486	557	577	479	492	529
2080	582	511	715	626	486	507	583	627	495	513	561
2090	607	516	783	686	490	530	607	686	507	536	598
2100	630	516	851	755	490	554	627	755	517	561	640
ISAM n	nodel (hi	gh) – CO	2 abundan	ces (ppm	l)						
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	369	369	369	369	369	369	369	369	369	369	369
2010	397	394	394	395	394	393	398	396	393	396	396
2020	431	422	427	427	422	417	435	429	418	424	426
2030	470	455	471	466	452	443	477	469	444	453	460
2040	513	491	527	511	483	472	521	514	469	482	498
2050	560	527	597	561	514	502	568	564	496	512	539
2060	609	560	678	617	541	534	615	620	527	543	583
2070	656	590	767	681	563	567	661	682	558	577	631
2080	703	613	863	754	581	602	706	755	586	612	682
2090	748	631	962	838	594	640	749	838	611	650	739
	=00	< 10									

Note: A "reference" case was defined with climate sensitivity 2.5° C, ocean uptake corresponding to the mean of the ocean model results in Chapter 3, Figure 3.10, and terrestrial uptake corresponding to the mean of the responses of mid–range models, LPJ, IBIS and SDGM (Chapter 3, Figure 3.10). A "low CO₂" parametrization was chosen with climate sensitivity 1.5° C and maximal CO₂ uptake by oceans and land. A "high CO₂" parametrization was defined with climate sensitivity 4.5° C and minimal CO₂ uptake by oceans and land. See Chapter 3, Box 3.7, and Jain *et al.* (1994) for more details on the ISAM model.

The IS92a column values are calculated using the ISAM parametrization noted above with IS92a emissions starting in the year 2000; whereas the IS92a/SAR column refers to values as reported in the SAR using IS92a emissions starting in 1990, using the SAR parametrization of ISAM.

Bern-	Jern-CC model (reference) - CO ₂ abundances (ppm) IS92														
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR			
1970	325	325	325	325	325	325	325	325	325	325	325	325			
1980	337	337	337	337	337	337	337	337	337	337	337	337			
1990	352	352	352	352	352	352	352	352	352	352	352	353			
2000	367	367	367	367	367	367	367	367	367	367	367	370			
2010	388	386	386	386	386	385	390	388	385	387	387	391			
2020	418	410	415	414	410	406	421	416	407	412	413	416			
2030	447	435	449	444	432	425	454	447	425	433	439	444			
2040	483	466	495	481	457	448	490	484	445	457	468	475			
2050	522	496	555	522	482	473	529	525	467	481	499	507			
2060	563	523	625	568	503	499	569	571	492	506	533	541			
2070	601	545	702	620	518	524	606	622	515	532	568	577			
2080	639	563	786	682	530	552	642	683	537	559	607	616			
2090	674	572	872	754	538	581	674	754	555	588	653	660			
2100	703	575	958	836	540	611	702	836	569	618	703	709			

Bern-CC model (low) - CO₂ abundances (ppm)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	367	367	367	367	367	367	367	367	367	367	367
2010	383	381	381	381	381	380	384	383	380	382	383
2020	407	400	405	404	400	396	411	406	397	402	403
2030	432	419	432	428	417	410	437	431	410	417	424
2040	460	442	472	459	436	427	466	461	425	434	448
2050	491	464	521	492	455	445	496	495	440	452	473
2060	522	483	577	529	470	464	524	531	458	470	500
2070	548	496	636	569	479	482	550	569	475	487	527
2080	575	505	700	617	485	502	575	616	490	507	559
2090	598	508	763	671	487	522	596	670	501	528	593
2100	617	506	824	735	486	544	613	734	509	550	632
Bern-	CC model	(high) –	CO ₂ abun	dances (p	pm)						
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	367	367	367	367	367	367	367	367	367	367	367
2010	395	393	393	393	392	392	397	395	392	394	395
2020	436	427	433	431	426	422	441	434	424	430	431
2030	483	467	484	477	463	454	491	482	455	465	471
2040	538	514	552	533	503	491	548	538	488	504	517
2050	599	562	638	597	544	531	609	602	524	544	568
2060	666	610	743	670	584	575	675	675	566	588	624
2070	732	653	859	753	617	620	738	757	608	632	684
2080	797	689	985	848	645	668	802	851	648	680	750
2000	960	717	1110	0.57	111	510	0.62	050	(00	720	000
2090	800	/1/	1118	957	666	/18	863	959	682	/30	822

Note: A "reference" case was defined with an average ocean uptake for the 1980s of 2.0 PgC/yr. A "low CO₂" parameterisation was obtained by combining a "fast ocean" (ocean uptake of 2.54 PgC/yr for the 1980s) and no response of heterotrophic respiration to temperature. A "high CO₂" parameterisation was obtained by combining a "slow ocean " (ocean uptake of 1.46 PgC/yr for the 1980s) and capping CO₂ fertilisation. Climate sensitivity was set to 2.5°C for a doubling of CO₂. See Chapter 3, Box 3.7 for more details on the Bern–CC model.

The IS92a/SAR column refers to values as reported in the SAR using IS92a emissions; whereas the IS92a column is calculated using IS92a emissions but with year 2000 starting values and the BERN-CC model as described in Chapter 3.

The Bern-CC model was initialised for observed atmospheric CO_2 which was prescribed for the period 1765 to 1999. The CO_2 data were smoothed by a spline. Scenario calculations started at the begining of the year 2000. This explains the difference in the values given for the years upto 2000. Values shown are for the beginning of each year. Annual-mean values are generally higher (up to 7ppm) depending on the scenario and the year.

II.2.2: CH₄ abundances (ppb)

												IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
1970	1420	1420	1420	1420	1420	1420	1420	1420	1420	1420	1420	1420
1980	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570
1990	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700
2000	1760	1760	1760	1760	1760	1760	1760	1760	1760	1760	1760	1810
2010	1871	1856	1851	1861	1827	1839	1899	1861	1816	1862	1855	1964
2020	2026	1998	1986	1997	1891	1936	2126	1997	1878	2020	1979	2145
2030	2202	2194	2175	2163	1927	2058	2392	2159	1931	2201	2129	2343
2040	2337	2377	2413	2357	1919	2201	2598	2344	1963	2358	2306	2561
2050	2400	2503	2668	2562	1881	2363	2709	2549	2009	2473	2497	2793
2060	2386	2552	2875	2779	1836	2510	2736	2768	2049	2552	2663	3003
2070	2301	2507	3030	3011	1797	2639	2669	2998	2077	2606	2791	3175
2080	2191	2420	3175	3252	1741	2765	2533	3238	2100	2625	2905	3328
2090	2078	2310	3307	3493	1663	2872	2367	3475	2091	2597	3019	3474
2100	1974	2169	3413	3731	1574	2973	2187	3717	2039	2569	3136	3616

Note: The IS92a/SAR column refers to values as reported in the SAR using IS92a emissions; whereas the IS92a column is calculated using IS92a emissions but with year 2000 starting values and the new feedbacks on the lifetime. See Chapter 4 for details.

II.2.3: N₂O abundances (ppb)

												IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
1970	295	295	295	295	295	295	295	295	295	295	295	295
1980	301	301	301	301	301	301	301	301	301	301	301	301
1990	308	308	308	308	308	308	308	308	308	308	308	308
2000	316	316	316	316	316	316	316	316	316	316	316	319
2010	324	323	325	325	324	323	324	325	324	324	324	328
2020	331	328	335	335	333	328	332	335	333	331	333	339
2030	338	333	347	347	341	333	340	347	341	338	343	350
2040	344	338	361	360	349	338	346	360	350	343	353	361
2050	350	342	378	373	357	342	351	373	358	347	363	371
2060	356	345	396	387	363	346	355	386	366	350	372	382
2070	360	348	413	401	368	350	358	400	373	352	381	391
2080	365	350	429	416	371	354	360	415	380	354	389	400
2090	368	352	445	432	374	358	361	430	385	355	396	409
2100	372	354	460	447	375	362	361	446	389	356	403	417

Note: The IS92a/SAR column refers to values as reported in the SAR using IS92a emissions; whereas the IS92a column is calculated using IS92a emissions but with year 2000 starting values and the new feedbacks on the lifetime. See Chapter 4 for details.

II.2.4: PFCs, SF₆ and HFCs abundances (ppt)

CF₄ abundances (ppt)

Year	A1B	A1T	A1FI	A2	B1	B2	Alp	A2p	B1p	B2p
1990	70	70	70	70	70	70	70	70	70	70
2000	82	82	82	82	82	82	82	82	82	82
2010	91	91	91	92	91	93	100	100	100	100
2020	103	103	103	107	101	108	122	121	118	122
2030	119	119	119	125	111	128	154	146	138	150
2040	141	141	141	148	122	153	197	176	159	184
2050	168	168	168	175	135	184	245	212	181	226
2060	198	198	198	208	150	221	296	255	204	274
2070	230	230	230	246	164	261	342	306	226	327
2080	265	265	265	291	179	302	377	365	242	383
2090	303	303	303	341	193	344	405	433	256	439
2100	341	341	341	397	208	384	437	508	269	493
C_2F_6a	bundance	es (ppt)								
Year	A1B	AIT	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	2	2	2	2	2	2	2	2	2	2
2000	3	3	3	3	3	3	3	3	3	3
2010	4	4	4	4	4	4	4	4	4	4

rear	mb	1111	11111	112	DI	D_{-}	mp	112p	Dip	D2
1990	2	2	2	2	2	2	2	2	2	2
2000	3	3	3	3	3	3	3	3	3	3
2010	4	4	4	4	4	4	4	4	4	4
2020	5	5	5	5	4	5	6	6	6	6
2030	6	6	6	6	5	6	8	7	7	8
2040	7	7	7	7	6	8	11	9	8	10
2050	9	9	9	9	7	10	14	12	10	12
2060	11	11	11	11	8	12	17	14	11	16
2070	13	13	13	14	8	15	20	18	12	19
2080	15	15	15	17	9	17	22	21	13	22
2090	17	17	17	20	10	20	24	26	14	26

SF₆ abundances (ppt)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	3	3	3	3	3	3	3	3	3	3
2000	5	5	5	5	5	5	5	5	5	5
2010	7	7	7	7	7	7	7	7	7	7
2020	10	10	10	11	9	10	10	11	10	11
2030	13	13	13	15	12	14	14	15	12	15
2040	18	18	18	20	15	18	19	20	16	21
2050	25	25	25	26	19	23	26	26	20	27
2060	32	32	32	32	23	27	33	33	24	35
2070	39	39	39	40	27	32	41	41	29	43
2080	45	45	45	48	30	36	46	48	32	52
2090	50	50	50	56	33	40	51	57	35	61
2100	56	56	56	65	35	44	57	66	37	70

HFC-23 abundances (ppt)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	8	8	8	8	8	8	8	8	8	8
2000	15	15	15	15	15	15	15	15	15	15
2010	26	26	26	26	26	26	26	26	26	26
2020	33	33	33	33	33	33	33	33	33	33
2030	35	35	35	35	35	35	35	35	35	35
2040	35	35	35	35	35	35	36	35	35	35
2050	35	35	35	35	35	35	35	35	35	35
2060	35	35	35	35	34	35	34	34	33	34
2070	35	35	34	34	34	34	33	32	32	33
2080	34	34	34	34	33	34	32	31	31	31
2090	34	34	34	34	33	34	31	30	30	30
2100	34	34	34	33	32	34	30	29	29	29

HFC-32 abundance (ppt)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0
2010	1	1	1	1	1	1	1	1	1	1
2020	3	3	3	3	3	3	3	3	3	3
2030	7	7	6	4	4	4	7	4	4	5
2040	10	10	10	6	5	6	11	5	5	7
2050	14	14	13	7	7	8	15	7	7	9
2060	17	17	16	9	8	10	18	9	8	11
2070	19	19	18	11	8	12	20	11	8	13
2080	19	21	19	14	8	14	21	13	8	14
2090	20	22	20	17	8	15	21	16	8	15
2100	19	22	20	20	8	17	20	20	8	16

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
1990	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0	0
2010	2	2	2	2	2	2	4	3	3	3	0
2020	9	9	9	8	8	8	10	8	8	9	2
2030	21	21	21	16	16	16	22	15	16	17	12
2040	37	37	37	24	24	26	38	23	24	27	40
2050	57	56	55	34	33	36	57	32	33	38	87
2060	77	78	76	45	43	48	78	43	42	51	137
2070	97	98	95	58	49	61	96	54	49	65	177
2080	112	115	111	72	54	75	111	68	54	77	210
2090	124	129	124	89	57	88	123	83	57	89	236
2100	133	140	134	107	58	102	132	101	58	99	255

HFC-134a abundance (ppt)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
1990	0	0	0	0	0	0	0	0	0	0	0
2000	12	12	12	12	12	12	12	12	12	12	12
2010	58	58	58	55	55	56	80	76	76	79	94
2020	130	130	129	111	108	113	172	141	142	155	183
2030	236	235	233	170	165	179	319	214	215	250	281
2040	375	373	366	231	223	250	522	290	294	356	401
2050	537	535	521	299	293	330	754	375	393	477	537
2060	698	701	675	382	352	424	954	480	476	615	657
2070	814	832	791	480	380	526	1092	606	515	756	743
2080	871	912	859	594	391	633	1167	753	530	878	807
2090	887	952	893	729	390	737	1185	930	531	968	850
2100	875	956	899	877	379	835	1157	1132	522	1041	878

HFC-143a abundance (ppt)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0
2010	3	3	3	3	2	2	4	4	4	4
2020	11	11	11	10	9	9	12	11	11	11
2030	26	26	26	20	18	19	27	20	20	22
2040	47	47	47	32	29	31	48	31	31	35
2050	73	73	72	45	43	45	75	44	44	51
2060	103	103	101	62	57	62	104	60	58	69
2070	132	133	130	81	68	81	131	78	69	89
2080	158	161	157	103	77	101	156	98	79	110
2090	181	185	180	129	85	121	179	123	86	129
2100	200	207	201	157	90	142	197	151	92	147

HFC-152a abundance (ppt)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
1990	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0	0
2010	0	0	0	0	0	0	0	0	0	0	0
2020	0	0	0	0	0	0	0	0	0	0	2
2030	0	0	0	0	0	0	0	0	0	0	12
2040	0	0	0	0	0	0	0	0	0	0	33
2050	0	0	0	0	0	0	0	0	0	0	56
2060	0	0	0	0	0	0	0	0	0	0	67
2070	0	0	0	0	0	0	0	0	0	0	74
2080	0	0	0	0	0	0	0	0	0	0	79
2090	0	0	0	0	0	0	0	0	0	0	81
2100	0	0	0	0	0	0	0	0	0	0	82

HFC-227ea abundance (ppt)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0
2010	2	2	2	2	2	2	3	3	3	3
2020	6	6	6	5	6	6	7	6	6	7
2030	13	13	13	10	10	11	13	9	10	11
2040	22	22	22	14	15	17	22	13	15	17
2050	33	33	32	19	21	24	33	18	20	23
2060	45	45	44	25	27	31	43	23	26	31
2070	56	56	55	32	31	40	52	29	30	39
2080	63	65	62	40	34	49	60	36	33	47
2090	68	71	68	49	35	59	64	45	34	54
2100	70	74	71	60	36	68	67	55	35	60
HEC 1	1500 obu	ndanca (r	(tere							

HFC-245ca abundance (ppt)

Year	A1B	AlT	A1FI	A2	B1	B2	Alp	A2p	Blp	B2p
1990	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0
2010	8	8	8	8	8	8	11	10	10	10
2020	20	20	20	17	17	18	20	16	16	18
2030	34	34	33	23	23	26	35	21	22	26
2040	52	51	50	29	29	34	55	27	28	35
2050	72	72	69	36	38	44	76	34	38	46
2060	92	93	88	46	43	55	92	43	44	58
2070	102	105	99	58	44	67	101	55	44	70
2080	101	108	101	72	43	80	101	68	44	79
2090	97	107	99	88	42	92	96	84	43	84
2100	90	101	94	105	40	103	88	101	41	88

HFC-43-10mee abundance (ppt)

A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
2	2	2	2	1	1	2	2	2	2
3	3	3	2	2	2	3	2	2	2
4	4	4	3	2	3	4	2	2	3
5	5	5	3	3	3	5	3	3	3
7	7	6	4	3	4	6	3	3	4
8	8	8	4	4	5	7	4	3	4
9	9	9	5	4	5	8	4	4	5
10	11	10	6	4	6	9	5	4	5
11	12	11	7	4	7	10	6	4	6
	A1B 0 1 2 3 4 5 7 8 9 10 11	A1B A1T 0 0 0 0 1 1 2 2 3 3 4 4 5 5 7 7 8 8 9 9 10 11 11 12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1B A1T A1FI A2 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 2 4 4 4 4 3 5 5 5 5 3 7 7 7 6 4 8 8 8 4 9 9 9 5 10 11 10 6 11 12 11 7	A1B A1T A1FI A2 B1 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 1 3 3 3 2 2 1 3 3 3 2 2 4 4 4 3 2 5 5 5 3 3 7 7 6 4 3 8 8 8 4 4 9 9 9 5 4 10 11 10 6 4 11 12 11 7 4	A1BA1TA1FIA2B1B2000000000000001111111222211333222444323555333776434888445999545101110646111211747	A1BA1TA1FIA2B1B2A1p000000000000000011111111222211233322345553335776434688844579995458101110646911121174710	A1BA1TA1FIA2B1B2A1pA2p000000000000000000111111112222112233322322444323425553335377643463888445749995458410111064695111211747106	A1BA1TA1FIA2B1B2A1pA2pB1p000000000000000000001111111112222112223332234224443234225553335337764346338884457439995458441011106469541112117471064

Note: Even though all PFCs, SF6 and HFCs emissions are the same for family A1 (A1B, A1T and A1FI), the OH changes due to CH_4 , NO_x , CO and VOC (affecting only HFCs burdens). Hence the burden for HFCs can diverge for each of these scenarios within family A1. See Chapter 4 for details.

II.2.5: Tropospheric O₃ burden (global mean column in DU)

												IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
1990	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0
2000	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.3
2010	35.8	35.6	35.8	35.7	34.8	35.2	36.2	35.6	34.3	35.4	35.5	34.8
2020	37.8	37.7	38.4	38.2	35.6	36.7	38.8	38.2	35.4	37.1	37.1	35.3
2030	39.3	40.3	41.5	40.8	35.9	38.4	40.5	40.7	35.7	38.5	38.7	35.8
2040	39.7	41.9	45.1	42.6	35.8	39.8	41.3	42.4	36.5	39.9	40.1	36.5
2050	39.8	42.9	49.6	44.2	35.0	40.7	41.6	44.1	37.5	40.6	41.6	37.1
2060	39.6	43.1	51.9	45.7	34.0	41.5	41.8	45.6	37.7	41.2	42.9	37.7
2070	39.1	41.9	53.8	47.2	33.1	42.1	41.4	47.1	37.9	41.6	44.0	38.2
2080	38.5	40.2	55.9	49.3	32.1	43.0	40.8	49.1	38.1	42.3	45.1	38.7
2090	38.0	38.4	55.6	52.0	31.2	43.7	39.9	51.8	36.8	42.6	46.1	39.1
2100	37.5	36.5	55.2	54.8	30.1	44.2	38.9	54.7	35.2	42.8	47.2	39.5

Note: IS92a/SAR column refers to IS92a emissions as reported in the SAR which estimated this O_3 change only as an indirect feedback effect from CH₄ increases; whereas IS92a column uses the latest models (see Chapter 4) which include also changes in emissions of NO_x, CO and VOC. A mean tropospheric O_3 content of 34 DU in 1990 is adopted; and 1 ppb of tropospheric $O_3 = 0.65$ DU.

These projected increases in troposheric O_3 are likely to be 25% too large, see note to Table 4.11 of Chapter 4 describing corrections made after government review.

II.2.6: Tropospheric OH (as a factor relative to year 2000)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2010	0.99	0.99	0.99	1.00	1.01	0.99	0.98	1.00	1.02	0.99	1.00
2020	0.97	0.98	0.99	1.00	1.02	0.99	0.94	1.00	1.01	0.97	0.99
2030	0.94	0.96	0.98	0.99	1.04	0.98	0.90	0.99	1.02	0.96	0.98
2040	0.91	0.93	0.96	0.98	1.06	0.96	0.85	0.98	1.03	0.95	0.96
2050	0.90	0.89	0.94	0.96	1.06	0.93	0.81	0.96	1.04	0.93	0.95
2060	0.89	0.87	0.92	0.94	1.05	0.91	0.78	0.94	1.03	0.92	0.93
2070	0.89	0.84	0.90	0.92	1.04	0.89	0.77	0.92	1.01	0.90	0.92
2080	0.89	0.81	0.88	0.90	1.04	0.87	0.77	0.90	1.01	0.89	0.91
2090	0.90	0.81	0.86	0.89	1.04	0.86	0.80	0.89	0.98	0.89	0.90
2100	0.90	0.82	0.86	0.88	1.05	0.84	0.82	0.88	0.97	0.89	0.89

II.2.7: SO₄²⁻ aerosol burden (TgS)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
2010	0.66	0.49	0.61	0.56	0.56	0.50	0.66	0.56	0.45	0.51	0.64
2020	0.76	0.45	0.65	0.75	0.56	0.46	0.76	0.75	0.42	0.49	0.76
2030	0.69	0.45	0.72	0.85	0.59	0.45	0.69	0.84	0.40	0.45	0.87
2040	0.52	0.35	0.71	0.82	0.59	0.44	0.59	0.81	0.40	0.44	0.98
2050	0.48	0.30	0.61	0.79	0.52	0.42	0.48	0.79	0.39	0.43	1.08
2060	0.35	0.26	0.42	0.68	0.42	0.41	0.39	0.65	0.39	0.40	1.07
2070	0.27	0.23	0.32	0.56	0.33	0.38	0.34	0.54	0.37	0.39	1.06
2080	0.23	0.19	0.30	0.49	0.27	0.38	0.23	0.48	0.32	0.37	1.05
2090	0.22	0.18	0.30	0.47	0.22	0.37	0.22	0.47	0.26	0.36	1.04
2100	0.21	0.15	0.30	0.45	0.19	0.36	0.21	0.45	0.22	0.36	1.03

Note: Global burden is scaled to emissions: 0.52 Tg burden for 69.0 TgS/yr emissions.

II.2.8: BC aerosol burden (Tg)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
2010	0.29	0.29	0.30	0.29	0.24	0.27	0.32	0.29	0.21	0.29	0.27
2020	0.30	0.33	0.34	0.31	0.23	0.30	0.38	0.31	0.25	0.30	0.28
2030	0.32	0.38	0.40	0.36	0.19	0.32	0.41	0.35	0.22	0.29	0.30
2040	0.33	0.43	0.47	0.38	0.17	0.35	0.46	0.37	0.23	0.32	0.32
2050	0.34	0.48	0.58	0.40	0.16	0.37	0.50	0.40	0.24	0.34	0.34
2060	0.35	0.53	0.61	0.43	0.16	0.40	0.55	0.43	0.25	0.37	0.36
2070	0.36	0.56	0.66	0.46	0.15	0.43	0.59	0.46	0.26	0.41	0.37
2080	0.38	0.58	0.74	0.50	0.15	0.48	0.62	0.50	0.27	0.45	0.39
2090	0.42	0.58	0.71	0.56	0.14	0.51	0.62	0.56	0.25	0.49	0.41
2100	0.46	0.56	0.68	0.62	0.13	0.54	0.62	0.62	0.24	0.52	0.43

Note: Global burden is scaled to emissions: 0.26 Tg burden for 12.4 Tg/yr emsissions.

II.2.9: OC aerosol burden (Tg)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
2010	1.70	1.70	1.73	1.67	1.39	1.61	1.87	1.67	1.25	1.67	1.59
2020	1.75	1.92	2.00	1.81	1.34	1.73	2.25	1.81	1.45	1.78	1.66
2030	1.86	2.23	2.34	2.08	1.12	1.86	2.41	2.07	1.27	1.72	1.75
2040	1.94	2.51	2.77	2.21	1.01	2.02	2.66	2.19	1.32	1.86	1.86
2050	2.01	2.83	3.40	2.33	0.92	2.17	2.92	2.33	1.38	1.98	1.97
2060	2.06	3.09	3.56	2.50	0.91	2.32	3.19	2.49	1.44	2.15	2.08
2070	2.11	3.28	3.88	2.67	0.90	2.54	3.46	2.66	1.51	2.38	2.19
2080	2.22	3.41	4.31	2.94	0.86	2.79	3.60	2.91	1.57	2.65	2.29
2090	2.43	3.40	4.17	3.29	0.82	3.00	3.61	3.25	1.48	2.86	2.40
2100	2.67	3.28	4.00	3.65	0.77	3.17	3.63	3.64	1.39	3.03	2.51

Note: Global burden is scaled to emissions: 1.52 Tg burden for 81.4 Tg/yr emissions.

Year	CFC-11	CFC-12	CFC-113	CFC-114	CFC-115	CCl_4	CH ₃ CCl ₃	HCFC-22	HCFC-141b	HCFC-142b	HCFC-123	CF ₂ BrCl	CF ₃ Br	EESC1
1970	50	109	4	6	0	56	13	13	0	0	0	0	0	1.25
1975	106	199	9	8	1	77	36	25	0	0	0	0	0	1.54
1980	164	290	18	10	1	92	75	41	0	0	0	1	0	1.99
1985	207	373	34	12	3	100	102	64	0	0	0	2	1	2.44
1990	258	467	67	15	5	102	125	90	0	1	0	3	2	2.87
1995	271	520	86	16	7	100	110	112	3	7	0	4	2	3.30
2000	267	535	85	16	9	92	44	145	13	15	0	4	3	3.28
2010	246	527	81	16	9	75	6	257	22	33	2	4	3	3.03
2020	214	486	72	15	9	59	1	229	16	32	3	3	3	2.74
2030	180	441	64	15	9	47	0	137	9	23	2	2	3	2.42
2040	149	400	57	14	9	37	0	88	6	17	2	1	3	2.16
2050	123	362	51	14	9	29	0	46	2	11	1	1	3	1.94
2060	101	328	45	13	9	23	0	20	1	6	1	0	2	1.76
2070	83	298	40	13	9	18	0	9	0	4	0	0	2	1.62
2080	68	270	36	12	8	14	0	4	0	2	0	0	2	1.51
2090	56	245	32	12	8	11	0	2	0	1	0	0	2	1.41
2100	45	222	28	12	8	9	0	1	0	1	0	0	1	1.33

II.2.10: CFCs and HFCs abundances from WMO98 Scenario A1(baseline) following the Montreal (1997) Amendments (ppt)

Notes: Only significant greenhouse halocarbons shown (ppt). EESCl = Equivalent Effective Stratospheric Chlorine in ppb (includes Br). [Source: UNEP/WMO Scientific Assessment of Ozone Depletion: 1998 (Chapter 11), Version 5, June 3, 1998, Calculations by John Daniel and Guus Velders - guus.velders@rivm.nl & jdaniel@al.noaa.gov]

II.3: Radiative Forcing (Wm⁻²) (relative to pre-industrial period, 1750)

The concentrations of CO_2 and CH_4 considered here correspond to the year 2000 and differ slightly from those considered in Chapter 6 which used the values corresponding to the year 1998 (as appropriate for the time frame when Chapter 6 began its preparation). The resulting difference in the computed present day forcings is about 3% in the case of CO_2 and about 2% in the case of CH_4 . For N₂O, the difference in the computed forcings is negligible. In the case of tropospheric ozone, the forcing for the year 2000 given here and that in Chapter 6 are the results of slightly different scenarios employed which leads to about a 9% difference in the forcings. For the halogen containing compounds, the absolute differences in concentrations between here and Chapter 6 lead to a difference in present day forcing of less than 0.002 Wm⁻² for any species.

II.3.1: CO₂ radiative forcing (Wm⁻²)

ISAM	model (re	eference) -	- CO ₂ rad	liative for	cing (Wn	1 ⁻²)						IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.56
2010	1.82	1.80	1.80	1.81	1.78	1.78	1.85	1.82	1.78	1.81	1.81	1.85
2020	2.21	2.10	2.17	2.17	2.10	2.05	2.27	2.19	2.07	2.13	2.14	2.18
2030	2.62	2.46	2.64	2.59	2.42	2.32	2.71	2.61	2.32	2.43	2.50	2.53
2040	3.04	2.82	3.18	3.03	2.73	2.61	3.13	3.05	2.58	2.72	2.87	2.88
2050	3.47	3.15	3.81	3.47	3.01	2.90	3.53	3.50	2.83	2.99	3.23	3.24
2060	3.86	3.43	4.44	3.93	3.24	3.18	3.91	3.96	3.11	3.27	3.58	3.59
2070	4.21	3.65	5.06	4.42	3.40	3.46	4.25	4.44	3.37	3.54	3.95	3.93
2080	4 54	3.81	5.65	4 93	3 52	3 74	4 56	4 93	3 59	3.81	4 32	4 29
2000	4.82	3.91	6.20	5 46	3.60	4.02	4.82	5 46	3 78	4 09	4 71	4.66
2100	5.07	3.95	6.69	6.02	3.64	4.30	5.05	6.02	3.92	4.38	5.11	5.05
ISAM	model (lo	$(\mathbf{w}) - \mathbf{CO}_{\mathbf{v}}$	radiative	forcing (Wm ⁻²)							
Year	A1R	A1T	A 1FI	Δ2	B1	B2	Aln	A2n	B1n	B2n	1892a	
2000	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	<u>1 50</u>	1.50	
2000	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.30	1.50	
2010	2.01	1.02	1.09	1.70	1.07	1.07	2.07	2.00	1.07	1.70	1.70	
2020	2.01	2.10	1.99	1.27	2.16	2.08	2.07	2.00	2.00	2.17	2.25	
2030	2.50	2.19	2.37	2.52	2.10	2.00	2.45	2.55	2.08	2.17	2.23	
2040	2.71	2.49	2.04	2.09	2.41	2.50	2.70	2.71	2.27	2.40	2.33	
2030	2.00	2.70	2.07	2.00	2.04	2.33	5.12 2.42	2.40	2.40	2.02	2.05	
2000	3.39	2.99	3.97	3.47	2.81	2.70	3.43	5.49 2.01	2.09	2.84	5.15	
2070	3.09	3.15	4.52	5.90	2.92	2.99	3.12	3.91	2.91	3.05	3.44	
2080	5.95	3.20	5.05	4.54	2.99	3.21 2.45	3.90	4.55	3.09	3.28	5.70	
2090	4.18	3.31	5.54	4.83	3.03	3.45	4.18	4.83	3.21	3.51	4.10	
2100	4.38	3.31	5.99	5.35	3.03	3.69	4.35	5.35	3.32	3.76	4.46	
ISAM	model (hi	igh) – CO	₂ radiativ	e forcing	(Wm ⁻²)				D.(1000	
Year	AIB	AIT	AIFI	A2	BI	B2	Alp	A2p	Blp	B2p	1S92a	
2000	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	
2010	1.91	1.87	1.87	1.88	1.87	1.85	1.92	1.89	1.85	1.89	1.89	
2020	2.35	2.23	2.30	2.30	2.23	2.17	2.40	2.32	2.18	2.26	2.28	
2030	2.81	2.64	2.82	2.76	2.60	2.49	2.89	2.80	2.50	2.61	2.69	
2040	3.28	3.04	3.42	3.26	2.96	2.83	3.36	3.29	2.80	2.94	3.12	
2050	3.75	3.42	4.09	3.76	3.29	3.16	3.82	3.78	3.10	3.27	3.54	
2060	4.20	3.75	4.77	4.27	3.56	3.49	4.25	4.29	3.42	3.58	3.96	
2070	4.59	4.03	5.43	4.79	3.78	3.81	4.63	4.80	3.73	3.91	4.39	
2080	4.96	4.23	6.06	5.34	3.94	4.13	4.99	5.35	3.99	4.22	4.80	
2090	5.30	4.39	6.64	5.90	4.06	4.46	5.30	5.90	4.21	4.54	5.23	
2100	5.59	4.48	7.17	6.49	4.14	4.79	5.58	6.49	4.41	4.87	5.68	
Bern-	CC mode	l (referen	$ce) - CO_2$	radiative	forcing (Wm ⁻²)						IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.53
2010	1.78	1.76	1.76	1.76	1.76	1.74	1.81	1.78	1.74	1.77	1.77	1.82
2020	2.18	2.08	2.14	2.13	2.08	2.03	2.22	2.16	2.04	2.10	2.12	2.16
2030	2.54	2.40	2.56	2.50	2.36	2.27	2.62	2.54	2.27	2.37	2.44	2.50
2040	2.96	2.76	3.09	2.93	2.66	2.55	3.03	2.97	2.52	2.66	2.79	2.87
2050	3.37	3.10	3.70	3.37	2.94	2.84	3.44	3.40	2.78	2.93	3.13	3.21
2060	3.78	3.38	4.33	3.82	3.17	3.13	3.83	3.85	3.05	3.20	3.48	3.56
2070	4.12	3.60	4.96	4.29	3.33	3.39	4.17	4.31	3.30	3.47	3.82	3.91
2080	4 4 5	3 78	5 56	4 80	3 45	3.67	4 4 8	4 81	3 52	3 74	4 18	4 26
2000	4 74	3.86	6.12	5 34	3 53	3.07	4 74	5 34	3 70	4 01	4 57	4.63
2100	4.96	3.89	6.62	5.89	3.55	4.21	4.96	5.89	3.83	4.27	4.96	5.01

 $Bern-CC\ model\ (low)-CO_2\ radiative\ forcing\ (Wm^{-2})$

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49
2010	1.71	1.69	1.69	1.69	1.69	1.67	1.73	1.71	1.67	1.70	1.71
2020	2.04	1.95	2.01	2.00	1.95	1.89	2.09	2.03	1.91	1.97	1.99
2030	2.36	2.19	2.36	2.31	2.17	2.08	2.42	2.35	2.08	2.17	2.26
2040	2.69	2.48	2.83	2.68	2.41	2.30	2.76	2.71	2.27	2.38	2.55
2050	3.04	2.74	3.36	3.05	2.64	2.52	3.10	3.09	2.46	2.60	2.84
2060	3.37	2.96	3.91	3.44	2.81	2.74	3.39	3.46	2.67	2.81	3.14
2070	3.63	3.10	4.43	3.83	2.91	2.94	3.65	3.83	2.87	3.00	3.42
2080	3.89	3.19	4.94	4.27	2.98	3.16	3.89	4.26	3.03	3.21	3.74
2090	4.10	3.23	5.40	4.71	3.00	3.37	4.08	4.71	3.15	3.43	4.05
2100	4.27	3.20	5.81	5.20	2.99	3.59	4.23	5.19	3.24	3.65	4.39

Bern–CC model (high) – CO_2 radiative forcing (Wm⁻²)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49
2010	1.88	1.85	1.85	1.85	1.84	1.84	1.91	1.88	1.84	1.87	1.88
2020	2.41	2.30	2.37	2.35	2.28	2.23	2.47	2.38	2.26	2.33	2.35
2030	2.96	2.78	2.97	2.89	2.73	2.62	3.04	2.94	2.64	2.75	2.82
2040	3.53	3.29	3.67	3.48	3.17	3.04	3.63	3.53	3.01	3.18	3.32
2050	4.11	3.77	4.44	4.09	3.59	3.46	4.20	4.13	3.39	3.59	3.82
2060	4.67	4.20	5.26	4.71	3.97	3.89	4.75	4.75	3.80	4.01	4.33
2070	5.18	4.57	6.04	5.33	4.27	4.29	5.23	5.36	4.19	4.39	4.82
2080	5.63	4.86	6.77	5.97	4.50	4.69	5.67	5.99	4.53	4.79	5.31
2090	6.04	5.07	7.45	6.61	4.67	5.08	6.06	6.62	4.80	5.17	5.80
2100	6.39	5.20	8.03	7.26	4.79	5.44	6.39	7.27	5.04	5.53	6.30

II.3.2: CH₄ radiative forcing (Wm⁻²)

												IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.51
2010	0.53	0.52	0.52	0.53	0.51	0.52	0.54	0.53	0.51	0.53	0.52	0.56
2020	0.59	0.58	0.57	0.58	0.54	0.55	0.62	0.58	0.53	0.58	0.57	0.63
2030	0.65	0.64	0.64	0.63	0.55	0.60	0.71	0.63	0.55	0.64	0.62	0.69
2040	0.69	0.70	0.71	0.70	0.55	0.64	0.77	0.69	0.56	0.70	0.68	0.76
2050	0.71	0.74	0.79	0.76	0.53	0.70	0.80	0.76	0.58	0.73	0.74	0.83
2060	0.71	0.76	0.85	0.83	0.52	0.74	0.81	0.82	0.59	0.76	0.79	0.89
2070	0.68	0.74	0.90	0.89	0.50	0.78	0.79	0.89	0.60	0.77	0.83	0.94
2080	0.64	0.72	0.94	0.96	0.48	0.82	0.75	0.96	0.61	0.78	0.86	0.98
2090	0.60	0.68	0.97	1.02	0.45	0.85	0.70	1.02	0.61	0.77	0.90	1.02
2100	0.57	0.63	1.00	1.09	0.42	0.88	0.64	1.08	0.59	0.76	0.93	1.06

II.3.3: N₂O radiative forcing (Wm⁻²)

	2		8	<i>,</i>								IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16
2010	0.18	0.17	0.18	0.18	0.18	0.17	0.18	0.18	0.18	0.18	0.18	0.19
2020	0.20	0.19	0.21	0.21	0.21	0.19	0.20	0.21	0.21	0.20	0.21	0.22
2030	0.22	0.21	0.25	0.25	0.23	0.21	0.23	0.25	0.23	0.22	0.24	0.26
2040	0.24	0.22	0.29	0.29	0.25	0.22	0.25	0.29	0.26	0.24	0.27	0.29
2050	0.26	0.23	0.34	0.33	0.28	0.23	0.26	0.33	0.28	0.25	0.30	0.32
2060	0.28	0.24	0.39	0.37	0.30	0.25	0.27	0.36	0.31	0.26	0.32	0.35
2070	0.29	0.25	0.44	0.41	0.31	0.26	0.28	0.40	0.33	0.26	0.35	0.38
2080	0.30	0.26	0.48	0.45	0.32	0.27	0.29	0.45	0.35	0.27	0.37	0.40
2090	0.31	0.26	0.53	0.49	0.33	0.28	0.29	0.49	0.36	0.27	0.39	0.43
2100	0.32	0.27	0.57	0.53	0.33	0.29	0.29	0.53	0.37	0.28	0.41	0.45

II.3.4: PFCs, SF₆ and HFCs radiative forcing (Wm⁻²)

CF₄ radiative forcing (Wm⁻²)

Year	AIB	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
2010	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005
2020	0.005	0.005	0.005	0.005	0.005	0.005	0.007	0.006	0.006	0.007
2030	0.006	0.006	0.006	0.007	0.006	0.007	0.009	0.008	0.008	0.009
2040	0.008	0.008	0.008	0.009	0.007	0.009	0.013	0.011	0.010	0.012
2050	0.010	0.010	0.010	0.011	0.008	0.012	0.016	0.014	0.011	0.015
2060	0.013	0.013	0.013	0.013	0.009	0.014	0.020	0.017	0.013	0.019
2070	0.015	0.015	0.015	0.016	0.010	0.018	0.024	0.021	0.015	0.023
2080	0.018	0.018	0.018	0.020	0.011	0.021	0.027	0.026	0.016	0.027
2090	0.021	0.021	0.021	0.024	0.012	0.024	0.029	0.031	0.017	0.032
2100	0.024	0.024	0.024	0.029	0.013	0.028	0.032	0.037	0.018	0.036
C ₂ E ₂ rat	diative fo	rcing (W	m ⁻²)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
2010	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
2020	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002
2030	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.002
2040	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.003
2050	0.002	0.002	0.002	0.002	0.002	0.003	0.004	0.003	0.003	0.003
2060	0.003	0.003	0.003	0.003	0.002	0.003	0.004	0.004	0.003	0.004
2070	0.003	0.003	0.003	0.004	0.002	0.004	0.005	0.005	0.003	0.005
2080	0.004	0.005	0.005	0.004	0.002	0.004	0.005	0.005	0.003	0.005
2000	0.004	0.004	0.004	0.005	0.002	0.005	0.006	0.007	0.004	0.007
2100	0.001	0.001	0.001	0.005	0.003	0.005	0.007	0.007	0.004	0.007
2100	0.005	0.005	0.005	0.000	0.005	0.000	0.007	0.000	0.001	0.000
SF∠ radi	iative for	cing (Wn	1 ⁻²)							
SF₆ rad i Year	iative for A1B	cing (Wn A1T	n ⁻²) A1FI	A2	B1	B2	Alp	A2p	B1p	B2p
$\frac{\mathbf{SF}_{6} \text{ radii}}{2000}$	iative for A1B 0.003	cing (Wn A1T 0.003	$\frac{\text{A1FI}}{0.003}$	A2	B1 0.003	B2 0.003	A1p 0.003	A2p 0.003	B1p 0.003	<u>B2p</u> 0.003
$\frac{\mathbf{SF}_{6} \text{ radii}}{\frac{\text{Year}}{2000}}$	iative for A1B 0.003 0.004	cing (Wn <u>A1T</u> 0.003 0.004	n^{-2}) <u>A1FI</u> 0.003 0.004	A2 0.003 0.004	B1 0.003 0.004	B2 0.003 0.004	A1p 0.003 0.004	A2p 0.003 0.004	B1p 0.003 0.004	B2p 0.003 0.004
SF₆ radi Year 2000 2010 2020	iative for A1B 0.003 0.004 0.005	cing (Wn A1T 0.003 0.004 0.005	n ⁻²) A1FI 0.003 0.004 0.005	A2 0.003 0.004 0.006	B1 0.003 0.004 0.005	B2 0.003 0.004 0.005	A1p 0.003 0.004 0.005	A2p 0.003 0.004 0.006	B1p 0.003 0.004 0.005	B2p 0.003 0.004 0.006
SF₆ radi Year 2000 2010 2020 2030	A1B 0.003 0.004 0.005 0.007	cing (Wn A1T 0.003 0.004 0.005 0.007	n ⁻²) A1FI 0.003 0.004 0.005 0.007	A2 0.003 0.004 0.006 0.008	B1 0.003 0.004 0.005 0.006	B2 0.003 0.004 0.005 0.007	A1p 0.003 0.004 0.005 0.007	A2p 0.003 0.004 0.006 0.008	B1p 0.003 0.004 0.005 0.006	B2p 0.003 0.004 0.006 0.008
SF ₆ radii Year 2000 2010 2020 2030 2040	iative for <u>A1B</u> 0.003 0.004 0.005 0.007 0.009	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009	n ⁻²) A1FI 0.003 0.004 0.005 0.007 0.009	A2 0.003 0.004 0.006 0.008 0.010	B1 0.003 0.004 0.005 0.006 0.008	B2 0.003 0.004 0.005 0.007 0.009	A1p 0.003 0.004 0.005 0.007 0.010	A2p 0.003 0.004 0.006 0.008 0.010	B1p 0.003 0.004 0.005 0.006 0.008	B2p 0.003 0.004 0.006 0.008 0.011
SF₆ radi Year 2000 2010 2020 2030 2040 2050	iative for <u>A1B</u> 0.003 0.004 0.005 0.007 0.009 0.013	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013	A1FI 0.003 0.004 0.005 0.007 0.009 0.013	A2 0.003 0.004 0.006 0.008 0.010 0.014	B1 0.003 0.004 0.005 0.006 0.008 0.010	B2 0.003 0.004 0.005 0.007 0.009 0.012	A1p 0.003 0.004 0.005 0.007 0.010 0.014	A2p 0.003 0.004 0.006 0.008 0.010 0.014	B1p 0.003 0.004 0.005 0.006 0.008 0.010	B2p 0.003 0.004 0.006 0.008 0.011 0.014
SF₆ radi Year 2000 2010 2020 2030 2040 2050 2050	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017	n ⁻²) A1FI 0.003 0.004 0.005 0.007 0.009 0.013 0.017	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070	A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020	A1FI 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080	A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023	A1FI 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090	A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026	A1FI 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029	A1FI 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029	A1FI 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036
SF ₆ radii Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23	Aile 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²)	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036
SF ₆ radii Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year	iative for <u>A1B</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 ve forcing A1T	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) A1FI	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036 B2p
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 ve forcing A1T 0.002	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1 0.002	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036 B2p 0.002
SF ₆ radii Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010	iative for <u>A1B</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ <u>A1B</u> 0.002 0.002	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 ve forcing A1T 0.002 0.004	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1 0.002 0.004	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002 0.004	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036 B2p 0.002 0.004
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010 2020	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002 0.004 0.005	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 7e forcing A1T 0.002 0.004 0.005	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004 0.005	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004 0.005	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1 0.002 0.004 0.005	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004 0.005	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002 0.004 0.005	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004 0.005	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004 0.005	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036 B2p 0.002 0.004 0.005
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010 2020 2020 2030	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002 0.004 0.005 0.004	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 Ze forcing A1T 0.002 0.004 0.005 0.006	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004 0.005 0.006	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004 0.005 0.006	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1 0.002 0.004 0.005 0.006	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004 0.005 0.006	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002 0.004 0.005 0.006	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004 0.005 0.006	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004 0.005 0.006	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010 2020 2030 2030 2040	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002 0.004 0.005 0.006 0.006	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 Ze forcing A1T 0.002 0.004 0.005 0.004 0.005 0.006	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004 0.005 0.006 0.006	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004 0.005 0.006 0.006	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1 0.002 0.004 0.005 0.006 0.006	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004 0.005 0.006 0.006	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002 0.004 0.005 0.006	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004 0.005 0.006	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004 0.005 0.006 0.006	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010 2020 2010 2020 2030 2040 2050	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002 0.004 0.005 0.006 0.006 0.006	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 7e forcing A1T 0.002 0.004 0.005 0.006 0.006	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004 0.005 0.006 0.006	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004 0.005 0.006 0.006 0.006	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1 0.002 0.004 0.005 0.006 0.006 0.006	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004 0.005 0.006 0.006 0.006	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002 0.004 0.005 0.006 0.006	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004 0.005 0.006 0.006 0.006	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004 0.005 0.006 0.006 0.006	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010 2020 2010 2020 2030 2040 2050 2050 2050 2050	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002 0.004 0.005 0.006 0.006 0.006 0.006	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 7e forcing A1T 0.002 0.004 0.005 0.004 0.005 0.006 0.006 0.006	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004 0.005 0.006 0.006 0.006 0.006	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004 0.005 0.006 0.006 0.006 0.006	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.006	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004 0.005 0.006 0.006 0.006	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002 0.004 0.005 0.006 0.006 0.006 0.005	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004 0.005 0.006 0.006 0.006 0.005	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004 0.005 0.006 0.006 0.006 0.005	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.012 0.027 0.032 0.036 B2p 0.002 0.004 0.005 0.006 0.006 0.006 0.006
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010 2020 2010 2020 2030 2040 2050 2050 2050 2050 2050	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002 0.004 0.005 0.006 0.006 0.006 0.006	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 ////////////////////////////////////	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.005	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.016 0.017 0.018 B1 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.005	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002 0.004 0.005 0.006 0.006 0.005 0.005	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.012 0.027 0.032 0.036 B2p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.006 0.005 0.006 0.005
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010 2020 2010 2020 2030 2040 2050 2050 2050 2050 2050 2050 205	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 ////////////////////////////////////	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.005 0.005	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.017 0.018 B1 0.002 0.004 0.005 0.006 0.006 0.005 0.005 0.005 0.005	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.017 0.021 0.024 0.027 0.030 A1p 0.002 0.004 0.005 0.006 0.006 0.005 0.005 0.005 0.005	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005 0.005	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.012 0.027 0.032 0.036 B2p 0.002 0.004 0.005 0.006 0.006 0.005 0.006 0.005 0.005 0.005 0.005 0.005
SF ₆ radi Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-23 Year 2000 2010 2020 2010 2020 2030 2040 2050 2050 2050 2050 2050 2050 205	iative for A1B 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 3 radiativ A1B 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.005 0.005 0.005	cing (Wn A1T 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 ////////////////////////////////////	n ⁻²) <u>A1FI</u> 0.003 0.004 0.005 0.007 0.009 0.013 0.017 0.020 0.023 0.026 0.029 (Wm ⁻²) <u>A1FI</u> 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005 0.005	A2 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.029 0.034 A2 0.002 0.004 0.005 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005	B1 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.014 0.017 0.018 B1 0.002 0.004 0.005 0.006 0.006 0.005 0.005 0.005 0.005 0.005	B2 0.003 0.004 0.005 0.007 0.009 0.012 0.014 0.017 0.019 0.021 0.023 B2 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005 0.005	A1p 0.003 0.004 0.005 0.007 0.010 0.014 0.021 0.024 0.027 0.030 A1p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005	A2p 0.003 0.004 0.006 0.008 0.010 0.014 0.017 0.021 0.025 0.030 0.034 A2p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005 0.005	B1p 0.003 0.004 0.005 0.006 0.008 0.010 0.012 0.015 0.017 0.018 0.019 B1p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005	B2p 0.003 0.004 0.006 0.008 0.011 0.014 0.018 0.022 0.027 0.032 0.036 B2p 0.002 0.004 0.005 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

HFC-3	52 radiativ	e forcing	(Wm^{-2})										
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p			
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2030	0.001	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000			
2040	0.001	0.001	0.001	0.001	0.000	0.001	0.001	0.000	0.000	0.001			
2050	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
2060	0.002	0.002	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001			
2070	0.002	0.002	0.002	0.001	0.001	0.001	0.002	0.001	0.001	0.001			
2080	0.002	0.002	0.002	0.001	0.001	0.001	0.002	0.001	0.001	0.001			
2090	0.002	0.002	0.002	0.002	0.001	0.001	0.002	0.001	0.001	0.001			
2100	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.001	0.001			
HFC-125 radiative forcing (Wm ⁻²)													
Year	A1B	A1T	A1FI	A2	B1	B2	A1n	A2n	B1n	B2n	IS92a		
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.000		
2020	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.000		
2030	0.000	0.000	0.000	0.004	0.004	0.004	0.000	0.005	0.004	0.004	0.005		
2040	0.009	0.009	0.009	0.000	0.000	0.000	0.009	0.005	0.000	0.000	0.009		
2050	0.015	0.015	0.015	0.008	0.008	0.008	0.015	0.007	0.008	0.009	0.020		
2000	0.018	0.010	0.017	0.010	0.010	0.011	0.018	0.010	0.010	0.012	0.032		
2070	0.022	0.025	0.022	0.013	0.011	0.014	0.022	0.012	0.011	0.015	0.041		
2000	0.020	0.020	0.020	0.017	0.012	0.017	0.020	0.010	0.012	0.010	0.040		
2090	0.029	0.030	0.029	0.020	0.015	0.020	0.028	0.019	0.015	0.020	0.034		
2100	0.031	0.032	0.031	0.025	0.015	0.025	0.030	0.023	0.015	0.023	0.059		
	24	· · · · ·	(W) - 2	5									
HFC-1	34a radia	tive forci	ng (Wm ⁻²	²)	D1	DO	4.1.0	4.2-	Die	Dûn	1502-		
HFC-1 Year	34a radia A1B	tive forci	ng (Wm ⁻² A1FI	²) <u>A2</u>	B1	B2	Alp	A2p	B1p	B2p	<u>IS92a</u>		
HFC-1 Year 2000	34a radia A1B 0.002	tive forci A1T 0.002	ng (Wm ⁻² A1FI 0.002	A2 0.002	B1	B2 0.002	A1p 0.002	A2p 0.002	B1p 0.002	B2p 0.002	IS92a 0.002		
HFC-1 Year 2000 2010	34a radia A1B 0.002 0.009	tive forci A1T 0.002 0.009	ng (Wm ⁻² A1FI 0.002 0.009	A2 0.002 0.008 0.017	B1 0.002 0.008	B2 0.002 0.008	A1p 0.002 0.012	A2p 0.002 0.011	B1p 0.002 0.011	B2p 0.002 0.012	IS92a 0.002 0.014		
HFC-1 Year 2000 2010 2020	34a radia A1B 0.002 0.009 0.020 0.020	tive forci A1T 0.002 0.009 0.020 0.020	ng (Wm ⁻² A1FI 0.002 0.009 0.019	A2 0.002 0.008 0.017	B1 0.002 0.008 0.016	B2 0.002 0.008 0.017	A1p 0.002 0.012 0.026	A2p 0.002 0.011 0.021	B1p 0.002 0.011 0.021	B2p 0.002 0.012 0.023	IS92a 0.002 0.014 0.027		
HFC-1 Year 2000 2010 2020 2030	34a radia A1B 0.002 0.009 0.020 0.035	tive forci A1T 0.002 0.009 0.020 0.035	ng (Wm ⁻² <u>A1FI</u> 0.002 0.009 0.019 0.035	A2 0.002 0.008 0.017 0.026 0.025	B1 0.002 0.008 0.016 0.025	B2 0.002 0.008 0.017 0.027	A1p 0.002 0.012 0.026 0.048	A2p 0.002 0.011 0.021 0.032	B1p 0.002 0.011 0.021 0.032	B2p 0.002 0.012 0.023 0.038	IS92a 0.002 0.014 0.027 0.042		
HFC-1 Year 2000 2010 2020 2030 2040	34a radia A1B 0.002 0.009 0.020 0.035 0.056	tive forci A1T 0.002 0.009 0.020 0.035 0.056	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055	A2 0.002 0.008 0.017 0.026 0.035	B1 0.002 0.008 0.016 0.025 0.033	B2 0.002 0.008 0.017 0.027 0.038	A1p 0.002 0.012 0.026 0.048 0.078	A2p 0.002 0.011 0.021 0.032 0.043	B1p 0.002 0.011 0.021 0.032 0.044	B2p 0.002 0.012 0.023 0.038 0.053	IS92a 0.002 0.014 0.027 0.042 0.060		
HFC-1 Year 2000 2010 2020 2030 2040 2050	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078	A2 0.002 0.008 0.017 0.026 0.035 0.045	B1 0.002 0.008 0.016 0.025 0.033 0.044	B2 0.002 0.008 0.017 0.027 0.038 0.050	A1p 0.002 0.012 0.026 0.048 0.078 0.113	A2p 0.002 0.011 0.021 0.032 0.043 0.056	B1p 0.002 0.011 0.021 0.032 0.044 0.059	B2p 0.002 0.012 0.023 0.038 0.053 0.072	IS92a 0.002 0.014 0.027 0.042 0.060 0.081		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2060 2070 2080	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.089	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2080 2090	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178	A2p 0.002 0.011 0.032 0.043 0.056 0.072 0.091 0.113 0.140	B1p 0.002 0.011 0.032 0.044 0.059 0.071 0.077 0.079 0.080	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174	A2p 0.002 0.011 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170	B1p 0.002 0.011 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133	tive forci <u>A1T</u> 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174	A2p 0.002 0.011 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170	B1p 0.002 0.011 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131	tive forci <u>A1T</u> 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci	ng (Wm ⁻² <u>A1FI</u> 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻²	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174	A2p 0.002 0.011 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B	tive forci <u>A1T</u> 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci <u>A1T</u>	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p	A2p 0.002 0.011 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000	tive forci <u>A1T</u> 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci <u>A1T</u> 0.000	$\begin{array}{r} \mathbf{ng} (\mathbf{Wm}^{-2} \\ \hline A1FI \\ \hline 0.002 \\ 0.009 \\ 0.019 \\ 0.035 \\ 0.055 \\ 0.055 \\ 0.078 \\ 0.101 \\ 0.119 \\ 0.129 \\ 0.134 \\ 0.135 \\ \hline \mathbf{ng} (\mathbf{Wm}^{-2} \\ \hline A1FI \\ \hline 0.000 \\ \end{array}$	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000	A2p 0.002 0.011 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000 2010	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000 0.000	tive forci <u>A1T</u> 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci <u>A1T</u> 0.000 0.000	ng (Wm ⁻² <u>A1FI</u> 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² <u>A1FI</u> 0.000 0.000	$\begin{array}{c} A2 \\ \hline 0.002 \\ 0.008 \\ 0.017 \\ 0.026 \\ 0.035 \\ 0.045 \\ 0.057 \\ 0.072 \\ 0.089 \\ 0.109 \\ 0.132 \end{array}$	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000 0.000	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000 2010 2020	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000 0.000 0.000	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.000 0.001	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000 0.000 0.001	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.000	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000 2010 2020 2010 2020 2030	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000 0.000 0.001 0.003	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003	ng (Wm ⁻² <u>A1FI</u> 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² <u>A1FI</u> 0.000 0.000 0.001 0.003	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000 0.000 0.001 0.002	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.000 0.001 0.002	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.003	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000 2010 2020 2010 2020 2030 2040	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000 0.001 0.003 0.006	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003 0.006	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000 0.000 0.001 0.002 0.004	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.000 0.001 0.002 0.004	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003 0.004	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.003 0.004	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003 0.005	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000 2010 2020 2010 2020 2030 2040 2030 2040 2050	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000 0.001 0.003 0.006 0.009	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006 0.009	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003 0.006 0.009	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 A2 0.000 0.001 0.003 0.004 0.004	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000 0.000 0.000 0.001 0.002 0.004 0.006	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.001 0.002 0.004 0.004	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006 0.010	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003 0.004 0.006	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.003 0.004 0.006	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003 0.005 0.007	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000 2010 2020 2010 2020 2030 2040 2050 2040 2050 2060	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000 0.001 0.003 0.006 0.009 0.013	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006 0.009 0.013	ng (Wm ⁻² A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003 0.006 0.009 0.013	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 A2 0.000 0.001 0.003 0.004 0.003 0.004 0.003 0.004	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.057 0.059 0.057 B1 0.000 0.000 0.000 0.001 0.002 0.004 0.004 0.002 0.004 0.002	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.001 0.002 0.004 0.002 0.004 0.006 0.008	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006 0.010 0.014	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003 0.004 0.006 0.008	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.001 0.003 0.004 0.006 0.008	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003 0.005 0.007 0.009	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000 2010 2020 2010 2020 2030 2040 2020 2030 2040 2050 2060 2070	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000 0.001 0.003 0.006 0.009 0.013 0.017	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017	ng (Wm ⁻² <u>A1FI</u> 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² <u>A1FI</u> 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 A2 0.000 0.001 0.003 0.004 0.003 0.004 0.003 0.004 0.005 0.001 0.004 0.005 0.006 0.008 0.011	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.057 0.059 0.057 B1 0.000 0.000 0.000 0.001 0.002 0.004 0.002 0.004 0.002 0.004 0.000 0.001 0.002 0.004 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.057 0.059 0.057 0.059 0.057 0.059 0.057 0.000 0.000 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.000 0.0057 0.0000 0.00000 0.0000 0.0000 0.0000000 0.00000 0.00000000	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.001 0.002 0.004 0.005 0.001 0.004 0.006 0.008 0.011	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006 0.010 0.014 0.017	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003 0.004 0.006 0.008 0.010	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.001 0.003 0.004 0.006 0.008 0.009	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003 0.005 0.007 0.009 0.012	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		
HFC-1 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-1 Year 2000 2010 2020 2010 2020 2030 2040 2020 2030 2040 2050 2060 2070 2080	34a radia A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 43a radia A1B 0.000 0.001 0.003 0.006 0.009 0.013 0.017 0.021	tive forci A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017 0.021	ng (Wm ⁻² <u>A1FI</u> 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² <u>A1FI</u> 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017 0.020	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 A2 0.000 0.001 0.003 0.004 0.003 0.004 0.003 0.004 0.005 0.001 0.003 0.004 0.005 0.001 0.003 0.004 0.005 0.001 0.003 0.004 0.005 0.004 0.005 0.011 0.013	B1 0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.057 0.059 0.057 B1 0.000 0.000 0.000 0.001 0.002 0.004 0.006 0.007 0.009 0.010	B2 0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.001 0.002 0.004 0.005 0.001 0.002 0.004 0.006 0.008 0.011 0.013	A1p 0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006 0.010 0.014 0.017 0.020	A2p 0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003 0.004 0.006 0.008 0.010 0.013	B1p 0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.005 0.004 0.006 0.008 0.009 0.010	B2p 0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.003 0.005 0.007 0.009 0.012 0.014	IS92a 0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128 0.132		

0.026

2100

0.027

0.026

0.020

0.012

0.018

0.026

0.020

0.012

0.019

HFC–152a radiative forcing (Wm⁻²)

			-										
Year	A1B	A1T	A1FI	A2	B1	B2	Alp	A2p	Blp	B2p	IS92a		
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
2030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001		
2040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003		
2050	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005		
2060	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006		
2070	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007		
2080	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007		
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007		
2100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007		
2100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007		
HFC-227ea radiative forcing (Wm ⁻²)													
Year	A1R	A1T	A1FI	Δ2	B1	B2	A1n	A2n	B1n	B2n			
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2010	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
2020	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002			
2030	0.004	0.004	0.004	0.003	0.003	0.005	0.004	0.003	0.003	0.003			
2040	0.007	0.007	0.007	0.004	0.004	0.005	0.007	0.004	0.004	0.005			
2050	0.010	0.010	0.010	0.006	0.006	0.007	0.010	0.005	0.006	0.007			
2060	0.014	0.014	0.013	0.008	0.008	0.009	0.013	0.007	0.008	0.009			
2070	0.017	0.017	0.016	0.010	0.009	0.012	0.016	0.009	0.009	0.012			
2080	0.019	0.020	0.019	0.012	0.010	0.015	0.018	0.011	0.010	0.014			
2090	0.020	0.021	0.020	0.015	0.010	0.018	0.019	0.014	0.010	0.016			
2100	0.021	0.022	0.021	0.018	0.011	0.020	0.020	0.016	0.010	0.018			
HFC-2	245ca radi	ative forc	ing (Wm	-2)									
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p			
2000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2000	0.000 0.002	$0.000 \\ 0.002$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
2000 2010 2020	0.000 0.002 0.005	0.000 0.002 0.005	0.000 0.002 0.005	0.000 0.002 0.004	0.000 0.002 0.004	0.000 0.002 0.004	0.000 0.003 0.005	0.000 0.002 0.004	0.000 0.002 0.004	0.000 0.002 0.004			
2000 2010 2020 2030	0.000 0.002 0.005 0.008	0.000 0.002 0.005 0.008	0.000 0.002 0.005 0.008	0.000 0.002 0.004 0.005	0.000 0.002 0.004 0.005	0.000 0.002 0.004 0.006	0.000 0.003 0.005 0.008	0.000 0.002 0.004 0.005	0.000 0.002 0.004 0.005	0.000 0.002 0.004 0.006			
2000 2010 2020 2030 2040	0.000 0.002 0.005 0.008 0.012	0.000 0.002 0.005 0.008 0.012	0.000 0.002 0.005 0.008 0.012	0.000 0.002 0.004 0.005 0.007	0.000 0.002 0.004 0.005 0.007	0.000 0.002 0.004 0.006 0.008	0.000 0.003 0.005 0.008 0.013	0.000 0.002 0.004 0.005 0.006	0.000 0.002 0.004 0.005 0.006	0.002 0.004 0.006 0.008			
2000 2010 2020 2030 2040 2050	0.000 0.002 0.005 0.008 0.012 0.017	0.000 0.002 0.005 0.008 0.012 0.017	0.000 0.002 0.005 0.008 0.012 0.016	0.000 0.002 0.004 0.005 0.007 0.008	0.000 0.002 0.004 0.005 0.007 0.009	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.006\\ 0.008\\ 0.010\end{array}$	0.000 0.003 0.005 0.008 0.013 0.017	0.000 0.002 0.004 0.005 0.006 0.008	0.000 0.002 0.004 0.005 0.006 0.009	0.000 0.002 0.004 0.006 0.008 0.011			
2000 2010 2020 2030 2040 2050 2060	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.017\\ 0.021 \end{array}$	0.000 0.002 0.005 0.008 0.012 0.017 0.021	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.016\\ 0.020\\ \end{array}$	0.000 0.002 0.004 0.005 0.007 0.008 0.011	0.000 0.002 0.004 0.005 0.007 0.009 0.010	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.006\\ 0.008\\ 0.010\\ 0.013\\ \end{array}$	0.000 0.003 0.005 0.008 0.013 0.017 0.021	0.000 0.002 0.004 0.005 0.006 0.008 0.010	0.000 0.002 0.004 0.005 0.006 0.009 0.010	0.000 0.002 0.004 0.006 0.008 0.011 0.013			
2000 2010 2020 2030 2040 2050 2060 2070	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.017\\ 0.021\\ 0.023\\ \end{array}$	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.016\\ 0.020\\ 0.023\\ \end{array}$	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.007\\ 0.009\\ 0.010\\ 0.010\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.006\\ 0.008\\ 0.010\\ 0.013\\ 0.015\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.003\\ 0.005\\ 0.008\\ 0.013\\ 0.017\\ 0.021\\ 0.023\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.006\\ 0.008\\ 0.010\\ 0.013\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.006\\ 0.009\\ 0.010\\ 0.010\\ \end{array}$	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016			
2000 2010 2020 2030 2040 2050 2060 2070 2080	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.023	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.023	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.007\\ 0.009\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ \end{array}$	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.023 0.023	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.006\\ 0.009\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ \end{array}$	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.017\\ 0.021\\ 0.023\\ 0.023\\ 0.022\\ 0.021 \end{array}$	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.016\\ 0.020\\ 0.023\\ 0.$	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.007\\ 0.009\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.009\end{array}$	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.023 0.022 0.020	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.006\\ 0.008\\ 0.010\\ 0.013\\ 0.016\\ 0.019\\ 0.023\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.006\\ 0.009\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.009\end{array}$	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.017\\ 0.021\\ 0.023\\ 0.023\\ 0.022\\ 0.021 \end{array}$	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.017\\ 0.021\\ 0.024\\ 0.025\\ 0.025\\ 0.023\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.002\\ 0.005\\ 0.008\\ 0.012\\ 0.016\\ 0.020\\ 0.023\\ 0.023\\ 0.023\\ 0.022\end{array}$	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.007\\ 0.009\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.009\\ \end{array}$	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024	$\begin{array}{c} 0.000\\ 0.003\\ 0.005\\ 0.008\\ 0.013\\ 0.017\\ 0.021\\ 0.023\\ 0.023\\ 0.022\\ 0.020\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.006\\ 0.008\\ 0.010\\ 0.013\\ 0.016\\ 0.019\\ 0.023\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.006\\ 0.009\\ 0.010\\ 0.010\\ 0.010\\ 0.010\\ 0.009\\ \end{array}$	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 13–10mee	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.025 0.023	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²)	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.009	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.023 0.022 0.020	$\begin{array}{c} 0.000\\ 0.002\\ 0.004\\ 0.005\\ 0.006\\ 0.008\\ 0.010\\ 0.013\\ 0.016\\ 0.019\\ 0.023\\ \end{array}$	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- 4 Year	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.025 0.023 radiative A1T	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (A1FI	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.009 B1	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.023 0.022 0.020	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009 B1p	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- 4 Year 2000	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee <u>A1B</u> 0.000	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (A1FI 0.000	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p 0.000	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 Year 2000 2010	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee <u>A1B</u> 0.000 0.000	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.000	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p 0.000 0.000	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 <u>Year</u> 2000 2010 2020	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee <u>A1B</u> 0.000 0.000 0.001	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.000 0.001	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.000	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.000	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.000	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.000			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001 0.001	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.022 forcing (<u>A1FI</u> 0.000 0.000 0.001	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) <u>A2</u> 0.000 0.000 0.001 0.001	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.000	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.000 0.001	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.000			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001 0.001 0.002	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.000 0.001 0.001 0.002	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001 0.001	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.000	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.000	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.000 0.001	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001 0.001	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.000 0.001			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001 0.001 0.002	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.001 0.001 0.002 0.002	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001 0.001	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.000 0.001 0.001	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.000 0.001 0.001	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.000 0.001 0.001	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001 0.001	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 t3-10mee A1B 0.000 0.000 0.001 0.002 0.002 0.002	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.002	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.001 0.001 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.001 0.001 0.001 0.001 0.002	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.001 0.001 0.001	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.000 0.001 0.001 0.001	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.000 0.001 0.001 0.001	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050 2040 2050	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 t3-10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.023	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.001 0.001 0.001 0.001 0.002 0.002	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.001 0.001 0.001 0.001 0.002	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.001 0.001 0.001 0.001 0.001 0.001	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050 2040 2050 2060 2070	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.003	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.003	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.002	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2020 2030 2040 2050 2060 2070 2080	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.004	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.004	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.004	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.002	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-4 <u>Year</u> 2000 2010 2020 2030 2040 2020 2030 2040 2050 2060 2070 2080 2090	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.004	0.000 0.002 0.005 0.008 0.012 0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.004 0.004 0.004	0.000 0.002 0.005 0.008 0.012 0.016 0.020 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.00	0.000 0.002 0.004 0.005 0.007 0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.000 0.002 0.004 0.005 0.007 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002	0.000 0.002 0.004 0.006 0.008 0.010 0.013 0.015 0.018 0.021 0.024	0.000 0.003 0.005 0.008 0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004	0.000 0.002 0.004 0.005 0.006 0.008 0.010 0.013 0.016 0.019 0.023	0.000 0.002 0.004 0.005 0.006 0.009 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002	0.000 0.002 0.004 0.006 0.008 0.011 0.013 0.016 0.018 0.019 0.020			

II.3.5: Tropospheric O₃ radiative forcing (Wm⁻²)

mass inprospheric Ogradiante foreing (tring)													
												IS92a/	
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR	
2000	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.39	
2010	0.45	0.45	0.45	0.45	0.41	0.43	0.47	0.45	0.39	0.44	0.44	0.41	
2020	0.54	0.53	0.56	0.55	0.45	0.49	0.58	0.55	0.44	0.51	0.51	0.43	
2030	0.60	0.64	0.69	0.66	0.46	0.56	0.65	0.66	0.45	0.57	0.58	0.45	
2040	0.62	0.71	0.84	0.74	0.45	0.62	0.68	0.73	0.48	0.63	0.63	0.48	
2050	0.62	0.75	1.03	0.81	0.42	0.66	0.70	0.80	0.52	0.66	0.70	0.51	
2060	0.61	0.76	1.13	0.87	0.38	0.69	0.71	0.87	0.53	0.68	0.75	0.53	
2070	0.59	0.71	1.21	0.93	0.34	0.72	0.69	0.93	0.54	0.70	0.80	0.55	
2080	0.57	0.64	1.30	1.02	0.30	0.76	0.66	1.01	0.55	0.73	0.84	0.58	
2090	0.55	0.56	1.29	1.13	0.26	0.79	0.63	1.13	0.50	0.74	0.89	0.59	
2100	0.52	0.48	1.27	1.25	0.21	0.81	0.58	1.25	0.43	0.75	0.93	0.61	

II.3.6: SO_4^{2-} aerosols (direct effect) radiative forcing (Wm⁻²)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40
2010	-0.51	-0.38	-0.47	-0.43	-0.43	-0.38	-0.51	-0.43	-0.35	-0.39	-0.49
2020	-0.58	-0.35	-0.50	-0.58	-0.43	-0.35	-0.58	-0.58	-0.32	-0.38	-0.58
2030	-0.53	-0.35	-0.55	-0.65	-0.45	-0.35	-0.53	-0.65	-0.31	-0.35	-0.67
2040	-0.40	-0.27	-0.55	-0.63	-0.45	-0.34	-0.45	-0.62	-0.31	-0.34	-0.75
2050	-0.37	-0.23	-0.47	-0.61	-0.40	-0.32	-0.37	-0.61	-0.30	-0.33	-0.83
2060	-0.27	-0.20	-0.32	-0.52	-0.32	-0.32	-0.30	-0.50	-0.30	-0.31	-0.82
2070	-0.21	-0.18	-0.25	-0.43	-0.25	-0.29	-0.26	-0.42	-0.28	-0.30	-0.82
2080	-0.18	-0.15	-0.23	-0.38	-0.21	-0.29	-0.18	-0.37	-0.25	-0.28	-0.81
2090	-0.17	-0.14	-0.23	-0.36	-0.17	-0.28	-0.17	-0.36	-0.20	-0.28	-0.80
2100	-0.16	-0.12	-0.23	-0.35	-0.15	-0.28	-0.16	-0.35	-0.17	-0.28	-0.79

II.3.7: BC aerosols radiative forcing (Wm⁻²)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
2010	0.45	0.45	0.46	0.45	0.37	0.42	0.49	0.45	0.32	0.45	0.42
2020	0.46	0.51	0.52	0.48	0.35	0.46	0.58	0.48	0.38	0.46	0.43
2030	0.49	0.58	0.62	0.55	0.29	0.49	0.63	0.54	0.34	0.45	0.46
2040	0.51	0.66	0.72	0.58	0.26	0.54	0.71	0.57	0.35	0.49	0.49
2050	0.52	0.74	0.89	0.62	0.25	0.57	0.77	0.62	0.37	0.52	0.52
2060	0.54	0.82	0.94	0.66	0.25	0.62	0.85	0.66	0.38	0.57	0.55
2070	0.55	0.86	1.02	0.71	0.23	0.66	0.91	0.71	0.40	0.63	0.57
2080	0.58	0.89	1.14	0.77	0.23	0.74	0.95	0.77	0.42	0.69	0.60
2090	0.65	0.89	1.09	0.86	0.22	0.78	0.95	0.86	0.38	0.75	0.63
2100	0.71	0.86	1.05	0.95	0.20	0.83	0.95	0.95	0.37	0.80	0.66

II.3.8: OC aerosols radiative forcing (Wm⁻²)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50
2010	-0.56	-0.56	-0.57	-0.55	-0.46	-0.53	-0.62	-0.55	-0.41	-0.55	-0.52
2020	-0.58	-0.63	-0.66	-0.60	-0.44	-0.57	-0.74	-0.60	-0.48	-0.59	-0.55
2030	-0.61	-0.73	-0.77	-0.68	-0.37	-0.61	-0.79	-0.68	-0.42	-0.57	-0.58
2040	-0.64	-0.83	-0.91	-0.73	-0.33	-0.66	-0.88	-0.72	-0.43	-0.61	-0.61
2050	-0.66	-0.93	-1.12	-0.77	-0.30	-0.71	-0.96	-0.77	-0.45	-0.65	-0.65
2060	-0.68	-1.02	-1.17	-0.82	-0.30	-0.76	-1.05	-0.82	-0.47	-0.71	-0.68
2070	-0.69	-1.08	-1.28	-0.88	-0.30	-0.84	-1.14	-0.88	-0.50	-0.78	-0.72
2080	-0.73	-1.12	-1.42	-0.97	-0.28	-0.92	-1.18	-0.96	-0.52	-0.87	-0.75
2090	-0.80	-1.12	-1.37	-1.08	-0.27	-0.99	-1.19	-1.07	-0.49	-0.94	-0.79
2100	-0.88	-1.08	-1.32	-1.20	-0.25	-1.04	-1.19	-1.20	-0.46	-1.00	-0.83
II.3.9: Radiative forcing (Wm⁻²) from CFCs and HCFCs following the Montreal (1997) Amendments

Year	CFC-11	CFC-12	CFC-113	CFC-114	CFC-115	CCl_4	CH ₃ CCl ₃	HCFC-22	HCFC-141b	HCFC-142	2b HCFC-123	CF ₂ BrCl	CF ₃ Br	SUM
2000	0.0668	0.1712	0.0255	0.0050	0.0016	0.0120	0.0026	0.0290	0.0018	0.0030	0.0000	0.0012	0.0010	0.3206
2010	0.0615	0.1686	0.0243	0.0050	0.0016	0.0098	0.0004	0.0514	0.0031	0.0066	0.0004	0.0012	0.0010	0.3348
2020	0.0535	0.1555	0.0216	0.0047	0.0016	0.0077	0.0001	0.0458	0.0022	0.0064	0.0006	0.0009	0.0010	0.3015
2030	0.0450	0.1411	0.0192	0.0047	0.0016	0.0061	0.0000	0.0274	0.0013	0.0046	0.0004	0.0006	0.0010	0.2529
2040	0.0373	0.1280	0.0171	0.0043	0.0016	0.0048	0.0000	0.0176	0.0008	0.0034	0.0004	0.0003	0.0010	0.2166
2050	0.0308	0.1158	0.0153	0.0043	0.0016	0.0038	0.0000	0.0092	0.0003	0.0022	0.0002	0.0003	0.0010	0.1848
2060	0.0253	0.1050	0.0135	0.0040	0.0016	0.0030	0.0000	0.0040	0.0001	0.0012	0.0002	0.0000	0.0006	0.1585
2070	0.0208	0.0954	0.0120	0.0040	0.0016	0.0023	0.0000	0.0018	0.0000	0.0008	0.0000	0.0000	0.0006	0.1393
2080	0.0170	0.0864	0.0108	0.0037	0.0014	0.0018	0.0000	0.0008	0.0000	0.0004	0.0000	0.0000	0.0006	0.1230
2090	0.0140	0.0784	0.0096	0.0037	0.0014	0.0014	0.0000	0.0004	0.0000	0.0002	0.0000	0.0000	0.0006	0.1098
2100	0.0113	0.0710	0.0084	0.0037	0.0014	0.0012	0.0000	0.0002	0.0000	0.0002	0.0000	0.0000	0.0003	0.0977

II.3.10: Radiative Forcing (Wm⁻²) from fosil fuel plus biomass Organic and Black Carbon as used in the Chapter 9 Simple Model SRES Projections

Year	A1B	A1T	A1FI	A2	B1	B2	IS92a
1990	-0.0997	-0.0997	-0.0997	-0.0997	-0.0997	-0.0997	-0.0998
2000	0 1261	0 1261	0 1261	0 1261	0 1261	0 1261	0 1596
2000	-0.1301	-0.1501	-0.1301	-0.1301	-0.1301	-0.1301	-0.1380
2010	-0.1308	-0.1468	-0.1280	-0.1392	-0.1081	-0.1203	-0.1357
2020	-0.0524	-0.0799	-0.1714	-0.1248	-0.0926	-0.0516	-0.1103
2030	-0.0562	-0.0598	-0.1745	-0.1088	-0.0154	-0.0148	-0.0872
2040	-0.0780	-0.0644	-0.1614	-0.1064	0.0349	-0.0075	-0.0610
2050	-0.0804	-0.0603	-0.1351	-0.1029	0.0280	-0.0049	-0.0339
2060	-0.0948	-0.0615	-0.1417	-0.1002	0.0241	0.0015	-0.0190
2070	-0.1071	-0.0613	-0.1193	-0.0939	0.0147	0.0064	-0.0026
2080	-0.1161	-0.0629	-0.0644	-0.0871	0.0300	0.0180	0.0166
2090	-0.1178	-0.0619	0.0365	-0.0816	0.0421	0.0341	0.0390
2100	-0.1208	-0.0629	0.0565	-0.0762	0.0351	0.0510	0.0635

II.3.11: Total Radiative Forcing (Wm⁻²) from GHG plus direct and indirect aerosol effects as used in the Chapter 9 Simple Model SRES Projections

Year	A1B	A1T	A1FI	A2	B1	B2	IS92a
1990	1.03	1.03	1.03	1.03	1.03	1.03	1.03
2000	1.33	1.33	1.33	1.33	1.33	1.33	1.31
2010	1.65	1.85	1.69	1.74	1.73	1.82	1.63
2020	2.16	2.48	2.17	2.04	2.15	2.36	2.00
2030	2.84	3.07	2.78	2.56	2.56	2.81	2.40
2040	3.61	3.76	3.67	3.22	2.93	3.26	2.82
2050	4.16	4.31	4.83	3.89	3.30	3.70	3.25
2060	4.79	4.73	5.99	4.71	3.65	4.11	3.76
2070	5.28	4.97	7.02	5.56	3.92	4.52	4.24
2080	5.62	5.11	7.89	6.40	4.09	4.92	4.74
2090	5.86	5.12	8.59	7.22	4.18	5.32	5.26
2100	6.05	5.07	9.14	8.07	4.19	5.71	5.79

II.4: Model Average Surface Air Temperature Change (°C)

Year	A1B	A1T	A1FI	A2	B1	B2	IS92a
1750 to 1990	0.33	0.33	0.33	0.33	0.33	0.33	0.34
1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2000	0.16	0.16	0.16	0.16	0.16	0.16	0.15
2010	0.30	0.40	0.32	0.35	0.34	0.39	0.27
2020	0.52	0.71	0.55	0.50	0.55	0.66	0.43
2030	0.85	1.03	0.85	0.73	0.77	0.93	0.61
2040	1.26	1.41	1.27	1.06	0.98	1.18	0.80
2050	1.59	1.75	1.86	1.42	1.21	1.44	1.00
2060	1.97	2.04	2.50	1.85	1.44	1.69	1.26
2070	2.30	2.25	3.10	2.33	1.63	1.94	1.52
2080	2.56	2.41	3.64	2.81	1.79	2.20	1.79
2090	2.77	2.49	4.09	3.29	1.91	2.44	2.08
2100	2.95	2.54	4.49	3.79	1.98	2.69	2.38

Note: See Chapter 9 for details.

II.5: Sea Level Change (mm)

Note: Values are for the middle of the year..

II.5.1: Total sea level change (mm)

Models	s average	- Total se	a level cha	ange (mn	1)	
Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	17	17	17	17	17	17
2010	37	39	37	38	38	38
2020	61	66	61	61	62	64
2030	91	97	90	88	89	94
2040	127	134	126	120	118	126
2050	167	175	172	157	150	160
2060	210	217	228	201	183	197
2070	256	258	290	250	216	235
2080	301	298	356	304	249	275
2090	345	334	424	362	281	316
2100	387	367	491	424	310	358

Note: The sum of the components listed in Appendix II.5.2 to II.5.5 does not equal the values shown above owing to the addition of other terms. See Chapter 11, Section 11.5.1 for details.

Models minimum – Total sea level change (mm)

1110uch	,	1000	Seu lever e	mange (n		
Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	6	6	6	6	6	6
2010	13	13	13	13	13	13
2020	22	22	24	21	22	23
2030	34	33	36	31	32	34
2040	48	47	49	44	42	45
2050	63	66	64	58	52	56
2060	78	89	77	75	63	68
2070	93	113	89	93	72	79
2080	107	137	99	113	80	91
2090	119	160	106	133	87	103
2100	129	182	111	155	92	114

Note: The final values of these timeseries correspond to the lower limit of the coloured bars on the right-hand side of Chapter 11, Figure 11.12.

Model maximum - Total sea level change (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	29	29	29	29	29	29
2010	63	63	65	64	64	65
2020	103	104	110	104	105	109
2030	153	153	164	149	151	159
2040	214	214	228	204	203	216
2050	284	291	299	269	259	277
2060	360	386	375	343	319	344
2070	442	494	453	430	381	414
2080	527	612	529	526	444	488
2090	611	735	602	631	507	566
2100	694	859	671	743	567	646

Note: The final values of these timeseries correspond to the upper limit of the coloured bars on the right-hand side of Chapter 11, Figure 11.12.

II.5.2: Sea level change due to thermal expansion (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	10	10	10	10	10	10
2010	23	24	23	23	23	24
2020	39	43	39	39	39	42
2030	60	66	60	57	58	62
2040	87	93	86	81	79	85
2050	117	123	122	109	101	110
2060	150	155	166	142	125	137
2070	185	186	217	180	149	165
2080	220	216	272	224	173	196
2090	255	243	329	272	195	227
2010	288	267	388	325	216	260

II.5.3: Sea level change due to glaciers and ice caps (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	4	4	4	4	4	4
2000	4	4	4	4	4	4
2010	9	10	9	10	10	10
2020	16	17	16	16	16	16
2030	23	25	23	23	23	24
2040	32	35	32	31	31	34
2050	43	46	44	41	41	44
2060	55	58	57	52	50	54
2070	67	71	72	65	61	66
2080	80	83	89	79	71	77
2090	93	95	105	93	82	89
2100	106	106	120	108	92	101

II.5.4: Sea level change due to Greenland (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
• • • • •				0		
2000	0	0	0	0	0	0
2010	1	1	1	1	1	1
2020	2	2	2	2	2	2
2030	4	4	4	4	4	4
2040	5	6	5	5	5	6
2050	8	8	8	7	7	8
2060	10	11	11	10	9	10
2070	13	14	15	13	12	13
2080	17	17	19	16	14	16
2090	20	21	24	20	17	19
2100	24	24	29	25	20	22

II.5.5: Sea level change due to Antarctica (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	-2	-2	-2	-2	-2	-2
2010	-5	-5	-5	-5	-5	-5
2020	-8	-9	-8	-8	-8	-9
2030	-12	-14	-13	-12	-13	-13
2040	-18	-20	-18	-17	-17	-19
2050	-25	-27	-25	-23	-23	-25
2060	-33	-35	-35	-31	-30	-32
2070	-42	-45	-46	-40	-37	-41
2080	-52	-54	-59	-50	-44	-49
2090	-63	-64	-74	-62	-53	-59
2100	-74	-75	-90	-76	-61	-70

References

- IPCC, 1996: Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 572 pp.
- Jain, A.K., H.S. Kheshgi, and D.J. Wuebbles, 1994: Integrated Science Model for Assessment of Climate Change. Lawrence Livermore National Laboratory, UCRL-JC-116526.
- Nakićenović, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grübler, T. Y. Jung, T. Kram, E. L. La Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, H. Pitcher, L. Price, K. Raihi, A. Roehrl, H-H. Rogner, A. Sankovski, M. Schlesinger, P. Shukla, S. Smith, R. Swart, S. van Rooijen, N. Victor, Z. Dadi, 2000: *IPCC Special Report on Emissions Scenarios*, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 pp.
- WMO, 1999: Scientific Assessment of Ozone Depletion: 1998. Global Ozone Research and Monitoring Project - Report No. 44, World Meteorological Organization, Geneva, Switzerland, 732 pp.

Appendix III

Contributors

to the IPCC WGI Third Assessment Report

Technical Summary

Co-ordinating Lead Authors

D.L. Albritton	NOAA Aeronomy Laboratory, USA
L.G. Meira Filho	Agência Espacial Brasileira, Brazil

Lead Authors U. Cubasch

X. Dai

Y. Ding

D.J. Griggs B. Hewitson

I. Isaksen

T. Karl

J.T. Houghton

M. McFarland

V.P. Meleshko J.F.B. Mitchell

M. Noguer

B.S. Nyenzi

J.E. Penner

S. Pollonais

K.E. Trenberth

T. Stocker

M. Oppenheimer

Max-Planck Institute for Meteorology, Germany IPCC WGI Technical Support Unit, UK/National Climate Center, China IPCC WGI Co-Chairman, National Climate Center, China IPCC WGI Technical Support Unit, UK University of Capetown, South Africa IPCC WGI Co-Chairman, UK University of Oslo, Norway NOAA National Climatic Data Centre, USA Dupont Fluoroproducts, USA Voeikov Main Geophysical Observatory, Russia Hadley Centre for Climate Prediction and Research, Met Office, UK IPCC WGI Technical Support Unit, UK Zimbabwe Drought Monitoring Centre, Tanzania Environmental Defense, USA University of Michigan, USA Environment Management Authority, Trinidad and Tobago University of Bern, Switzerland National Center for Atmospheric Research, USA

Contributing Authors

M.R. Allen A.P.M. Baede J.A. Church D.H. Ehhalt C.K. Folland F. Giorgi J.M. Gregory J.M. Haywood J.I. House M. Hulme V.J. Jaramillo Rutherford Appleton Laboratory, UK Koninklijk Nederlands Meteorologisch Instituut, Netherlands CSIRO Division of Marine Research, Australia Institut für Chemie der KFA Jülich GmbH, Germany Hadley Centre for Climate Prediction and Research, Met Office, UK Abdus Salam International Centre for Theoretical Physics, Italy Hadley Centre for Climate Prediction and Research, Met Office, UK Hadley Centre for Climate Prediction and Research, Met Office, UK Max-Plank Institute for Biogeochemistry, Germany University of East Anglia, UK Instituto de Ecologia, UNAM, Mexico

A. Jayaraman	Physical Research Laboratory, India
C.A. Johnson	IPCC WGI Technical Support Unit, UK
S. Joussaume	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France
D.J. Karoly	Monash University, Australia
H. Kheshgi	Exxon Mobil Research and Engineering Company, USA
C. Le Quéré	Max Plank Institute for Biogeochemistry, France
K. Maskell	IPCC WGI Technical Support Unit, UK
L.J. Mata	Universitaet Bonn, Germany
B.J. McAvaney	Bureau of Meteorology Research Centre, Australia
L.O. Mearns	National Center for Atmospheric Research, USA
G.A. Meehl	National Center for Atmospheric Research, USA
B. Moore III	University of New Hampshire, USA
R.K. Mugara	Zambia Meteorological Department, Zambia
M. Prather	University of California, USA
C. Prentice	Max-Planck Institute for Biogeochemistry, Germany
V. Ramaswamy	NOAA Geophysical Fluid Dynamics Laboratory, USA
S.C.B. Raper	University of East Anglia, UK
M.J. Salinger	National Institute of Water & Atmospheric Research, New Zealand
R. Scholes	Division of Water, Environment and Forest Technology, South Africa
S. Solomon	NOAA Aeronomy Laboratory, USA
R. Stouffer	NOAA Geophysical Fluid Dynamics Laboratory, USA
MX. Wang	Institute of Atmospheric Physics, Chinese Academy of Sciences, China
R.T. Watson	Chairman IPCC, The World Bank, USA
KS. Yap	Malaysian Meteorological Service, Malaysia

Review Editors

F. Joos	University of Bern, Switzerland
A. Ramirez-Rojas	Universidad Central Venezuela, Venezuela
J.M.R. Stone	Environment Canada, Canada
J. Zillman	Bureau of Meteorology, Australia

Chapter 1. The Climate System: an Overview

Co-ordinating Lead Author A.P.M. Baede	Koninklijk Nederlands Meteorologisch Instituut, Netherlands
Lead Authors	
E. Ahlonsou	National Meteorological Service, Benin
Y. Ding	IPCC WG1 Co-Chairman, National Climate Center, China
D. Schimel	Max-Planck Institute for Biogeochemistry, Germany/NCAR, USA
Review Editors	
B. Bolin	Retired, Sweden
S. Pollonais	Environment Management Authority, Trinidad and Tobago

Chapter 2. Observed Climate Variability and Change

Co-ordinating Lead Authors	
C.K. Folland	Hadley Centre for Climate Prediction and Research, Met Office, UK
T.R. Karl	NOAA National Climatic Data Center, USA
Lead Authors	
J.R. Christy	University of Alabama, USA
R.A. Clarke	Bedford Institute of Oceanography, Canada
G.V. Gruza	Institute for Global Climate and Ecology, Russia

J. Jouzel	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment, France
M.E. Mann	University of Virginia, USA
J. Oerlemans	University of Utrecht, Netherlands
M.J. Salinger	National Institute of Water & Atmospheric Research, New Zealand
SW. Wang	Peking University, China

Goddard Institute for Space Studies, USA

Contributing Authors J. Bates M. Crowe P. Frich P. Groissman J. Hurrell P. Jones D. Parker T. Peterson D. Robinson J. Walsh M. Abbott L. Alexander H. Alexanderson R. Allan R. Alley P. Ambenjie P. Arkin L. Bajuk R. Balling M.Y. Bardin R. Bradley R. Brázdil K.R. Briffa H. Brooks R.D. Brown S. Brown M. Brunet-India M. Cane D. Changnon S. Changnon J. Cole D. Collins E. Cook A. Dai A. Douglas B. Douglas J.C. Duplessy D. Easterling P. Englehart R.E. Eskridge D. Etheridge D. Fisher D. Gaffen K. Gallo E. Genikhovich D. Gong G. Gutman W. Haeberli J. Haigh

NOAA Environmental Research Laboratories, USA NOAA National Climatic Data Center, USA Hadley Centre for Climate Prediction and Research, Met Office, UK NOAA National Climatic Data Center, USA National Center for Atmospheric Research, USA University of East Anglia, UK Hadley Centre for Climate Prediction and Research, Met Office, UK NOAA National Climatic Data Center, USA Rutgers University, USA University of Illinois at Urbana-Champaign, USA Oregon State University, USA Hadley Centre for Climate Prediction and Research, Met Office, UK Swedish Meteorological and Hydrological Institute, Sweden CSIRO Division of Atmospheric Research, Australia Pennsylvania State University, USA Department of Meteorology, Kenya Lamont-Doherty Earth Observatory of Columbia University, USA Mathsoft Data Analysis Products Division, USA Arizona State University, USA Institute for Global Climate and Ecology, Russia University of Massachusetts, USA Masaryk University, Czech Republic University of East Anglia, UK NOAA National Severe Storms Laboratory, USA Atmospheric Environment Service, Canada Hadley Centre for Climate Prediction and Research, Met Office, UK University Rovira I Virgili, Spain Lamont-Doherty Earth Observatory of Columbia University, USA Northern Illinois University, USA University of Illinois at Urbana-Champaign, USA University of Colorado, USA Bureau of Meteorology, Australia Lamont-Doherty Earth Observatory of Columbia University, USA National Center for Atmospheric Research, USA Creighton University, USA University of Maryland, USA Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France NOAA National Climatic Data Center, USA USA NOAA National Climatic Data Center, USA CSIRO Division of Atmospheric Research, Australia Geological Survey of Canada, Canada NOAA Air Resources Laboratory, USA National Environmental Satellite, Data and Information Service, USA Main Geophysical Observatory, Russia Peking University, China National Environmental Satellite, Data and Information Service, USA University of Zurich, Switzerland Imperial College, UK

D. Hardy S. Harrison R. Heino K. Hennessy W. Hogg S. Huang K. Hughen M.K. Hughes M. Hulme H. Iskenderian O.M. Johannessen D. Kaiser D. Karoly D. Kley R. Knight K.R. Kumar K. Kunkel M. Lal C. Landsea J. Lawrimore J. Lean C. Leovy H. Lins R. Livezey K.M. Lugina I. Macadam J.A. Majorowicz B. Manighetti J. Marengo E. Mekis M.W. Miles A. Moberg I. Mokhov V. Morgan L. Mysak M. New J. Norris L. Ogallo J. Overpeck T. Owen D. Paillard T. Palmer C. Parkinson C.R. Pfister N. Plummer H. Pollack C. Prentice R. Quayle E.Ya. Rankova N. Rayner V.N. Razuvaev G. Ren J. Renwick R. Reynolds D. Rind A. Robock R. Rosen

University of Massachusetts, USA Max-Planck Institute for Biogeochemistry, Germany Finnish Meteorological Institute, Finland CSIRO Division of Atmospheric Research, Australia Atmospheric Environment Service, Canada University of Michigan, USA Woods Hole Oceanographic Institute, USA University of Arizona, USA University of East Angelia, UK Atmospheric and Environmental Research, Inc., USA Nasen Environmental and Remote Sensing Center, Norway Oak Ridge National Laboratory, USA Monash University, Australia Institut fuer Chemie und Dynamik der Geosphaere, Germany NOAA National Climatic Data Center, USA Indian Institute of Tropical Meteorology, India Illinois State Water Survey, USA Indian Institute of Technology, India NOAA Atlantic Oceanographic & Meteorological Laboratory, USA NOAA National Climatic Data Center, USA Naval Research Laboratory, USA University of Washington, USA US Geological Survey, USA NOAA National Weather Service, USA St Petersburg University, Russia Hadley Centre for Climate Prediction and Research, Met Office, UK Northern Geothermal, Canada National Institute of Water & Atmospheric Research, New Zealand Instituto Nacional de Pesquisas Espaciais, Brazil Environment Canada, Canada Nasen Environmental and Remote Sensing Center, Norway Stockholm University, Sweden Institute of Atmospheric Physics, Russia University of Tasmania, Australia McGill University, Canada Oxford University, UK NOAA Geophysical Fluid Dynamics Laboratory, USA University of Nairobi, Kenya NOAA National Geophysical Data Center, USA NOAA National Climatic Data Center, USA Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France European Centre for Medium-range Weather Forecasting, UK NASA Goddard Space Flight Center, USA Unitobler, Switzerland Bureau of Meteorology, Australia University of Michigan, USA Max-Planck Institute for Biogeochemistry, Germany NOAA National Climatic Data Center, USA Institute for Global Climate and Ecology, Russia Hadley Centre for Climate Prediction and Research, Met Office, UK Chief Climatology Department, Russia National Climate Center, China National Institute of Water & Atmospheric Research, New Zealand NOAA National Centers for Environmental Prediction, USA Goddard Institute of Space Studies, USA Rutgers University, USA

Atmospheric and Environmental Research, Inc., USA

Review Editors	
P. Zhai	National Climate Center, China
P. Xie	NOAA National Centers for Environmental Prediction, USA
W. White	Scripps Institution of Oceanography, USA
S. Warren	University of Washington, USA
J.M. Wallace	University of Washington, USA
P. Wadhams	Scott Polar Research Institute, UK
M. Vuille	University of Massachusetts, USA
H. von Storch	GKSS Research Center, Germany
U. von Grafenstein	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France
K.Y. Vinnikov	University of Maryland, USA
D. Vaughan	British Antarctic Survey, UK
T. van Ommen	University of Tasmania, Australia
H. Tuomenvirta	Finnish Meteorological Institute, Finland
K. Trenberth	National Center for Atmospheric Research, USA
R. Toumi	Imperial College, UK
A. Timmermann	Koninklijk Nederlands Meteorologisch Instituut, Netherlands
W.J. Thompson	University of Washington, USA
L. Thompson	Ohio State University, USA
V. Thapliyal	India Meteorological Department, India
V. Swail	Environment Canada, Canada
B. Sun	University of Massachusetts, USA
T. Stocker	University of Bern, Switzerland
A. Sterin	RIHMI-WDCB, Russia
M. Stendel	Danish Meteorological Institute, Denmark
D. Stahle	University of Arkansas, USA
D.M. Smith	Hadley Centre for Climate Prediction and Research, Met Office, UK
J. Slack	US Geological Survey, USA
W.R. Skinner	Environment Canada, Canada
M. Serreze	University of Colorado, USA
J.M. Russell	Hampton University, USA
D. Rothrock	Applied Physics Laboratory, USA
R. Ross	NOAA Air Resources Laboratory, USA
S. Rösner	Department Climate and Environment, Deutscher Wetterdienst, Germany

R. Hallgren	American Meteorological Society, USA
B. Nyenzi	Zimbabwe Drought Monitoring Centre, Tanzania

Chapter 3. The Carbon Cycle and Atmospheric Carbon Dioxide

Co-ordinating Lead Author	
I.C. Prentice	Max-Planck Institute for Biogeochemistry, Germany
Lead Authors	
G.D. Farquhar	Australian National University, Australia
M.J.R. Fasham	Southampton Oceanography Centre, UK
M.L. Goulden	University of California, USA
M. Heimann	Max-Planck Institute for Biogeochemistry, Germany
V.J. Jaramillo	Instituto de Ecologia, UNAM, Mexico
H.S. Kheshgi	Exxon Mobil Research and Engineering Company, USA
C. Le Quéré	Max-Planck Institute for Biogeochemistry, Germany
R.J. Scholes	Division of Water, Environment and Forest Technology, South Africa
D.W.R. Wallace	Universitat Kiel, Germany

Contributing Authors

D. /	Archer
------	--------

University of Chicago, USA

M.R. Ashmore	University of Bradford, UK
O. Aumont	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France
D. Baker	Princeton University, USA
M. Battle	Bowdoin College, USA
M. Bender	Princeton University, USA
L.P. Bopp	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France
P. Bousquet	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France
K. Caldeira	Lawrence Livermore National Laboratory, USA
P. Ciais	CEA, LMCE/DSM, France
P.M. Cox	Hadley Centre for Climate Prediction and Research, Met Office, UK
W. Cramer	Potsdam Institute for Climate Impact Research, Germany
F. Dentener	Environment Institute, Italy
I.G. Enting	CSIRO Division of Atmospheric Research, Australia
C.B. Field	Carnegie Institute of Washington, USA
P. Friedlingstein	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France
E.A. Holland	Max-Planck Institute for Biochemistry, Germany
R.A. Houghton	Woods Hole Research Center, USA
J.I. House	Max-Planck Institute for Biogeochemistry, Germany
A. Ishida	Institute for Global Change Research, Japan
A.K. Jain	University of Illinois, USA
I.A. Janssens	Universiteit Antwerpen, Belgium
F. Joos	University of Bern, Switzerland
T. Kaminski	Max-Planck Institute for Meteorology, Germany
C.D. Keeling	University of California at San Diego, USA
R.F. Keeling	University of California at San Diego, USA
D.W. Kicklighter	Marine Biological Laboratory, USA
K.E. Kohfeld	Max-Planck Institute for Biogeochemistry, Germany
W. Knorr	Max-Planck Institute for Biogeochemistry, Germany
R. Law	Monash University, Australia
T. Lenton	Institute of Terrestrial Ecology, UK
K. Lindsay	National Center for Atmospheric Research, USA
E. Maier-Reimer	Max-Planck Institute for Meteorology, Germany
A.C. Manning	University of California at San Diego, USA
R.J. Matear	CSIRO Division of Marine Research, Australia
A.D. McGuire	University of Alaska at Fairbanks, USA
J.M. Melillo	Woods Hole Oceanographic Institution, USA
R. Meyer	University of Bern, Switzerland
M. Mund	Max-Planck Institute for Biogeochemistry, Germany
J.C. Orr	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France
S. Piper	Scripps Institution of Oceanography, USA
K. Plattner	University of Bern, Switzerland
P.J. Rayner	CSIRO Division of Atmospheric Research, Australia
S. Sitch	Institut für Klimafolgenforschung, Germany
R. Slater	Princeton University Atmospheric and Oceanic Sciences Program, USA
S. Taguchi	National Institute for Research & Environment, Japan
P.P. Tans	NOAA Climate Monitoring & Diagnostics Laboratory, USA
H.Q. Tian	Marine Biological Laboratory, USA
M.F. Weirig	Alfred Wegener Institute for Polar and Marine Research, Germany
T. Whorf	University of California at San Diego, USA
A. Yool	Southampton Oceanography Centre, UK

Review Editors

L. Pitelka A. Ramirez Rojas University of Maryland, USA Universidad Central Venezuela, Venezuela

Chapter 4. Atmospheric Chemistry and Greenhouse Gases

Co-ordinating Lead Authors

D. Ehhalt	Institut für Chemie der KFA Jülich GmbH, Germany
M. Prather	University of California, USA
Lead Authors	
F. Dentener	Institute for Marine and Atmospheric Research, Netherlands
R. Derwent	Met Office, UK
E. Dlugokencky	NOAA Climate Monitoring & Diagnostics Laboratory, USA
E. Holland	Max-Planck Institute for Biogeochemistry, Germany
I. Isaksen	University of Oslo, Norway
J. Katima	University of Dar-Es-Salaam, Tanzania
V. Kirchhoff	Instituto Nacional de Pesquisas Espaciais, Brazil
P. Matson	Stanford University, USA
P. Midgley	M&D Consulting, Germany
M. Wang	Institute of Atmospheric Physics, China

Contributing Authors

T. Berntsen Centre for International Climate and Environmental Research, Norway Harvard University, USA/France I. Bey G. Brasseur Max-Planck Institute for Meteorology, Germany L. Buja National Center for Atmospheric Research, USA W.J. Collins Hadley Centre for Climate Prediction and Research, Met Office, UK NOAA Aeronomy Laboratory, USA J. Daniel Jet Propulsion Laboratory, USA W.B. DeMore CSIRO Division of Atmospheric Research, Australia N. Derek R. Dickerson University of Maryland, USA CSIRO Division of Atmospheric Research, Australia D. Etheridge J. Feichter Max-Planck Institute for Meteorology, Germany P. Fraser CSIRO Division of Atmospheric Research, Australia Jet Propulsion Laboratory, USA R. Friedl J. Fuglestvedt University of Oslo, Norway M. Gauss University of Oslo, Norway L. Grenfell NASA Goddard Institute for Space Studies, USA A. Grübler International Institute for Applied Systems Analysis, Austria European Ozone Research Coordinating Unit, UK N. Harris D. Hauglustaine Center National de la Recherche Scientifique, Service Aeronomie, France National Center for Atmospheric Research, USA L. Horowitz NASA Goddard Space Flight Center, USA C. Jackman D. Jacob Harvard University, USA L. Jaeglé Harvard University, USA A. Jain University of Illinois, USA M. Kanakidou Environmental Chemical Processes Laboratory, Greece S. Karlsdottir University of Oslo, Norway M. Ko Atmospheric & Environmental Research Inc., USA M. Kurylo NASA Headquarters, USA M. Lawrence Max-Planck Institute for Chemistry, Germany J.A. Logan Harvard University, USA National Institute of Water & Atmospheric Research, New Zealand M. Manning Princeton University, USA D. Mauzerall J. McConnell York University, Canada L. Mickley Harvard University, USA NOAA Climate Monitoring & Diagnostics Laboratory, USA S. Montzka J.F. Muller Belgian Institute for Space Aeronomy, Belgium National Institute of Public Health and the Environment, Netherlands J. Olivier K. Pickering University of Maryland, USA

G. Pitari	Università Degli Studi dell' Aquila, Italy
G.J. Roelofs	University of Utrecht, Netherlands
H. Rogers	University of Cambridge, UK
B. Rognerud	University of Oslo, Norway
S. Smith	Pacific Northwest National Laboratory, USA
S. Solomon	NOAA Aeronomy Laboratory, USA
J. Staehelin	Federal Institute of Technology, Switzerland
P. Steele	CSIRO Division of Atmospheric Research, Australia
D. S. Stevenson	Met Office, UK
J. Sundet	University of Oslo, Norway
A. Thompson	NASA Goddard Space Flight Center, USA
M. van Weele	Konjnklijk Nederlands Meteorologisch Instituut, Netherlands
R. von Kuhlmann	Max-Planck Institute for Chemistry, Germany
Y. Wang	Georgia Institute of Technology, USA
D. Weisenstein	Atmospheric & Envrionmental Research Inc., USA
T. Wigley	National Center for Atmospheric Research, USA
O. Wild	Frontier Research System for Global Change, Japan
D. Wuebbles	University of Illinois, USA
R. Yantosca	Harvard University, USA
Review Editors	

E L

F. JOOS	
M. McFarland	

University of Bern, Switzerland Dupont Fluoroproducts, USA

Chapter 5. Aerosols, their Direct and Indirect Effects

Co-ordinating Lead Author

J.E. Penner	University of Michigan, USA	ł

Lead Authors

M. Andreae	Max-Planck Institute for Chemistry, Germany
H. Annegarn	University of the Witwatersrand, South Africa
L. Barrie	Atmospheric Environment Service, Canada
J. Feichter	Max-Planck Institute for Meteorology, Germany
D. Hegg	University of Washington, USA
A. Jayaraman	Physical Research Laboratory, India
R. Leaitch	Atmospheric Environment Service, Canada
D. Murphy	NOAA Aeronomy Laboratory, USA
J. Nganga	University of Nairobi, Kenya
G. Pitari	Università Degli Studi dell' Aquil, Italy

Contributing Authors

A. Ackerman	NASA Ames Research Center, USA
P. Adams	Caltech, USA
P. Austin	University of British Columbia, Canada
R. Boers	CSIRO Division of Atmospheric Research, Australia
O. Boucher	Laboratoire d'Optique Atmospherique, France
M. Chin	Goddard Space Flight Center, USA
C. Chuang	Lawrence Livermore National Laboratory, USA
W. Collins	Met Office, UK
W. Cooke	NOAA Geophysical Fluid Dynamics Laboratory, USA
P. DeMott	Colorado State University, USA
Y. Feng	University of Michigan, USA
H. Fischer	Scripps Institution of Oceanography, Germany
I. Fung	University of California, USA
S. Ghan	Pacific Northwest National Laboratory, USA

P. Ginoux	NASA Goddard Space Flight Center, USA
SL. Gong	Atmospheric Environment Service, Canada
A. Guenther	National Center for Atmospheric Research, USA
M. Herzog	University of Michigan, USA
A. Higurashi	National Institute for Environmental Studies, Japan
Y. Kaufman	NASA Goddard Space Flight Center, USA
A. Kettle	Max-Planck Institute for Chemistry, Germany
J. Kiehl	National Center for Atmospheric Research, USA
D. Koch	National Center for Atmospheric Research, USA
G. Lammel	Max-Planck Institute for Meteorology, Germany
C. Land	Max-Planck Institute for Meteorology, Germany
U. Lohmann	Dalhousie University, Canada
S. Madronich	National Center for Atmospheric Research, USA
E. Mancini	Università Degli Studi dell' Aquila, Italy
M. Mishchenko	NASA Goddard Institute for Space Studies, USA
T. Nakajima	University of Tokyo, Japan
P. Quinn	National Oceanographic and Atmospheric Administration, USA
P. Rasch	National Center for Atmospheric Research, USA
D.L. Roberts	Hadley Centre for Climate Prediction and Research, Met Office, UK
D. Savoie	University of Miami, USA
S. Schwartz	Brookhaven National Laboratory, USA
J. Seinfeld	California Institute of Technology, USA
B. Soden	Princeton University, USA
D. Tanré	Laboratoire d'Optique Atmospherique, France
K. Taylor	Lawrence Livermore National Laboratory, USA
I. Tegen	Max-Planck Institute for Biogeochemistry, Germany
X. Tie	National Center for Atmospheric Research, USA
G. Vali	University of Wyoming, USA
R. Van Dingenen	Enviroment Institute of European Commission, Italy
M. van Weele	Koninklijk Nederlands Meteorologisch Instituut, The Netherlands
Y. Zhang	University of Michigan, USA

Review Editors

B. Nyenzi	Zimbabwe Drought Monitoring Centre, Tanzania
J. Prospero	University of Miami, USA

Chapter 6. Radiative Forcing of Climate Change

Co-ordinating Lead Author

V. Ramaswamy	NOAA Geophysical Fluid Dynamics Laboratory, USA
Lead Authors	
O. Boucher	Max-Planck Institute for Chemistry, Germany/Laboratoire d'Optique Atmospherique, France
J. Haigh	Imperial College, UK
D. Hauglustaine	Center National de la Recherche Scientifique, France
J. Haywood	Meteorological Research Flight, Met Office, UK
G. Myhre	University of Oslo, Norway
T. Nakajima	University of Tokyo, Japan
G.Y. Shi	Institute of Atmospheric Physics, China
S. Solomon	NOAA Aeronomy Laboratory, USA

Contributing Authors

contributing rutitors	
R. Betts	Hadley Centre for Climate Prediction and Research, Met Office, UK
R. Charlson	Stockholm University, Sweden
C. Chuang	Lawrence Livermore National Laboratory, USA
J.S. Daniel	NOAA Aeronomy Laboratory, USA

A Del Carrie	NACA Coddond Institute for Space Studies, USA
A. Del Genio	NASA Goddard Institute for Space Studies, USA
J. Feichter	Max-Planck Institute for Meteorology, Germany
J. Fuglestvedt	University of Oslo, Norway
P.M. Forster	Monash University, Australia
S.J. Ghan	Pacific Northwest National Laboratory, USA
A. Jones	Hadley Centre for Climate Prediction and Research, Met Office, UK
J.T. Kiehl	National Center for Atmospheric Research, USA
D. Koch	Yale University, USA
C. Land	Max-Planck Institute for Meteorology, Germany
J. Lean	Naval Research Laboratory, USA
U. Lohmann	Dalhousie University, Canada
K. Minschwaner	New Mexico Institute of Mining and Technology, USA
J.E. Penner	University of Michigan, USA
D.L. Roberts	Hadley Centre for Climate Prediction and Research, Met Office, UK
H. Rodhe	University of Stockholm, Sweden
G.J. Roelofs	University of Utrecht, Netherlands
L.D. Rotstayn	CSIRO, Australia
T.L. Schneider	Institute for World Forestry and Ecology, Germany
U. Schumann	Institut für Physik der Atmosphäre, Germany
S.E. Schwartz	Brookhaven National Laboratory, USA
M.D. Schwartzkopf	NOAA Geophysical Fluid Dynamics Laboratory, USA
K.P. Shine	University of Reading, UK
S. Smith	Pacific Northwest National Laboratory, USA
D.S. Stevenson	Met Office, UK
F. Stordal	Norwegian Institute for Air Research, Norway
I. Tegen	Max-Planck Institute for Biogeochemistry, Germany
R. van Dorland	Knoinklijk Nederlands Meteorologisch Instituut, The Netherlands
Y. Zhang	University of Michigan, USA

Review Editors

J. Srinivasan	Indian Institute of Science, India
F. Joos	University of Bern, Switzerland

Chapter 7. Physical Climate Processes and Feedbacks

Co-ordinating Lead Author T.F. Stocker	University of Bern, Switzerland
Lead Authors	
G.K.C. Clarke	University of British Columbia, Canada
H. Le Treut	Laboratoire de Météorologie Dynamique du Center National de la Recherche Scientifique,
France	
R.S. Lindzen	Massachusetts Institute of Technology, USA
V.P. Meleshko	Voeikov Main Geophysical Observatory, Russia
R.K. Mugara	Zambia Meteorological Department, Zambia
T.N. Palmer	European Centre for Medium-range Weather Forecasting, UK
R.T. Pierrehumbert	University of Chicago, USA
P.J. Sellers	NASA Johnson Space Centre, USA
K.E. Trenberth	National Center for Atmospheric Research, USA
J. Willebrand	Institut für Meereskunde an der Universität Kiel, Germany
Contributing Authors	
R.B. Alley	Pennsylvania State University, USA
O.E. Anisimov	State Hydrological Institute, Russia
C. Appenzeller	University of Bern, Switzerland
R.G. Barry	University of Colorado, USA

S. Manabe

P. Mason

J.J. Bates NOAA Environmental Research Laboratories, USA R. Bindschadler NASA Goddard Space Flight Centre, USA G.B. Bonan National Center for Atmospheric Research, USA C.W. Böning Universtat Kiel, Germany Laboratoire de Météorologie Dynamique du Center National de la Recherche Scientifique, France S. Bony H. Bryden Southampton Oceanography Centre, UK M.A. Cane Lamont-Doherty Earth Observatory of Columbia University, USA J.A. Curry Aerospace Engineering, USA T. Delworth NOAA Geophysical Fluid Dynamics Laboratory, USA Colorado State University, USA A.S. Denning R.E. Dickinson University of Arizona, USA K. Echelmeyer University of Alaska, USA K. Emanuel Massachusetts Institute of Technology, USA G. Flato Canadian Centre for Climate Modelling & Analysis, Canada I. Fung University of California, USA M. Geller New York State University, USA P.R. Gent National Center for Atmospheric Research, USA S.M. Griffies NOAA Princeton University, USA NOAA Geophysical Fluid Dynamics Laboratory, USA I. Held A. Henderson-Sellers Australian Nuclear Science and Technology Organisation, Australia Royal Netherlands Meteorological Institute, Netherlands A.A.M. Holtslag F. Hourdin Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique, France J.W. Hurrell National Center for Atmospheric Research, USA Voeikov Main Geophysical Observatory, Russia V.M. Kattsov Southampton Oceanography Centre, UK P.D. Killworth Lamont-Doherty Earth Observatory Y. Kushnir of Columbia University, USA W.G. Large National Center for Atmospheric Research, USA Max-Planck Institute for Meteorology, Germany M. Latif Alfred-Wegener Institute for Polar & Marine Research, Germany P. Lemke University of Virginia, USA M.E. Mann G. Meehl National Centre for Atmospheric Research, USA Max-Planck Institute for Meteorology, Germany U. Mikolajewicz W. O'Hirok Institute for Computational Earth System Science, USA NASA Goddard Space Flight Center, USA C.L. Parkinson University of Southampton, UK A. Payne A. Pitman Macquarie University, Australia J. Polcher Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique, France I. Polyakov Princeton University, USA V. Ramaswamy NOAA Geophysical Fluid Dynamics Laboratory, USA National Center for Atmospheric Research, USA P.J. Rasch E.P. Salathe University of Washington, USA C. Schär Institut fur Klimaforschung ETH, Switzerland R.W. Schmitt Woods Hole Oceanographic Institution, USA T.G. Shepherd University of Toronto, Canada B.J. Soden Princeton University, USA R.W. Spencer Marshall Space Flight Center, USA P. Taylor Southampton Oceanography Centre, UK A. Timmermann Koninklijk Nederlands Meteorologisch Instituut, Netherlands K.Y. Vinnikov University of Maryland, USA M. Visbeck Lamont Doherty Earth Observatory of Columbia University, USA S.E. Wijffels CSIRO Division of Marine Research, Australia M. Wild Swiss Federal Institute of Technology, Switzerland **Review Editors**

Institute for Global Change, Japan Met Office, UK

Chapter 8. Model Evaluation

B I McAyaney	n Bureau of Meteorology Research Centre Australia
D.J. Wierwalley	Bureau or weteorology Research Centre, Australia
Lead Authors	
C. Covey	Lawrence Livermore National Laboratory, USA
S. Joussaume	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment, France
V. Kattsov	Voeikov Main Geophysical Observatory, Russia
A. Kitoh	Meteorological Research Institute, Japan
W. Ogana	University of Nairobi, Kenya
A.J. Pitman	Macquarie University, Australia
A.J. Weaver	University of Victoria, Canada
R.A. Wood	Hadley Centre for Climate Prediction and Research, Met Office, UK
ZC. Zhao	National Climate Center, China
Contributing Authors	
K. AchutaRao	Lawrence Livermore National Laboratory, USA
A. Arking	NASA Goddard Space Flight Centre, USA
A. Barnston	NOAA Climate Prediction Center, USA
R. Betts	Hadley Centre for Climate Prediction and Research, Met Office, UK
C. Bitz	Quaternary Research, USA
G. Boer	Canadian Center for Climate Modelling & Analysis, Canada
P. Braconnot	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment, France
A. Broccoli	NOAA Geophysical Fluid Dynamics Laboratory, USA
F. Bryan	Programe in Atmospheric and Oceanic Sciences, USA
M. Claussen	Potsdam Institute for Climate Impact Research, Germany
R. Colman	Bureau of Meteorology Research Centre, Australia
P. Delecluse	Institut Pierre Simon Laplace, Laboratoire d'Oceanographie Dynamique et Climatologie, France
A. Del Genio	NASA Goddard Institute for Space Studies, USA
K. Dixon	NOAA Geophysical Fluid Dynamics Laboratory, USA
P. Duffy	Lawrence Livermore National Laboratory, USA
L. Dümenil	Max-Planck Institute for Meteorology, Germany
M. England	University of New South Wales, Australia
T. Fichefet	Universite Catholique de Louvain, Belgium
G. Flato	Canadian Centre for Climate Modelling & Analysis, Canada
J.C. Fyfe	Canadian Centre for Climate Modelling & Analysis, Canada
N. Gedney	Hadley Centre for Climate Prediction and Research, Met Office, UK
P. Gent	National Center for Atmospheric Research, USA
C. Genthon	Laboratoire de Glaciologie et Geophysique de l'Environment, France
J. Gregory	Hadley Centre for Climate Prediction and Research, Met Office, UK
E. Guilyardi	Institut Pierre Simon Laplace, Laboratoire d'Oceanographie Dynamique et Climatologie. France
S. Harrison	Max-Planck Institute for Biogeochemistry, Germany
N Hasegawa	Japan Environment Agency Japan

Bureau of Meteorology Research Centre, Australia

Institut Pierre Simon Laplace, Laboratoire Sciences du Climat et de l'Environment, France

Institut Pierre Simon Laplace, Laboratoire d'Oceanographie Dynamique et Climatologie, France

National Center for Atmospheric Research, USA

Southampton Oceanography Centre, UK

Meteorological Research Institute, Japan

Meteorological Research Institute, Japan

University of Wisconsin at Madison, USA

Deutsches Klimarechenzentrum GmbH, Germany

University of East Angelia, UK

University of Victoria, Canada

Harvard University, USA

S. Legutke G. Madec

G. Holland

M. Holland

P.D. Jones

K. Kodera

J. Kutzbach

S. Lambert

M. Kageyama D. Keith

Y. Jia

S. Maeda

Review Editors	
F. Zwiers	Canadian Centre for Climate Modelling and Analysis, Canada
XH. Zhang	Chinese Academy of Sciences, China
SP. Xie	University of Hawaii at Manoa, USA
D. Williamson	National Center for Atmospheric Research, USA
M. Wild	Swiss Federal Institute of Technology, Switzerland
J. Walsh	University of Illinois at Urbana-Champaign, USA
K. Trenberth	National Center for Atmospheric Research, USA
R. Tol	Vrije Universitiet, Netherlands
K.E. Taylor	Lawrence Livermore National Laboratory, USA
R. Stouffer	NOAA Geophysical Fluid Dynamics Laboratory, USA
T. Stockdale	European Centre for Medium-range Weather Forecasting, UK
D.J. Stensrud	NOAA National Severe Storms Laboratory, USA
F. Semazzi	Southampton Oceanography Centre, UK
P. Sellers	NASA Johnson Space Centre, USA
G. Roff	Bureau of Meteorology Research Centre, Australia
C. Prentice	Max-Planck Institute for Biogeochemistry, Germany
V. Pope	Hadley Centre for Climate Prediction and Research, Met Office, UK
G.L. Potter	Lawrence Livermore National Laboratory, USA
J. Polcher	Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique, France
T. Phillips	Lawrence Livermore National Laboratory, USA
T. Motoi	Frontier Research System for Global Change, Japan
I. Mokhov	Institute of Atmospheric Physics, Russia
G. Meehl	National Centre for Atmospheric Research, USA
M.E. Mann	University of Virginia, USA

Y. Qian	Nanjing University, China
J. Stone	Environment Canada, Canada

Chapter 9. Projections of Future Climate Change

Co-ordinating Lead Authors

U. Cubasch	Max-Planck Institute for Meteorology, Germany
G.A. Meehl	National Center for Atmospheric Research, USA

Lead Authors

G.J. Boer	University of Victoria, Canada
R.J. Stouffer	NOAA Geophysical Fluid Dynamics Laboratory, USA
M. Dix	CSIRO Division of Atmospheric Research, Australia
A. Noda	Meteorological Research Institute, Japan
C.A. Senior	Hadley Centre for Climate Prediction and Research, Met Office, UK
S. Raper	University of East Anglia, UK
K.S. Yap	Malaysian Meteorological Service, Malaysia

Contributing Authors

A. Abe-Ouchi	University of Tokyo, Japan
S. Brinkop	Institute für Physik der Atmosphäre, Germany
M. Claussen	Potsdam Institute for Climate Impact Research, Germany
M. Collins	Hadley Centre for Climate Prediction and Research, Met Office, UK
J. Evans	Pennsylvania State University, USA
I. Fischer-Bruns	Max-Planck Institute for Meteorology, Germany
G. Flato	Canadian Centre for Climate Modelling & Analysis, Canada
J.C. Fyfe	Canadian Centre for Climate Modelling & Analysis, Canada
A. Ganopolski	Potsdam Institute for Climate Impact Research, Germany
J.M. Gregory	Hadley Centre for Climate Prediction and Research, Met Office, UK
ZZ. Hu	Center for Ocean-Land-Atmosphere Studies, USA

F. Joos	University of Bern, Switzerland
T. Knutson	NOAA Geophysical Fluid Dynamics Laboratory, USA
C. Landsea	NOAA Atlantic Oceanographic & Meteorological Laboratory, USA
L. Mearns	National Center for Atmospheric Research, USA
C. Milly	US Geological Survey, USA
J.F.B. Mitchell	Hadley Centre for Climate Prediction and Research, Met Office, UK
T. Nozawa	National Institute for Environmental Studies, Japan
H. Paeth	Universität Bonn, Germany
J. Räisänen	Swedish Meteorological and Hydrological Institute, Sweden
R. Sausen	Institute für Physik der Atmosphäre, Germany
S. Smith	Pacific Northwest National Laboratory, USA
T. Stocker	University of Bern, Switzerland
A. Timmermann	Royal Netherlands Meteorological Institute, Netherlands
U. Ulbrich	Institut fuer Geophysik und Meteorolgie, Germany
A. Weaver	University of Victoria, Canada
J. Wegner	Deutsches Klimarechenzentrum, Germany
P. Whetton	CSIRO Division of Atmospheric Research, Australia
T. Wigley	National Center for Atmospheric Research, USA
M. Winton	NOAA Geophysical Fluid Dynamics Laboratory, USA
F. Zwiers	Canadian Centre for Climate Modelling and Analysis, Canada

Review Editors

J. Stone	Environment Canada, Canada
JW. Kim	Yonsei University, South Korea

Chapter 10. Regional Climate Information - Evaluation and Projections

Co-ordinating Lead Authors

8	
F. Giorgi	Abdus Salam International Centre for Theoretical Physics, Italy
B. Hewitson	University of Capetown, South Africa

Lead Authors

J. Christensen	Danish Meteorological Institute, Denmark
M. Hulme	University of East Anglia, UK
H. Von Storch	GKSS, Germany
P. Whetton	CSIRO Division of Atmospheric Research, Australia
R. Jones	Hadley Centre for Climate Prediction and Research, Met Office, UK
L. Mearns	National Center for Atmospheric Research, USA
C. Fu	Institute of Atmospheric Physics, China

Contributing Authors

R. Arritt	Iowa State University, USA
B. Bates	CSIRO Land and Water, Australia
R. Benestad	Det Norske Meteorologiske Institutt, Norway
G. Boer	Canadian Centre for Climate Modelling & Analysis, Canada
A. Buishand	Koninklijk Nederlands Meteorologisch Instituut, Netherlands
M. Castro	Universidad Complutense de Madrid, Spain
D. Chen	Göteborg University, Sweden
W. Cramer	Potsdam Institute for Climate Impact Research, Germany
R. Crane	The Pennsylvania State University, USA
J.F. Crossley	University of East Anglia, UK
M. Dehn	University of Bonn, Germany
K. Dethloff	Alfred Wegener Institute for Polar and Marine Research, Germany
J. Dippner	Institute for Baltic Research, Germany
S. Emori	National Institute for Environmental Studies, Japan
R. Francisco	Weather Bureau, Philippines

J. Fyfe	Canadian Centre for climate modelling and analysis, Canada
F.W. Gerstengarbe	Potsdam Institute for Climate Impact Research, Germany
W. Gutowski	Iowa State University, USA
D. Gyalistras	University of Berne, Switzerland
I. Hanssen-Bauer	The Norwegian Meteorological Institute, Norway
M. Hantel	University of Vienna, Austria
D.C. Hassell	Hadley Centre for Climate Prediction and Research, Met Office, UK
D. Heimann	Institute of Atmospheric Physics, Germany
C. Jack	University of Cape Town, South Africa
J. Jacobeit	Universitaet Wuerzburg, Germany
H. Kato	Central Research Institute of Electric Power Industry, Japan
R. Katz	National Center for Atmospheric Research, USA
F. Kauker	Alfred Wegener Institute for Polar and Marine Research, Germany
T. Knutson	NOAA Geophysical Fluid Dynamics Laboratory, USA
M. Lal	Indian Institute of Technology, India
C. Landsea	NOAA Atlantic Oceanographic & Meteorological Laboratory, USA
R. Laprise	University of Quebec at Montreal, Canada
L.R. Leung	Pacific Northwest National Laboratory, USA
A.H. Lynch	University of Colorado, USA
W. May	Danish Meteorological Institute, Denmark
J.L. McGregor	CSIRO Division of Atmospheric Research, Australia
N.L. Miller	Lawrence Berkeley National Laboratory, USA
J. Murphy	Hadley Centre for Climate Prediction and Research, Met Office, UK
J. Ribalaygua	Fundación para la Investigación del Clima, Spain
A. Rinke	Alfred Wegener Institute for Polar and Marine Research, Germany
M. Rummukainen	Swedish Meteorological and Hydrological Institute, Sweden
F. Semazzi	Southampton Oceanography Centre, UK
K. Walsh	CSIRO Division of Atmospheric Research, Australia
P. Werner	Potsdam Institute for Climate Impact Research, Germany
M. Widmann	GKSS Research Centre, Germany
R. Wilby	University of Derby, UK
M. Wild	Swiss Federal Institute of Technology, Switzerland
Y. Xue	University of California at Los Angeles, USA
Review Editors	
24.24	

M. MietusInstitute of Meteorology & Water Management, PolandJ. ZillmanBureau of Meteorology, Australia

Chapter 11. Changes in Sea Level

Co-ordinating Lead Authors J.A. Church CSIRO Division of Marine Research, Australia J.M. Gregory Hadley Centre for Climate Prediction and Research, Met Office, UK Lead Authors P. Huybrechts Vrije Universiteit Brussel, Belgium M. Kuhn Innsbruck University, Austria K. Lambeck Australian National University, Australia M.T. Nhuan Hanoi University of Sciences, Vietnam D. Qin Chinese Academy of Sciences, China P.L. Woodworth Bidston Observatory, UK **Contributing Authors** O.A. Anisimov State Hydrological Institute, Russia F.O. Bryan Programe in Atmospheric and Oceanic Sciences, USA A. Cazenave Groupe de Recherche de Geodesie Spatiale CNES, France

K.W. Dixon	NOAA Geophysical Fluid Dynamics Laboratory, USA
B.B. Fitzharris	University of Otago, New Zealand
G.M. Flato	Canadian Centre for Climate Modelling & Analysis, Canada
A. Ganopolski	Potsdam Institute for Climate Impact Research, Germany
V. Gornitz	Goddard Institute for Space Studies, USA
J.A. Lowe	Hadley Centre for Climate Prediction and Research, Met Office, UK
A. Noda	Japan Meteorological Agency, Japan
J.M. Oberhuber	German Climate Computing Centre, Germany
S.P. O'Farrell	CSIRO Division of Atmospheric Research, Australia
A. Ohmura	Geographisches Institute ETH, Switzerland
M. Oppenheimer	Environmental Defense, USA
W.R. Peltier	University of Toronto, Canada
S.C.B. Raper	University of East Anglia, UK
C. Ritz	Laboratoire de Glaciologie et Geophysique de l'Environment, France
G.L. Russell	NASA Goddard Institute for Space Studies, USA
E. Schlosser	Innsbruck University, Austria
C.K. Shum	Ohio State University, USA
T.F. Stocker	University of Bern, Switzerland
R.J. Stouffer	NOAA Geophysical Fluid Dynamics Laboratory, USA
R.S.W. van de Wal	Institute for Marine and Atmospheric Research, Netherlands
R. Voss	Deutsches Klimarechenzentrum, Germany
E.C. Wiebe	University of Victoria, Canada
M. Wild	Swiss Federal Institute of Technology, Switzerland
D.J. Wingham	University College London, UK
H.J. Zwally	NASA Goddard Space Flight Center, USA

Review Editors

B.C. Douglas	University of Maryland, USA
A. Ramirez	Universidad Central Venezuela, Venezuela

Chapter 12. Detection of Climate Change and Attribution of Causes

Co-ordinating Lead Authors

J.F.B. Mitchell	Hadley Centre for Climate Prediction and Research, Met Office, UK
D.J. Karoly	Monash University, Australia
Lead Authors	

G.C. Hegerl Texas A&M University, USA/Germany F.W. Zwiers University of Victoria, Canada M.R. Allen Rutherford Appleton Laboratory, UK Instituto Nacional de Pesquisas Espaciais, Brazil J. Marengo

Contributing Authors

V. Barros	Ciudad Universitaria, Argentina
M. Berliner	Ohio State University, USA
G. Boer	Canadian Centre for Climate Modelling & Analysis, Canada
T. Crowley	Texas A&M University, USA
C. Folland	Hadley Centre for Climate Prediction and Research, Met Office, UK
M. Free	NOAA Air Resources Laboratory, USA
N. Gillett	University of Oxford, UK
P. Groissman	NOAA National Climatic Data Center, USA
J. Haigh	Imperial College, UK
K. Hasselmann	Max-Planck Institute for Meteorology, Germany
P. Jones	University of East Anglia, UK
M. Kandlikar	Carnegie-Mellon University, USA
V. Kharin	Canadian Centre for Climate Modelling and Analysis, Canada

H. Khesghi	Exxon Mobil Research & Engineering Company, USA
T. Knutson	NOAA Geophysical Fluid Dynamics Laboratory, USA
M. MacCracken	Office of the US Global Change Research Program, USA
M. Mann	University of Virginia, USA
G. North	Texas A&M University, USA
J. Risbey	Carnegie-Mellon University, USA
A. Robock	Rutgers University, USA
B. Santer	Lawrence Livermore National Laboratory, USA
R. Schnur	Max-Planck Institute for Meteorology, Germany
C. Schönwiese	J.W. Goethe University, Germany
D. Sexton	Hadley Centre for Climate Prediction and Research, Met Office, UK
P. Stott	Hadley Centre for Climate Prediction and Research, Met Office, UK
S. Tett	Hadley Centre for Climate Prediction and Research, Met Office, UK
K. Vinnikov	University of Maryland, USA
T. Wigley	National Center for Atmospheric Research, USA
Review Editors	

F. Semazzi	Southampton Oceanography Centre, UK
J. Zillman	Bureau of Meteorology, Australia

Chapter 13. Climate Scenario Development

Co-ordinating Lead Authors L.O. Mearns M. Hulme	National Center for Atmospheric Research, USA University of East Anglia, UK
Lead Authors	
T.R. Carter	Finnish Environment Institute, Finland
R. Leemans	Rijksinstituut voor Volksgezondheid en Milieu, Netherlands
M. Lal	Indian Institute of Technology, India
P. Whetton	CSIRO Division of Atmospheric Research, Australia
Contributing Authors	
L. Hay	US Geological Survey, USA
R.N. Jones	CSIRO Division of Atmospheric Research, Australia
R. Katz	National Center for Atmospheric Research, USA
T. Kittel	National Center for Atmospheric Research, USA
J. Smith	Stratus Consulting Inc., USA
R. Wilby	University of Derby, UK
Review Editors	
L.J. Mata	Universidad Central Venezuela, Venezuela
J. Zillman	Bureau of Meteorology, Australia
Charten 14 Adrensing our U	daustan din s

Chapter 14. Advancing our Understanding

Co-ordinating Lead Author B. Moore III	University of New Hampshire, USA
Lead Authors	
W.L. Gates	Lawrence Livermore National Laboratory, USA
L.J. Mata	Universidad Central Venezuela, Venezuela
A. Underdal	University of Oslo, Norway

Contributing Author R.J. Stouffer

NOAA Geophysical Fluid Dynamics Laboratory, USA

Review Editors

B. Bolin A. Ramirez Rojas Retired, Sweden Universidad Central Venezuela, Venezuela

Appendix IV

Reviewers

of the IPCC WGI Third Assessment Report

Argentina

M. Nuñez

Ciudad Universitaria

Australia

K. Abel	Australian Greenhouse Office
G. Ayers	CSIRO Division of Atmospheric Research
S. Barrell	Bureau of Meteorology
P. Bate	Bureau of Meteorology
B. Bates	CSIRO Division of Land and Water
T. Beer	CSIRO Division of Atmospheric Research
R. Boers	CSIRO Division of Atmospheric Research
W. Budd	University of Tasmania
I. Carruthers	Australian Greenhouse Office
S. Charles	CSIRO Division of Atmospheric Research
J. Church	CSIRO Division of Marine Research
D. Collins	Bureau of Meteorology
R. Colman	Bureau of Meteorology Research Centre
D. Cosgrove	Bureau of Transport Economics
S. Crimp	Department of Natural Resources
B. Curran	Bureau of Meteorology
M. Davison	Australian Industry Greenhouse Network
M. Dix	CSIRO Division of Atmospheric Research
B. Dixon	Bureau of Meteorology
M. England	University of New South Wales
I. Enting	CSIRO Division of Atmospheric Research
D. Etheridge	CSIRO Division of Atmospheric Research
G. Farquhar	Australian National University
P. Forster	Monash University
R. Francey	CSIRO Division of Atmospheric Research
P. Fraser	CSIRO Division of Atmospheric Research
R. Gifford	CSIRO Division of Plant Industry
I. Goodwin	University of Tasmania
J. Gras	CSIRO Division of Atmospheric Research
G. Hassall	Australian Greenhouse Office
A. Henderson-Sellers	Australian Nuclear Science and Technology Organisation

K. Hennessy A. Ivanovici J. Jacka I. Jones R. Jones D. Karoly J. Katzfey B. Kininmonth J. Lough G. Love M. Manton B. McAvaney T. McDougall A. McEwan J. McGregor L. Minty B. Mitchell N. Plummer L. Powell L. Quick P. Rayner L. Rikus L. Rotstayn W. Scherer I. Smith P. Steele K. Walsh I. Watterson P. Whetton J. Zillman

Austria

M. Hantel	University of Vienna
K. Radunsky	Federal Environment Agency

Belgium

T. Fichefet
J. Franklin
A. Mouchet
J. van Ypersele
R. Zander

Benin

E. Ahlonsou

National Meteorological Service

Brazil

P. Fearnside J. Marengo

CSIRO Division of Atmospheric Research Australian Greenhouse Office Australian Antarctic Division University of Sydney CSIRO Division of Atmospheric Research Monash University CSIRO Division of Atmospheric Research Australasian Climate Research Australian Institute of Marine Science Bureau of Meteorology Bureau of Meteorology Research Centre Bureau of Meteorology Research Centre CSIRO Division of Marine Research Bureau of Meteorology CSIRO Division of Atmospheric Research Bureau of Meteorology Flinders University of South Australia Bureau of Meteorology Australian Greenhouse Office Australian Greenhouse Office CSIRO Division of Atmospheric Research Bureau of Meteorology Research Centre CSIRO Division of Atmospheric Research Flinders University of South Australia CSIRO Division of Atmospheric Research Bureau of Meteorology

Université Catholique de Louvain Solvay Research and Technology Astrophysics and Geophysics Institute Université Catholique de Louvain University of Liege

National Institute for Research in the Amazon Instituto Nacional de Pesquisas Espaciais

Canada

P. Austin	University of British Columbia
E. Barrow	Atmospheric and Hydrologic Science Division
J. Bourgeois	Geological Survey of Canada
R. Brown	Atmospheric Environment Service
E. Bush	Environment Canada
M. Demuth	Geological Survey of Canada
K Denman	Department of Fisheries and Oceans
P. Edwards	Environment Canada
W. Evans	Trent University
D. Fisher	Geological Survey of Canada
G. Flato	University of Victoria
W. Gough	University of Toronto at Scarbrough
D. Harvey	University of Toronto
H. Hengeveld	Environment Canada
W. Hogg	Atmospheric Environment Service
P. Kertland	Natural Resources Canada
R. Koerner	Geological Survey of Canada
R. Laprise	University of Quebec at Montreal
Z. Li	Natural Resources Canada
U. Lohmann	Dalhousie University
J. Majorowicz	Northern Geothermal
L. Malone	Environment Canada
N. McFarlane	University of Victoria
L. Mysak	McGill University
W. Peltier	University of Toronto
I. Perry	Fisheries and Oceans Canada
J. Rudolph	York University
P. Samson	Natural Resources Canada
J. Sargent	Finance Canada
J. Shaw	Geological Survey of Canada
S. Smith	Natural Resources Canada
J. Stone	Environment Canada
R. Street	Environment Canada
D. Whelpdale	Environment Canada
R. Wong	Government of Alberta
F. Zwiers	University of Victoria

China

D. Gong	Peking University
W. Li	Institute of Atmospheric Physics
G. Ren	National Climate Center
S. Sun	Institute of Atmospheric Physics
R. Yu	Institute of Atmospheric Physics
P. Zhai	National Climate Center
X. Zhang	Institute of Atmospheric Physics
G. Zhou	Institute of Atmospheric Physics
T. Zhou	Institute of Atmospheric Physics

Czech Republic

R. Brazdil

Masaryk University

Denmark

J. Bates	University of Copenhagen
B. Christiansen	Danish Meteorological Institute
P. Frich	Danmarks Miljøundersøgelser (DMU)
A. Hansen	University of Copenhagen
A. Jørgensen	Danish Meteorological Institute
T. Jørgensen	Danish Meteorological Institute
E. Kaas	Danish Meteorological Institute
P. Laut	Technical University of Denmark
B. Machenhauer	Danish Meteorological Institute
L. Prahm	Danish Meteorological Institute
M. Stendel	Danish Meteorological Institute
P. Thejll	Danish Meteorological Institute

Finland

T. Carter	Finnish Environment Institute
E. Holopainen	University of Helsinki
R. Korhonen	Technical Research Centre of Finland (VTT)
M. Kulmala	University of Helsinki
J. Launiainen	Finnish Institute of Marine Research
H. Tuomenvirta	Finnish Meteorological Institute

France

A. Alexiou	Intergovernmental Oceanographic Commission
P. Braconnot	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment
J. Brenguier	Meteo France
N. Chaumerliac	Université Blaisi Pascal
M. Deque	Meteo France
Y. Fouquart	Université des Science & Techn de Lille
C. Genthon	Laboratoire de Glaciologie et Geophysique de l'Environment du CNRS
M. Gillet	Mission Interministerielle de l'Effet de Serre
S. Joussaume	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment
J. Jouzel	Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment
R. Juvanon du Vachat	Mission Interministerielle de l'Effet de Serre
H. Le Treut	Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique
M. Petit	Ecole Polytechnique
P. Pirazzoli	Center National de la Recherche Scientifique, Laboratoire de Géographie Physique
S. Planton	Meteo France
J. Polcher	Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique
A. Riedacker	INRA
J. Salmon	Ministère de l'Aménagement du Territoire et de l'Environnement
D. Tanre	Laboratoire d'Optigue Atmospherique

Germany

Federal Agricultural Research Center
Man Dianala Institut für Diachamistra
Max-Planck Institut für Biochemistry
Federal Environmental Agency
Universität Potsdam
Max-Planck Institut für Chemie
Institut für Physik der Atmosphäre

M. Claussen M. Dehn P. Dietze E. Holland J. Jacobeit K. Kartschall B. Kärcher K. Lange P. Mahrenholz J. Oberhuber R. Sartorius C. Schoenwiese U. Schumann U. Ulbrich T. Voigt A. Volz-Thomas G. Weber G. Wefer	Potsdam Institute for Climate Impact Research Universität Bonn Private Max-Planck Institut für Biochemistry Universität Wuerzburg Federal Environmental Agency Institut für Physik der Atmosphäre Federal Ministry for Environment, Nature Conservation and Nuclear Safety Federal Environmental Agency German Climate Computing Centre Federal Environmental Agency J.W. Goethe University Institut für Physik der Atmosphäre Institut für Geophysik und Meteorolgie Federal Environment Agency Forschungsezentrum Juelich Gesamtverband Steinkohlenbergbau (GVST) Universität Bremen
M. Widmann	GKSS-Forschungszentrum
Hungary	
G. Koppány	University of Szeged
Iceland	
T. Johannesson	Icelandic Meteorological Office
Israel	
P. Alpert S. Krichark C. Price Z. Levin	Tel Aviv University Tel Aviv University Tel Aviv University Tel Aviv University

Italy

W. Dragoni	Perugia Universita
A. Mariotti	National Agency for New Technology, Energy and Environment (ENEA)
T. Nanni	ISAO National Research Council
P. Ruti	National Agency for New Technology, Energy and Environment (ENEA)
R. van Dingenen	Enviroment Institute of European Commission
G. Visconti	Università Degli Studi dell' Aquila

Japan

M. Amino	Japan Meteorological Agency
T. Asoh	Japan Meteorological Agency
H. Isobe	Japan Meteorological Agency
H. Kanzawa	Environment Agency
H. Kato	Central Research Institute of Electric Power Industry
M. Kimoto	University of Tokyo

K. Kurihara	Japan Meteorological Agency
S. Kusunoki	Meteorological Research Institute
S. Manabe	Institute for Global Change
S. Nagata	Environment Agency
Y. Nikaidou	Japan Meteorological Agency
J. Ohyama	Japan Meteorological Agency
Y. Sato	Meteorological Research Institute
A. Sekiya	National Institute of Materials and Chemical Research
M. Shinoda	Tokyo Metropolitan University
S. Taguchi	National Institute for Research & Environment
T. Tokioka	Japan Meteorological Agency
Y. Tsutsumi	Japan Meteorological Agency
O. Wild	Frontier Research System for Global Change
R. Yamamoto	Kyoto University
Kenya	
J. Ng'ang'a	University of Nairobi
N. Sabogal	United Nations Environment Programme

Malaysia

A. Chan	Malaysian Meteorological Service	
---------	----------------------------------	--

Morocco

A. Allali	Ministry of Agriculture & Moroccan Association for Environment Protection
S. Khatri	Meteorological Office of Morocco
A. Mokssit	Meteorological Office of Morocco
A. Sbaibi	Universite Hassan II - Mohammedia

Netherlands

A.P.M. Baede	Koninklijk Nederlands Meteorologisch Instituut
J. Beersma	Koninklijk Nederlands Meteorologisch Instituut
L. Bijlsma	Rijksinstituut voor Kust en Zee
T. Buishand	Koninklijk Nederlands Meteorologisch Instituut
G. Burgers	Koninklijk Nederlands Meteorologisch Instituut
H. Dijkstra	University of Utrecht
S. Drijfhout	Koninklijk Nederlands Meteorologisch Instituut
W. Hazeleger	Koninklijk Nederlands Meteorologisch Instituut
B. Holtslag	Wageningen University
C. Jacobs	Koninklijk Nederlands Meteorologisch Instituut
A. Jeuken	Koninklijk Nederlands Meteorologisch Instituut
H. Kelder	Koninklijk Nederlands Meteorologisch Instituut
G. Komen	Koninklijk Nederlands Meteorologisch Instituut and University of Utrecht
N. Maat	Koninklijk Nederlands Meteorologisch Instituut
L. Meyer	Ministry of Housing, Spatial Planning & the Environment
J. Olivier	Rijksinstituut voor Volksgezondheid en Milieu
J. Opsteegh	Koninklijk Nederlands Meteorologisch Instituut
A. Petersen	Vrije Universiteit
H. Radder	Vrije Universiteit
H. Renssen	Vrije Universiteit

J. Ronde	Rijksinstituut voor Kust en Zee
M. Scheffers	Rijksinstituut voor Kust en Zee
C. Schuurmans	University of Utrecht
P. Siegmund	Koninklijk Nederlands Meteorologisch Instituut
A. Sterl	Koninklijk Nederlands Meteorologisch Instituut
H. ten Brink	Energieonderzoek Centrum Nederland
R. Tol	Vrije Universiteit
S. van de Geijn	Plant Research International
R. van Dorland	Koninklijk Nederlands Meteorologisch Instituut
G. van Tol	Expertisecentrum LNV
A. van Ulden	Koninklijk Nederlands Meteorologisch Instituut
M. van Weele	Koninklijk Nederlands Meteorologisch Instituut
P. Veefkind	Koninklijk Nederlands Meteorologisch Instituut
G. Velders	Rijksinstituut voor Volksgezondheid en Milieu
J. Verbeek	Koninklijk Nederlands Meteorologisch Instituut
H. Visser	KEMA

New Zealand

C. de Freitas	University of Auckland
B. Fitzharris	University of Otago
V. Gray	Climate Consultant, New Zealand
J. Kidson	National Institute of Water & Atmospheric Research
H. Larsen	National Institute of Water & Atmospheric Research
P. Maclaren	University of Canterbury
M. Manning	National Institute of Water & Atmospheric Research
J. Renwick	National Institute of Water & Atmospheric Research

Norway

T. Asphjell	Norwegian State Pollution Control Authority
R. Benestad	Norwegian Meteorological Institute
O. Christophersen	Ministry of Environment
E. Forland	Norwegian Meteorological Institute
J. Fuglestvedt	University of Oslo
O. Godal	University of Oslo
S. Grønås	University of Bergen
I. Hanssen-Bauer	Norwegian Meteorological Institute
E. Jansen	University of Bergen
N. Koc	Norsk Polarinstitutt
H. Loeng	Institute of Marine Research
S. Mylona	Norwegian State Pollution Control Authority
M. Pettersen	Norwegian State Pollution Control Authority
A. Rosland	Norwegian State Pollution Control Authority
T. Segalstad	University of Oslo
J. Winther	Norwegian Polar Institute

Peru

N. Gamboa

Pontificia Universidad Catolica del Peru

Poland

M. Mietus	Institute of Meteorology & Water Management

Portugal

C. Borrego

Universidade de Aveiro

Russian Federation

O. E. Anisimov	State Hydrological Institute
R. Burlutsky	Hydrometeorological Research Centre of Russia
N. Datsenko	Hydrometeorological Research Centre of Russia
G. Golitsyn	Institute of Atmospheric Physics
N. Ivachtchenko	Hydrometeorological Research Centre of Russia
I. Karol	Main Geophysical Observatory
K. Kondratyev	Research Centre for Ecological Safety
V. P. Meleshko	Main Geophysical Observatory
I. Mokhov	Institute of Atmospheric Physics
D. Sonechkin	Hydrometeorological Research Centre of Russia

Saudi Arabia

M. Al-Sabban	Ministry of Petroleum
--------------	-----------------------

Slovak Republic

M. Lapin	Comenius University
K. Mareckova	Slovak Hydrometeorological Institute

Slovenia

A 17	\mathbf{T}
A Kranic	Hydromeleorological institute of Novenia
	invaronie conorogicar montate or provenia
5	

Spain

S. Alonso	Universitat de les Illes Balears
L. Balairon	National Institute of Meteorology
Y. Castro-Diez	Universidad de Granada
J. Cortina	Universitat d'Alacant
M. de Luis	Universitat d'Alacant
E. Fanjul	Clima Maritimo - Puertos del Estado
B. Gomez	Clima Maritimo - Puertos del Estado
M. Gomez-Lahoz	Puertos del Estado
J. Gonzalez-Hidalgo	University of Zaragoza
A. Lavin	Instituto Español de Oceanografía
J. Peñuelas	Universitat Autònoma de Barcelona
J. Raventos	Universitat d'Alacant
J. Sanchez	Universitat d'Alacant
I. Sanchez-Arevalo	Clima Maritimo - Puertos del Estado
M. Vazquez	Instituto de Astrofísica de Canarias

Sudan

N. Awad	Higher Council for Environment & Natural Resources
I. Elgizouli	Higher Council for Environment & Natural Resources
N. Goutbi	Higher Council for Environment & Natural Resources

Sweden

R. Charlson	Stockholm University
E. Källén	Stockholm University
A. Moberg	Stockholm University
N. Morner	Stockholm University
J. Raisanen	Swedish Meteorological and Hydrological Institute
H. Rodhe	Stockholm University
M. Rummukainen	Swedish Meteorological and Hydrological Institute

Switzerland

U. Baltensperger	Paul Scherrer Institute
D. Gyalistras	University of Bern
W. Haeberli	University of Zurich
F. Joos	University of Bern
H. Lang	Swiss Federal Institute of Technology
C. Pfister	Unitobler
J. Romero	Federal Office of Environment, Forests and Landscape
C. Schaer	Swiss Federal Institute of Technology
J. Staehelin	Swiss Federal Institute of Technology
H. Wanner	University of Bern
M. Wild	Swiss Federal Institute of Technology

Thailand

J. Boonjawat	Chulalongkorn University

Togo

A. Ajavon

Universite du Benin

Turkey

A. Danchev	Fatih University
M. Turkes	Turkish State Meteorological Service

United Kingdom

M. Allen	Rutherford Appleton Laboratory
S. Allison	Southampton Oceanography Centre
R. Betts	Hadley Centre for Climate Prediction and Research, Met Office
S. Boehmer-Christiansen	Sussex University
R. Braithwaite	University of Manchester
K. Briffa	University of East Anglia

S. Brown	Hadley Centre for Climate Prediction and Research, Met Office
I. Colbeck	University of Essex
R. Courtney	European Science and Environment Forum
M. Crompton	Department of the Environment, Transport and the Regions
X. Dai	IPCC WGI Technical Support Unit
C. Doake	British Antarctic Survey
C. Folland	Hadley Centre for Climate Prediction and Research, Met Office
N. Gedney	Hadley Centre for Climate Prediction and Research, Met Office
N. Gillett	University of Oxford
W. Gould	Southampton Oceanography Centre
J. Gregory	Hadley Centre for Climate Prediction and Research, Met Office
S. Gregory	University of Sheffield
D. J Griggs	IPCC WGI Technical Support Unit
J. Grove	University of Cambridge
J. Haigh	Imperial College
R. Harding	Centre for Ecology and Hydrology
M. Harley	English Nature
J. Haywood	Meteorological Research Flight, Met Office
J. Houghton	IPCC WGI Co-Chairman
W. Ingram	Hadley Centre for Climate Prediction and Research, Met Office
T. Iversen	European Centre for Medium-range Weather Forecasting
J. Lovelock	Retired, United Kingdom
K. Maskell	IPCC WGI Technical Support Unit
A. McCulloch	Marbury Technical Consulting, United Kingdom
G. McFadyen	Department of the Environment, Transport and the Regions
J. Mitchell	Hadley Centre for Climate Prediction and Research, Met Office
J. Murphy	Hadley Centre for Climate Prediction and Research, Met Office
C. Newton	Environment Agency
M. Noguer	IPCC WGI Technical Support Unit
T. Osborn	University of East Anglia
D. Parker	Hadley Centre for Climate Prediction and Research, Met Office
D. Pugh	Southampton Oceanography Centre
S. Raper	University of East Anglia
D. Roberts	Hadley Centre for Climate Prediction and Research, Met Office
D. Sexton	Hadley Centre for Climate Prediction and Research, Met Office
K. Shine	University of Reading
K. Smith	University of Edinburgh
P. Smithson	University of Sheffield
P. Stott	Hadley Centre for Climate Prediction and Research, Met Office
S. Tett	Hadley Centre for Climate Prediction and Research, Met Office
P. Thorne	University of East Anglia
R. Toumi	Imperial College
P. Viterbo	European Centre for Medium-range Weather Forecasting
D. Warrilow	Department of the Environment, Transport and the Regions
R. Wilby	University of Derby
P. Williamson	Plymouth Marine Laboratory
P. Woodworth	Bidston Observatory

United States of America

M. Abbott	Oregon State University
W. Abdalati	NASA Goddard Space Flight Centre
D. Adamec	NASA Goddard Space Flight Centre
R. B. Alley	Pennsylvania State University
R. Andres	University of Alaska at Fairbanks
J. Angel	Illinois State Water Survey

D 4 1	
P. Arkin	Columbia University
R. Arritt	Iowa State University
E. Atlas	National Centre for Atmospheric Research
D. Bader	Department of Energy
T. Baerwald	National Science Foundation
R. Bales	University of Arizona
R. Barber	Duke University
T. Barnett	Scripps Institute of Oceanography
P. Bartlein	University of Oregon
J. J. Bates	NOAA Environmental Technology Laboratory
T. Bates	NOAA Pacific Marine Environmental Laboratory
M. Bender	Princeton University
C. Bentley	University of Wisconsin at Madison
K. Bergman	NASA Global Modeling and Analysis Program
C. Berkowitz	Pacific Northwest National Laboratory
M. Berliner	Ohio State University
J. Berry	Carnegie Institution of Washington
R Bindschadler	NASA Goddard Space Flight Centre
D Blake	University of California at Irvine
T Bond	University of Washington
A Broccoli	Dringeton University
W. Drocelter	Lement Deherty Forth Observatory of Columbia University
W. DIOECKEI	NOAA Climete Manitaring and Diagnostics Laboratory
L. Brunwiller	NOAA Climate Monitoring and Diagnostics Laboratory
K. Bryan	Princeton University
K. Caldeira	Lawrence Livermore National Laboratory
M. A. Cane	Lamont Doherty Earth Observatory of Columbia University
A. Carleton	Pennsylvania State University
R. Cess	State University of New York
W. Chameides	Georgia Institute of Technology
T. Charlock	NASA Langley Research Center
M. Chin	NASA Goddard Space Flight Center
K. Cook	Cornell University
W. Cooke	Princeton University
C. Covey	Lawrence Livermore National Laboratory
T. Crowley	Texas A&M University
D. Cunnold	Georgia Institute of Technology
J. A. Curry	University of Colorado
R. Dahlman	Department of Energy
A. Dai	National Center for Atmospheric Research
B. DeAngelo	Environmental Protection Agency
P. DeCola	NASA
P. DeMott	Colorado State University
A. S. Denning	Colorado State University
W Dewar	Florida State University
R E Dickerson	University of Maryland
R Dickinson	Georgia Institute of Technology
I Dilling	NOA A Office of Global Programs
E. Dhugokencky	NOAA Climate Monitoring & Diagnostics Laboratory
S. Doney	Notional Centre for Atmospheric Pesearch
S. Doney	University of Nebroaka
S. Diobot	Vincipio Institute of Marine Sciences
II. DUCKIOW	Virginia institute of ividille Sciences
w. Easterning	remnsylvama State University
J. EIKINS	NOAA Climate Monitoring & Diagnostics Laboratory
E. Elliott	National Science Foundation
W. Elliott	NOAA Air Resources Laboratory
H. Ellsaesser	Atmospheric Consultant
S. Esbensen	Oregon State University

C. Fairall Y. Fan P. Farrar R. Feely F. Fehsenfeld G. Feingold R. Fleagle R. Forte M. Fox-Rabinovitz J. Francis M. Free R. Friedl I. Fung D. Gaffen W. Gates C. Gautier P. Geckler L. Gerhard S. Ghan M. Ghil P. Gleckler V. Gornitz V. Grewe W. Gutowski P. Guttorp R. Hallgren D. Hardy E. Harrison G. Hegerl B. Hicks W. Higgins D. Houghton R. Houghton Z. Hu B. Huang J. Hudson M. Hughes C. Hulbe D. Jacob S. Jacobs M. Jacobson A. Jain D. James G. Johnson R. Johnson T. Joyce R. Katz R. Keeling J. Kiehl J. Kim J. Kinter B. Kirtman T. Knutson D. Koch S. Kreidenweis V. Krishnamurthy

D. Kruger

NOAA Environmental Technology Laboratory Centre for Ocean-Land-Atmosphere Studies Naval Oceanographic Office NOAA Pacific Marine Environmental Laboratory NOAA Environmental Research Laboratories NOAA Environmental Technology Laboratory University of Washington Environmental Protection Agency University of Maryland **Rutgers University** NOAA Air Resources Laboratory Jet Propulsion laboratory University of California NOAA Air Resources Laboratory Lawrence Livermore National Laboratory University of California at Santa Barbara Lawrence Livermore National Laboratory University of Kansas Pacific Northwest National Laboratory University of California at Los Angeles Lawrence Livermore National Laboratory NASA Goddard Institute for Space Studies NASA Goddard Institute for Space Studies Iowa State University University of Washington American Meteorological Society University of Massachusetts NOAA Pacific Marine Environmental Laboratory Texas A&M University NOAA Air Resources Laboratory NOAA Climate Protection Center University of Wisconsin at Madison Woods Hole Research Center Center for Ocean-Land-Atmosphere Studies Centre for Ocean-Land-Atmosphere Studies **Desert Research Institute** University of Arizona NASA Goddard Space Flight Center Harvard University Columbia University Stanford University University of Illinois National Science Foundation NOAA Pacific Marine Environmental Laboratory Colorado State University Woods Hole Oceanographic Institution National Center for Atmospheric Research Scripps Institute of Oceanography National Center for Atmospheric Research Lawrence Berkeley National Laboratory Centre for Ocean-Land-Atmosphere Studies Centre for Ocean-Land-Atmosphere Studies NOAA Geophysical Fluid Dynamics Laboratory National Center for Atmospheric Research Colorado State University Centre for Ocean-Land-Atmosphere Studies Environmental Protection Agency

856

J. Kutzbach University of Wisconsin at Madison C. Landsea NOAA Atlantic Oceanographic & Meteorological Laboratory Pacific Northwest National Laboratory N. Laulainen Naval Research Laboratory J. Lean National Science Foundation M. Ledbetter T. Ledley TERC A. Leetmaa NOAA National Weather Service C. Leith Lawrence Livermore National Laboratory S. Levitus NOAA National Oceanographic Data Center NOAA Office of Global Programs J. Levy L. Leung Pacific Northwest National Laboratory R. Lindzen Massachusetts Institute of Technology University of Alaska at Fairbanks C. Lingle J. Logan Harvard University A. Lupo University of Missouri Office of the US Global Change Research Program M. MacCracken G. Magnusdottir University of California J. Mahlman Princeton University T. Malone Connecticut Academy of Science and Engineering M. E. Mann University of Virginia Bigelow Laboratory for Ocean Sciences P. Matrai D. Mauzerall Princeton University M. McFarland **Dupont Fluoroproducts** University of Alaska at Fairbanks A. McGuire National Science Foundation S. Meacham M. Meier Institute of Arctic & Alpine Research P. Michaels University of Virginia N. Miller Lawrence Berkeley National Laboratory NASA Goddard Institute for Space Studies M. Mishchenko Centre for Ocean-Land-Atmosphere Studies V. Misra R. Molinari NOAA Atlantic Oceanographic and Meteorological Laboratory NOAA Climate Monitoring & Diagnostics Laboratory S. Montzka NOAA Office of Global Programs K. Mooney Department of Agriculture A. Mosier University of California at Los Angeles D. Neelin R. Neilson Oregon State University J. Norris Princeton University Texas A & M University G. North T. Novakov Lawrence Berkeley National Laboratory Institute for Computational Earth System Science W. O'Hirok M. Palecki Illinois State Water Survey S. Pandis Carnegie Mellon University C. L. Parkinson NASA Goddard Space Flight Center University of Michigan J. Penner University of Maryland K. Pickering Colorado State University R. Pielke S. Piper Scripps Institution of Oceanography H. Pollack University of Michigan Lawrence Livermore National Laboratory G. Potter M. Prather University of California at Irvine R. Prinn Massachusetts Institute of Technology N. Psuty State University of New Jersey V. Ramanathan Scripps Institute of Oceanography Princeton University V. Ramaswamy R. Randall The Rainforest Regeneration Institution California Institute of Technology J. Randerson C. Raymond University of Washington

P. Rhines C. Rinsland D. Ritson A. Robock B. Rock J. Rodriguez R. Ross D. Rotman C. Sabine D. Sahagian E. Saltzman S. Sander E. Sarachik V. Saxena S. Schauffler E. Scheehle W. Schlesinger C. Schlosser R. W. Schmitt E. Schneider S. Schneider S. Schwartz M. Schwartzkopf J. Seinfeld A. Semtner J. Severinghaus D. Shindell H. Sievering J. Simpson H. Singh D. Skole S. Smith B. J. Soden R. Somerville M. Spector T. Spence P. Stephens P. Stone R. Stouffer D. Straus C. Sucher Y. Sud B. Sun P. Tans R. Thomas D. Thompson J. Titus K. E. Trenberth S. Trumbore G. Tselioudis C. van der Veen M. Visbeck M. Vuille M. Wahlen J. Wallace J. Walsh

J. Wang

University of Washington NASA Langley Research Centre Stanford University **Rutgers University** University of New Hampshire University of Miami NOAA Air Resources Laboratory Lawrence Livermore National Laboratory University of Washington University of New Hampshire National Science Foundation NASA Jet Propulsion Laboratory University of Washington North Carolina State University National Centre for Atmospheric Research Environmental Protection Agency Duke University Centre for Ocean-Land-Atmosphere Studies Woods Hole Oceanographic Institution Centre for Ocean-Land-Atmosphere Studies Stanford University Brookhaven National Laboratory Princeton University California Institute of Technology Naval Postgraduate School University of California NASA Goddard Institute for Space Studies University of Colorado University of California NASA Ames Research Centre Michigan State University Pacific Northwest National Laboratory Princeton University University of California Lehigh University National Science Foundation National Science Foundation Massachusetts Institute of Technology Princeton University Centre for Ocean-Land-Atmosphere Studies NOAA Office of Global Programs NASA Goddard Space Flight Center University of Massachusetts NOAA Climate Monitoring & Diagnostics Laboratory NASA Wallops Flight Facility University of Washington Environmental Protection Agency National Center for Atmospheric Research University of California at Irvine NASA Goddard Institute for Space Studies Ohio State University Lamont Doherty Earth Observatory of Columbia University University of Massachusetts University of California University of Washington University of Illinois at Urbana-Champaign NOAA Air Resources Laboratory
W. Wang	State University of New York at Albany				
Y. Wang	Georgia Institute of Technology				
M. Ward	Lamont Doherty Earth Observatory of Columbia University				
S. Warren	University of Washington				
W. Washington	National Center for Atmospheric Research				
B. Weare	University of California at Davis				
T. Webb	Brown University				
M. Wehner	Lawrence Livermore National Laboratory				
R. Weller	Woods Hole Oceanographic Institution				
P. Wennberg	California Institute of Technology				
H. Weosky	Federal Aviation Administration				
D. Williamson	National Center for Atmospheric Research				
D. Winstanley	Illinois State Water Survey				
S. Wofsy	Harvard University				
J. Wong	NOAA Air Resources Laboratory				
C. Woodhouse	NOAA National Geophysical Data Center				
Z. Wu	Centre for Ocean-Land-Atmosphere Studies				
X. Xiao	University of New Hampshire				
Z. Yang	University of Arizona				
S. Yvon-Lewis	NOAA Atlantic Oceanographic & Meteorological Laboratory				
C. Zender	University of California at Irvine				

United Nations Organisations and Specialised Agencies

N. Harris	European Ozone Research Coordinating Unit, United Kingdom
F. Raes	Enviroment Institute of European Commission, Italy

Non-Governmental Organisations

I Owens	3M Company
J. Owells	A anadyma Dasaanah Ina
	Aerodyne Research Inc.
H. Feldman	American Petroleum Institute
J. Martín-Vide	Asociación Española de Climatología, Spain
M. Ko	Atmospheric & Environmental Research Inc.
S. Baughcum	Boeing Company
C. Field	Carnegie Institute of Washington
K. Gregory	Centre for Business and the Environment, United Kingdom
W. Hennessy	CRL Energy Ltd., New Zealand
E. Olaguer	The Dow Chemical Company
D. Fisher	DuPont Company
A. Salamanca	ECO Justicia, Spain
C. Hakkarinen	Electric Power Research Institute, USA
M. Oppenheimer	Environmental Defense, USA
H. Kheshgi	Exxon Mobil Research & Engineering Company, USA
S. Japar	Ford Motor Company
W. Hare	Greenpeace International, Netherlands
L. Bishop	Honeywell International Inc.
J. Neumann	Industrial Economics, Incorporated
I. Smith	International Energy Agency Coal Research, United Kingdom
L. Bernstein	International Petroleum Industry Environmental Conservation Association
J. Grant	International Petroleum Industry Environmental Conservation Association
D. Hoyt	Raytheon
K. Green	Reason Public Policy Institute
S. Singer	Science & Environmental Policy Project, USA
J. Le Cornu	SHELL Australia Ltd.

Appendix V

Acronyms and Abbreviations

AABW	Antarctic Bottom Water
AAO	Antarctic Oscillation
ABL	Atmospheric Boundary Layer
ACC	Antarctic Circumpolar Current
ACE	Aerosol Characterisation Experiment
ACRIM	Active Cavity Radiometer Irradiance Monitor
ACSYS	Arctic Climate System Study
ACW	Antarctic Circumpolar Wave
AEROCE	Atmosphere Ocean Chemistry Experiment
AGAGE	Advanced Global Atmospheric Gases Experiment
AGCM	Atmospheric General Circulation Model
AGWP	Absolute Global Warming Potential
AMIP	Atmospheric Model Intercomparison Project
ANN	Artificial Neural Networks
AO	Arctic Oscillation
AOGCM	Atmosphere-Ocean General Circulation Model
ARESE	Atmospheric Radiation Measurement Enhanced Shortwave Experiment
ARGO	Part of the Integrated Global Observation Strategy
ARM	Atmospheric Radiation Measurement
ARPEGE/OPA	Action de Recherche Petite Echelle Grande Echelle/Océan Parallélisé
ASHOE/MAESA	Airborne Southern Hemisphere Ozone Experiment/Measurement for Assessing the Effects of Stratospheric
	Aircraft
AVHRR	Advanced Very High Resolution Radiometer
AWI	Alfred Wegener Institute (Germany)
BAHC	Biospheric Aspects of the Hydrological Cycle
BC	Black Carbon
BERN2D	Two-dimensional Climate Model of University of Bern
BIOME 6000	Global Palaeo-vegetation Mapping Project
BMRC	Bureau of Meteorology Research Centre (Australia)
CART	Classification and Tree Analysis
CCA	Canonical Correlation Analysis
CCC(ma)	Canadian Centre for Climate (Modelling and Analysis) (Canada)
CCM	Community Climate Model
CCMLP	Carbon Cycle Model Linkage Project
CCN	Cloud Condensation Nuclei
CCSR	Centre for Climate System Research (Japan)
CERFACS	European Centre for Research and Advanced Training in Scientific Computation (France)
CIAP	Climate Impact Assessment Program

CLIMAP	Climate: Long-range Investigation, Mapping and Prediction					
CLIMBER	Climate-Biosphere Model					
CLIMPACTS	Integrated Model for Assessment of the Effects of Climate Change on the New Zealand Environment					
CMAP	CPC Merged Analysis of Precipitation					
CMDL	Climate Monitoring and Diagnostics Laboratory of NOAA (USA)					
CMIP	Coupled Model Intercomparison Project					
CNRM	Centre National de Recherches Météorologiques (France)					
CNRS	Centre National de la Recherche Scientifique (France)					
COADS	Comprehensive Ocean Atmosphere Data Set					
СОНМАР	Co-operative Holocene Manning Project					
COLA	Centre for Ocean-L and Atmosphere Studies (USA)					
COSAM	Comparison of Large-scale Atmospheric Sulphate Aerosol Model					
COSMIC	Country Specific Model for Intertemporal Climate					
COWI	Cold Ocean Warm Land					
CDC	Climate Dradiction Center of NOAA (USA)					
CPE	Cloud Redictive Forcing					
CRI	Climatic Descarch Unit of LIEA (LIK)					
CRU	Chinauc Research Unit of UEA (UK)					
CRIOSal	Cryosphere Satellite					
CSUDO	Climate Scenario Generator					
CSIRO	Commonwealth Scientific and Industrial Research Organisation (Australia)					
CSM	Climate System Model					
CIM	Chemistry Transport Model					
DARLAM	CSIRO Division of Atmospheric Research Limited Area Model					
DDC	Data Distribution Centre of IPCC					
DGVM	Dynamic Global Vegetation Model					
DERF	Dynamical Extended Range Forecasting group of GFDL (USA)					
DIC	Dissolved Inorganic Carbon					
DJF	December, January, February					
DKRZ	Deutsche KlimaRechenZentrum (Germany)					
DMS	Dimethylsulfide					
DMSP	Defense Meteorological Satellite Program					
DNM	Department of Numerical Mathematics (Russia)					
DOC	Dissolved Organic Carbon					
DOE	Department of Energy (USA)					
DORIS	Determination d'Orbite et Radiopositionnement Intégrés par Satellite					
DRF	Direct Radiative Forcing					
DTR	Diurnal Temperature Range					
DYNAMO	Dynamics of North Atlantic Models					
EBM	Energy Balance Model					
ECHAM	ECMWF/MPI AGCM					
ECMWF	European Centre for Medium-range Weather Forecasting					
ECS	Effective Climate Sensitivity					
EDGAR	Emission Database for Global Atmospheric Research					
EISMINT	European Ice Sheet Modelling initiative					
EMDI	Ecosystem Model/Data Intercomparison					
EMIC	Earth system Models of Intermediate Complexity					
ENSO	El Niño-Southern Oscillation					
EOF	Empirical Orthogonal Function					
EOS	Earth Observing System					
ERA	ECMWF Reanalysis					
ERB	Earth Radiation Budget					
ERBE	Earth Radiation Budget Experiment					
FRRS	Farth Radiation Budget Satellite					
FSCAPE	Evaluation of Strategies to Address Climate Change by Adapting to and Preventing Emissions					
FSMR	Electrically Scanning Microwave Radiometer					
	Europeen Patriavable Carrier					
EURECA	European Renevalie Carrier Free Air Carbon dioxide Enrichment					
TACE						

FAO	Food and Agriculture Organisation (UN)				
FCCC	Framework Convention on Climate Change				
FDH	Fixed Dynamical Heating				
FF	Fossil Fuel				
FPAR	Plant-absorbed Fraction of Incoming Photosynthetically Active Radiation				
FSU	Former Soviet Union				
GASP	Global Assimilation and Prediction				
GCIP	GEWEX Continental-scale International Program				
GCM	General Circulation Model				
GCOS	Global Climate Observing System				
GCR	Galactic Cosmic Ray				
GDP	Gross Domestic Product				
GERA	Clobal Energy Balance Archive				
CEIA	Clobal Emissions Inventory Activity				
CEIGA	Clobal Emissions Inventory Activity				
GEISA	Clobal Energy and Water such Energy and				
GEWEA	Group and water cycle Experiment				
GFDL	Geophysical Fluid Dynamics Laboratory (USA)				
GHCN	Global Historical Climate Network				
GHG	Greenhouse Gas				
GIM	Global Integration and Modelling				
GISP	Greenland Ice Sheet Project				
GISS	Goddard Institute for Space Studies (USA)				
GISST	Global Sea Ice and Sea Surface Temperature				
GLOSS	Global Sea Level Observing System				
GOALS	Global Ocean-Atmosphere-Land System				
GPCP	Global Precipitation Climatology Project				
GPP	Gross Primary Production				
GPS	Global Positioning System				
GRACE	Gravity Recovery and Climate Experiment				
GRIP	Greenland Ice Core Project				
GSFC	Goddard Space Flight Centre (USA)				
GSWP	Global Soil Wetness Project				
GUAN	GCOS Upper Air Network				
GWP	Global Warming Potential				
HadCM	Hadley Centre Coupled Model				
HIRETYCS	High Resolution Ten-Year Climate Simulations				
HITRAN	High Resolution Transmission Molecular Absorption Database				
HLM	High Latitude Mode				
HNLC	High Nutrient-Low Chlorophyll				
HRBM	High Resolution Biosphere Model				
IAHS	International Association of Hydrological Science				
IAP	Institute of Atmospheric Physics (China)				
IASB	Institute of Atmospherie Frightee (China)				
IRIS	Integrated Biosphere Simulator				
ICESat	Ice. Cloud and Land Elevation Satellite				
ICSI	International Commission on Snow and Ice				
ICSU	International Council of Scientific Unions				
IGAC	International Clobal Atmospheric Chamistry				
ICRD	International Geosphere Biosphere Programme				
ICCP	Institute for Clobal Change Descarab (Japan)				
IUCK	Institute for Global Change Research (Japan)				
IHUP	International Human Dimensions Programme on Global Environmental Change				
INIAGE	Integrated Iviodel to Assess the Global Environment				
IN					
INDUEX	Indian Ocean Experiment				
IUC	Intergovernmental Oceanographic Commission				
IPCC	Intergovernmental Panel on Climate Change				
IPO	Interdecadal Pacific Oscillation				

IPSL-CM	Institut Pierre Simon Laplace/Coupled Atmosphere-Ocean-Vegetation Model				
ISAM	Integrated Science Assessment Model				
ISCCP	International Satellite Cloud Climatology Project				
ISLSCP	International Satellite Land Surface Climatology Project				
ITCZ	Inter-Tropical Convergence Zone				
IUPAC	International Union of Pure and Applied Chemistry				
JGOFS	Joint Global Ocean Flux Study				
JJA	June, July, August				
JMA	Japan Meteorological Agency (Japan)				
JPL	Jet Propulsion Laboratory of NASA (USA)				
KNMI	Koninklijk Nederlands Meteorologisch Instituut (Netherlands)				
LAI	Leaf Area Index				
LASG	State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (China)				
LBA	Large-scale Biosphere-atmosphere Experiment in Amazonia				
LGGE	Laboratoire de Glaciologie et Géophysique de l'Environnement (France)				
LGM	Last Glacial Maximum				
LLNL	Lawrence Livermore National Laboratory (USA)				
LMD	Laboratoire de Météorologie Dynamique (France)				
LOSU	Level of Scientific Understanding				
LPJ	Land-Potsdam-Jena Terrestrial Carbon Model				
LSAT	Land Surface Air Temperature				
LSG	Large-Scale Geostrophic Ocean Model				
LSP	Land Surface Parameterisation				
LT	Lifetime				
LWP	Liquid Water Path				
MAGICC	Model for the Assessment of Greenhouse-gas Induced Climate Change				
MAM	March, April, May				
MARS	Multivariate Adaptive Regression Splines				
MGO	Main Geophysical Observatory (Russia)				
MJO	Madden-Julian Oscillation				
ML	Mixed Layer				
MLOPEX	Mauna Loa Observatory Photochemistry Experiment				
MODIS	Moderate Resoluting Imaging Spectroradiometer				
MOGUNTIA	Model of the General Universal Tracer Transport in the Atmosphere				
MOM	Modular Ocean Model				
MOZART	Model for Ozone and Related Chemical Tracers				
MPI	Max-Plank Institute for Meteorology (Germany)				
MRI	Meteorological Research Institute (Japan)				
MSLP	Mean Sea Level Pressure				
MSU	Microwave Sounding Unit				
NADW	North Atlantic Deep Water				
NAO	North Atlantic Oscillation				
NARE	North Atlantic Regional Experiment				
NASA	National Aeronautics and Space Administration (USA)				
NBP	Net Biome Production				
NCAR	National Center for Atmospheric Research (USA)				
NCC	National Climate Centre (China)				
NCDC	National Climatic Data Center of NOAA (USA)				
NCEP	National Centers for Environmental Prediction of NOAA (USA)				
NDVI	Normalised Difference Vegetation Index				
NEP	Net Ecosystem Production				
NESDIS	National Environmental Satellite, Data and Information Service of NOAA (USA)				
NIC	National Ice Centre of NOAA (USA)				
NIED	National Research Institute for Earth Science and Disaster Prevention (Japan)				
NIES	National Institute for Environmental Studies (Japan)				
NMAT	Night Marine Air Temperature				

NMHC	Non-Methane Hydrocarbon					
NOAA	National Oceanic and Atmospheric Administration (USA)					
NPP	Net Primary Production					
NPZD	Nutrients, Phytoplankton, Zooplankton and Detritus					
NRC	National Research Council (USA)					
NRL	Naval Research Laboratory (USA)					
NWP	Numerical Weather Prediction					
OC	Organic Carbon					
OCMIP	Ocean Carbon-cycle Model Intercomparison Project					
OCS	Organic Carbonyl Sulphide					
OGCM	Ocean General Circulation Model					
OLR	Outgoing Long-wave Radiation					
OPYC	Ocean Isonycnal GCM					
OxComp	Tropospheric Oxidant Model Comparison					
PC	Principal Component					
PCM	Parallel Climate Model					
PDF	Probability Density Function					
PDO	Pacific Decadal Oscillation					
PEM	Pacific Exploratory Missions					
DEL	Plant Functional Type					
DCD	Post Clocial Pabound					
PhotoComp	Ozone Photochemistry Model Comparison					
DICASSO	Dethfinder Instruments for Cloud and Associal Speecherne Observations					
DIV	Patilinder Institutients for Climate Impact Passareh (Cormany)					
LIV DIT DC	Protocally Institute for Chinate Impact Research (Germany)					
PILPS	Project for the Intercomparison of Land-surface Parameterisation Schemes					
	Physics institute University of Defin (Switzenfalld)					
PMIP	Palaeocimale Model Intercomparison Project					
PNA	Pacific-North American					
PININL	Pacific Northwest National Laboratory (USA)					
POU	Particulate Organic Carbon					
POLDER	Polarisation and Directionality of the Earth's Reflectances					
POPCORN	Photo-Oxidant Formation by Plant Emitted Compounds and OH Radicals in North-eastern Germany					
PSMSL	Permanent Service for Mean Sea Level					
PI	Perturbation Lifetime					
QBO	Quasi-Biennial Oscillation					
RAMS	Regional Atmospheric Modelling System					
RCM	Regional Climate Model					
RIHMI	Research Institute for Hydrometeorological Information					
SAGE	Stratospheric Aerosol & Gas Experiment					
SAR	IPCC Second Assessment Report					
SAT	Surface Air Temperature					
SBUV	Solar Backscatter Ultra Violet					
SCAR-B	Smoke Cloud and Radiation-Brazil					
SCE	Snow Cover Extent					
SCENGEN	Scenario Generator					
SCSWP	Small-scale Severe Weather Phenomena					
SDD	Statistical-Dynamical Downscaling					
SDGVM	Sheffield Dynamic Global Vegetation Model					
SEFDH	Seasonally Evolving Fixed Dynamical Heating					
SHEBA	Surface Heat Balance of the Arctic Ocean					
SHI	State Hydrological Institute (Russia)					
SIMIP	Sea Ice Model Intercomparison Project					
SIO	Scripps Institution of Oceanography (USA)					
SLP	Sea Level Pressure					
SMMR	Scanning Multichannel Microwave Radiometer					
SOA	Secondary Organic Aerosol					
SOC	Southampton Oceanography Centre (UK)					

SOHO	Solar Heliospheric Observatory			
SOI	Southern Oscillation Index			
SOLSTICE	Solar Stellar Irradiance Comparison Experiment			
SON	September, October, November			
SONEX	Subsonic Assessment Program Ozone and Nitrogen Oxide Experiment			
SOS	Southern Oxidant Study			
SPADE	Stratospheric Photochemistry, Aerosols, and Dynamics Expedition			
SPARC	Stratospheric Processes and Their Role in Climate			
SPCZ	South Pacific Convergence Zone			
SRES	IPCC Special Report on Emission Scenarios			
SSM/T-2	Special Sensor Microwave Water Vapour Sounder			
SSM/I	Special Sensor Microwave/Imager			
SST	Sea Surface Temperature			
SSU	Stratospheric Sounding Unit			
STRAT	Stratospheric Tracers of Atmospheric Transport			
SUCCESS	Subsonic Aircraft Contrail and Cloud Effects Special Study			
SUNGEN	State University of New York at Albany/NCAR Global Environmental and Ecological Simulation of			
SCHOLIN	Interactive Systems			
SUSIM	Solar Illtraviolet Spectral Irradiance Monitor			
TAR	IPCC Third Assessment Report			
TAREOY	Tropospheric Aerosol Radiative Forcing Observational Experiment			
	Temperate and Boreal Forest Descurse Assessment			
TRO	Tronospheric Bionnial Oscillation			
TCP	Transiant Climata Despanse			
TEM	Tarrastrial Easystem Model			
	Fenestian Ecosystem Model			
TEMPUS	The surface Temperature Evolution Mapping Project based on Alkenone Strangraphy			
TMD	TOPEY Misservers Dediemeter			
TMK				
TOA	Top of the Atmosphere			
IOMS	Iotal Ozone Mapping Spectrometer			
TOPEX/POSEIDON	US/French Ocean Topography Satellite Altimeter Experiment			
IOVS	Television Infrared Observation Satellite Operational Vertical Sounder			
TPI	Trans Polar Index			
TRIFFID	Top-down Representation of Interactive Foliage and Flora Including Dynamics			
TSI	Total Solar Irradiance			
UARS	Upper Atmosphere Research Satellite			
UCAM	University of Cambridge (UK)			
UCI	University of California at Irvine (USA)			
UD/EB	Upwelling Diffusion-Energy Balance			
UEA	University of East Anglia (UK)			
UGAMP	University Global Atmospheric Modelling Project			
UIO	Universitetet I Oslo (Norway)			
UIUC	University of Illinois at Urbana-Champaign (USA)			
UKHI	United Kingdom High-resolution climate model			
UKMO	United Kingdom Met Office (UK)			
UKTR	United Kingdom Transient climate experiment			
ULAQ	Università degli studi dell'Aquila (Italy)			
UM	Unified Model			
UNEP	United Nations Environment Programme			
UNESCO	United Nations Education, Scientific and Cultural Organisation			
UNFCCC	United Nations Framework Convention on Climate Change			
USSR	Union of Soviet Socialist Republics			
UTH	Upper Tropospheric Humidity			
UV	Ultraviolet radiation			
UVic	University of Victoria (Canada)			
VIRGO	Variability of Solar Irradiance and Gravity Oscillations			
VLM	Vertical Land Movement			

Appendix V

VOC	Volatile Organic Compounds				
WAIS	West Antarctic Ice Sheet				
WASA	Waves and Storms in the North Atlantic				
WAVAS	Water Vapour Assessment				
WBCs	Western Boundary Currents				
WCRP	World Climate Research Programme				
WMGGs	Well-Mixed Greenhouse Gases				
WMO	World Meteorological Organization				
WOCE	World Ocean Circulation Experiment				
WP	Western Pacific				
WRE	Wigley, Richels and Edmonds				
YONU	Yonsei University (Korea)				

Appendix VI

Units

SI (Systeme Internationale) Units:

Physical Quantity	Name of Unit	Symbol
length	metre	m
mass	kilogram	kg
time	second	S
thermodynamic temperature	kelvin	K
amount of substance	mole	mol

Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10-1	deci	d	10	deca	da	
10 ⁻²	centi	с	10^{2}	hecto	h	
10 ⁻³	milli	m	10 ³	kilo	k	
10-6	micro	μ	10^{6}	mega	Μ	
10 ⁻⁹	nano	n	10^{9}	giga	G	
10 ⁻¹²	pico	р	1012	tera	Т	
10 ⁻¹⁵	femto	f	10 ¹⁵	peta	Р	

Special Names and Symbols for Certain SI-Derived Units:

Physical Quantity	Name of SI Unit	Symbol for SI Unit	Definition of Unit
force	newton	Ν	kg m s ⁻²
pressure	pascal	Ра	kg m ⁻¹ s ⁻² (=N m ⁻²)
energy	joule	J	kg m ² s ⁻²
power	watt	W	kg m ² s ⁻³ (=J s ⁻¹)
frequency	hertz	Hz	s ⁻¹ (cycles per second)

Physical Quantity	Name of Unit	Symbol for Unit	Definition of Unit
length	Ångstrom	Å	$10^{-10} \text{ m} = 10^{-8} \text{ cm}$
length	micron	μm	10 ⁻⁶ m
area	hectare	ha	$10^4 { m m}^2$
force	dyne	dyn	10 ⁻⁵ N
pressure	bar	bar	$10^5 \text{ N m}^{-2} = 10^5 \text{ Pa}$
pressure	millibar	mb	$10^2 \text{ N m}^{-2} = 1 \text{ hPa}$
mass	tonne	t	10^{3} kg
mass	gram	g	10^{-3} kg
column density	Dobson units	DU	2.687×10^{16} molecules cm ⁻²
streamfunction	Sverdrup	Sv	$10^6 \text{ m}^3 \text{ s}^{-1}$

Decimal Fractions and Multiples of SI Units Having Special Names:

Non-SI Units:

°C	degree Celsius (0 °C = 273 K approximately) Temperature differences are also given in °C (=K) rather than the more correct form of "Celsius degrees".
ppmv	parts per million (10 ⁶) by volume
ppbv	parts per billion (10 ⁹) by volume
pptv	parts per trillion (10 ¹²) by volume
yr	year
ky	thousands of years
bp	before present

The units of mass adopted in this report are generally those which have come into common usage and have deliberately not been harmonised, e.g.,

GtC	gigatonnes of carbon (1 GtC = 3.7 Gt carbon dioxide)
PgC	petagrams of carbon $(1 \text{ PgC} = 1 \text{ GtC})$
MtN	megatonnes of nitrogen
TgC	teragrams of carbon $(1 \text{ TgC} = 1 \text{ MtC})$
Tg(CH ₄)	teragrams of methane
TgN	teragrams of nitrogen
TgS	teragrams of sulphur

Appendix VII

Some chemical symbols used in this report

С	carbon (there are three isotopes: ${}^{12}C$, ${}^{13}C$, ${}^{14}C$)	DOC	dissolved organic carbon
Ca	calcium	H_2	hydrogen
CaCO ₃	calcium carbonate	halon-1211	CF ₂ ClBr
CCl ₄	carbon tetrachloride	halon-1301	CF ₃ Br
CF ₄	perfluoromethane	halon-2402	CF_2BrCF_2Br
C ₂ F ₆	perfluoroethane	HCFC	hydrochlorofluorocarbon
C ₃ F ₈	perfluoropropane	HCFC-21	CHCl ₂ F
C ₄ F ₈	perfluorocyclobutane	HCFC-22	CHF ₂ Cl
C ₄ F ₁₀	perfluorobutane	HCFC-123	$C_2F_3HCl_2$
C ₅ F ₁₂	perfluoropentane	HCFC-124	CF ₃ CHClF
C ₆ F ₁₄	perfluorohexane	HCFC-141b	CH ₃ CFCl ₂
CFC	chlorofluorocarbon	HCFC-142b	CH ₃ CF ₂ Cl
CFC-11	CFCl ₃ (trichlorofluoromethane)	HCFC-225ca	CF ₃ CF ₂ CHCl ₂
CFC-12	CF_2Cl_2 (dichlorodifluoromethane)	HCFC-225cb	CClF ₂ CF ₂ CHClF
CFC-13	CF ₃ Cl (chlorotrifluoromethane)	HCFE-235da2	CF ₃ CHClOCHF ₂
CFC-113	CF ₂ ClCFCl ₂ (trichlorotrifluoroethane)	HCO ₃ ⁻	bicarbonate ion
CFC-114	CF ₂ ClCF ₂ Cl (dichlorotetrafluoroethane)	HFC	hydrofluorocarbon
CFC-115	CF ₃ CF ₂ Cl (chloropentafluoroethane)	HFC-23	CHF ₃
CF ₃ I	trifluoroiodomethane	HFC-32	CH_2F_2
CH ₄	methane	HFC-41	CH ₃ F
C ₂ H ₆	ethane	HFC-125	CHF ₂ CF ₃
C ₅ H ₈	isoprene	HFC-134	CHF ₂ CHF ₂
C ₆ H ₆	benzene	HFC-134a	CF ₃ CH ₂ F
C ₇ H ₈	toluene	HFC-143	$CH_2F CHF_2$
C ₁₀ H ₁₆	terpene	HFC-143a	CH ₃ CF ₃
CH ₃ Br	methylbromide	HFC-152	CH_2FCH_2F
CH ₃ CCl ₃	methyl chloroform	HFC-152a	CH_3CHF_2
CHCl ₃	chloroform/trichloromethane	HFC-161	CH ₃ CH ₂ F
CH ₂ Cl ₂	dichloromethane/methylene chloride	HFC-227ea	CF ₃ CHFCF ₃
CH ₃ Cl	methylchloride	HFC-236cb	CF ₃ CF ₂ CH ₂ F
CH ₃ OCH ₃	dimethyl ether	HFC-236ea	$CF_3CHFCHF_2$
СО	carbon monoxide	HFC-236fa	CF ₃ CH ₂ CF ₃
CO ₂	carbon dioxide	HFC-245ca	CH ₂ FCF ₂ CHF ₂
CO3 ²⁻	carbonate ion	HFC-245ea	CHF ₂ CHFCHF ₂
DIC	dissolved inorganic carbon	HFC-245eb	CF ₃ CHFCH ₂ F

HFC-245fa	CHF ₂ CH ₂ CF ₃	HFOC-134	CF ₂ HOCF ₂ H
HFC-263fb	CF ₃ CH ₂ CH ₃	HFOC-143a	CF ₃ OCH ₃
HFC-338pcc	CHF ₂ CF ₂ CF ₂ CF ₂ H	HFOC-152a	CH ₃ OCHF ₂
HFC-356mcf	$CF_3CF_2CH_2CH_2F$	HFOC-245fa	CHF ₂ OCH ₂ CF ₃
HFC-356mff	CF ₃ CH ₂ CH ₂ CF ₃	HFOC-356mmf	CF ₃ CH ₂ OCH ₂ CF ₃
HFC-365mfc	CF ₃ CH ₂ CF ₂ CH ₃	HG-01	CHF ₂ OCF ₂ CF ₂ OCHF ₂
HFC-43-10mee	CF ₃ CHFCHFCF ₂ CF ₃	HG-10	CHF ₂ OCF ₂ OCHF ₂
HFC-458mfcf	$CF_3CH_2CF_2CH_2CF_3$	H-Galden 1040x	CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂
HFC-55-10mcff	CF ₃ CF ₂ CH ₂ CH ₂ CF ₂ CF ₃	HNO ₃	nitric acid
HFE-125	CF ₃ OCHF ₂	HO ₂	hydroperoxyl
HFE-134	CF ₂ HOCF ₂ H	HO _x	the sum of OH and HO ₂
HFE-143a	CF ₃ OCH ₃	H ₂ O	water vapour
HFE-152a	CH ₃ OCHF ₂	H ₂ SO ₄	sulphuric acid
HFE-227ea	CF ₃ CHFOCF ₃	N_2	molecular nitrogen
HFE-236ea2	CF ₃ CHFOCHF ₂	NF ₃	nitrogen trifluoride
HFE-236fa	CF ₃ CH ₂ OCF ₃	NH ₃	ammonia
HFE-245cb2	CF ₃ CF ₂ OCH ₃	NH_4^+	ammonium ion
HFE-245fa1	CHF ₂ CH ₂ OCF ₃	NMHC	non-methane hydrocarbon
HFE-245fa2	CHF ₂ OCH ₂ CF ₃	NO	nitric oxide
HFE-254cb2	CHF ₂ CF ₂ OCH ₃	NO ₂	nitrogen dioxide
HFE-263fb2	CF ₃ CH ₂ OCH ₃	NO _x	nitrogen oxides (the sum of NO and NO ₂)
HFE-329mcc2	CF ₃ CF ₂ OCF ₂ CHF ₂	NO ₃	nitrate radical
HFE-338mcf2	CF ₃ CF ₂ OCH ₂ CF ₃	NO_3^-	nitrate ion
HFE-347mcc3	CF ₃ CF ₂ CF ₂ OCH ₃	N ₂ O	nitrous oxide
HFE-347mcf2	$CF_3CF_2OCH_2CHF_2$	O ₂	molecular oxygen
HFE-356mec3	CF ₃ CHFCF ₂ OCH ₃	O ₃	ozone
HFE-356mff2	CF ₃ CH ₂ OCH ₂ CF ₃	OCS	organic carbonyl sulphide
HFE-356pcc3	CHF ₂ CF ₂ CF ₂ OCH ₃	OH	hydroxyl radical
HFE-356pcf2	CHF ₂ CF ₂ OCH ₂ CHF ₂	PAN	peroxyacetyl nitrate
HFE-356pcf3	CHF ₂ CF ₂ CH ₂ OCHF ₂	PFC	perfluorocarbon
HFE-365mcf3	CF ₃ CF ₂ CH ₂ OCH ₃	SF ₆	sulphur hexafluoride
HFE-374pc2	CHF ₂ CF ₂ OCH ₂ CH ₃	SF ₅ CF ₃	trifluoromethyl sulphur pentafluoride
HFE-7100	$C_4F_9OCH_3$	SO ₂	sulphur dioxide
HFE-7200	$C_4F_9OC_2H_5$	SO ₄ ²⁻	sulphate ion
HFOC-125	CF ₃ OCHF ₂	VOC	volatile organic compounds

Appendix VIII

Index

[†] Term also appears in Appendix I: Glossary. Numbers in italics indicate a reference to a table or diagram. Numbers in bold indicate a reference to an entire chapter.

A

Absorption	
anomalous	433
Aerosol(s) [†]	93, 289-348
biogenic	299, 300-303, 312, 331
black carbon [†] 294,	299-300, 306, 314, 332-334, 369-372, 395,
	397, 400-402
carbonaceous [†] 299-300,	314, 369-372, 377-378, 395, 397, 400-402
cloud condensation nuc	lei (CCN) 308-310
concentration(s) past an	d current 306
direct effect	293-295, 304, 322-324, 367-374, 400-404
effect on clouds 307-	312, 324-325, 328-330, 379, 395, 397-399,
	404
from biomass burning	299-300, 309, 322, <i>323</i> , 324, 395, 397,
	400-402
from fossil fuel burning	299-300, 301, 322, <i>323</i> , 369-372
future concentration(s)	330-335
ice nuclei (IN)	311-312
indirect effect(s) ^{\dagger}	293-295, 307-312, 324-330, 375-379, 395
industrial dust	299
interactions with tropos	pheric ozone and OH 277
lifetimes	293, 295
mineral dust 296-297,	314, 320, 331-332, 372-373, 378, 395, 397
modelling	313-330, 781-782
nitrates	303, 332-334, 373
observations	304-306, 314-318, 374, 378-379
optical properties	293-295, 295, 318-322, 367-373
organic	299-300, 306, 314, 320, 370-372
precursors	295, 300-303
radiative forcing from	322-324, 328-330, 367-380, 391-399,
	400-404
scenarios of future emis	sions – see also IS92 and
SRES scenarios	330-335

sea salt	297-299, 314, 320, 332, 374
size distribution	294, 369
soil dust – see Aerosols, 1	nineral dust
sources and sinks	295-307, 330-335
stratospheric	304, 379-380, 395
sulphates 314, 32	20, 324, 367-369, 375-377, 378, 395, 397,
	400-402, 548, 593-596
trends - see Aerosol(s), c	oncentration(s) past and current
uncertainties 3	322-324, 328-330, 334-335, 374, 395, 404
volatile organic compoun	ds (VOC) 300, 331
volcanic	303-304, 379-380
Afforestation ^{\dagger} – see Forests	
Agriculture	
CH ₄ sources and sinks	248
CO ₂ sources and sinks	194
N ₂ O sources and sinks	251
Aircraft 259-260, 26	52, 263, 296, 312, 366-367, 391, 395, 399
Albedo [†]	380, 425, 429, 434, 443-446, 448
single scattering	293, 306
Ammonia	246, 267, 260, 278, 296, 303, 330, 332
Antarctic ice sheet – see Ice	sheets
Antarctic Oscillation	92, 154, 568-570
Anthropogenic climate force	ing – see Radiative forcing
Arctic Oscillation	153, 568-570
Artificial Neural Network	591, 618
Atmosphere	
definition	87-88
Atmosphere ocean general o	circulation models (AOGCMs)
- see Climate modell	ing
Atmosphere/ocean interacti	on – see also El Niño-Southern
Oscillation	436, 449-451
Atmospheric Boundary Lay	ver – see Boundary Layer
Atmospheric chemistry	239-287

feedbacks - see Feedbacks, chem	ical
impacts of climate change	278
modelling	264-266, 267-271, 277-278, 781
possible future changes	267-277
Atmospheric circulation	97, 715
observed changes	103, 150-154
projections of future changes	565-570, 602
regimes	435
Atmospheric composition	87-88, 92-93
Attribution of climate change – see	Detection and
attribution of climate change	
Aviation induced cirrus	395
В	
Baseline climatological data	749-750
Biogenic aerosol(s) – see Aerosol(s)	
Biological pump – see Carbon cycle	
Biomass burning – see also Aerosols	, from biomass burning 257-258,
262, 296, 2	299, 300, 322, <i>323</i> , 361, 372, 377
Biosphere [†]	
marine	89, 197-198, 200
terrestrial	89, 191-197, 456
Black carbon aerosol(s) – see Aeroso	bl(s)
Blocking	154, 506, 566-567
Bölling-Alleröd warm period	137
Borehole measurements (of tempera	ature) 130, 132
Boundary-layer	428-429, 441
Budget of greenhouse gases - see Gr	reenhouse gases

С

Calcium carbonate (CO ₃ ²⁻)	198, 199, 200, 202, 203, 216, 224
Canonical Correlation Analysis	617
Carbon budget	185, 205-208
Carbon cycle [†]	183-237 , 777-779
biological pump	197-198, 778
carbon management	224
description	191-193, 197-199
Dynamic global vegetation mod	dels (DGVMs) 213, 219
effects of nitrogen deposition	196-197, 215
feedbacks 91, 186, 19	94-195, 200, 208-210, 219-220, 224
inverse modelling	210-212
model evaluation	213-218
modelling	213-218, 219-224, 443
ocean carbon processes	197-200, 216, 778
ocean models	216-218
response to climate change	186, 194, 200, 215, 219-220
response to increasing CO ₂	185-186, 195-196, 199, 219-220
simplified fast carbon cycle mo	dels 221
soil carbon	191

Terrestrial Biogeochemical Models (TBMs)	213
terrestrial carbon processes 191-197	
Carbon dioxide $(CO_2)^{\dagger}$	183-237
and land-use change 193-194, 204-205, 2	212-213, 215, 224
concentration(s) past and current 185, 187, 2	201-203, 205-208
during ice age cycles	202-203
enhancing ocean uptake by iron fertilisation	198, 200, 202
equivalent – see Equivalent carbon dioxide (CO_2)	
fertilisation [†]	195-196, 219
from fossil-fuel burning	204, 205, 224
future concentration	186, 219-224
geological history	201-202
Global Warming Potential (GWP)	388
interannual variability of concentrations	208-210
missing sink	208
radiative forcing from 356-357.	358-359, 391-396
scenarios of future emissions	219-224
sources and sinks 192 193-194 195-19	97 199 204-208
210-213 2	215 216-218 224
snatial distribution	210-212
stabilisation of concentration	210-212
trends see Carbon dioxide concentration(s) past	t and current
Carbon isotones	207 216 218 248
Carbon monovida (CO) 256 2	265 266 287 200
Carbon monoxide (CO) 230, 2	505-500, 587-590
\mathbf{A} AT THE TALE FOR A PERIOD AND \mathbf{A} - SEE A PERIOD AT	
CECs	255 357-350
CFCs Chamical transport models see Atmospheric chem	255, 357-359
CFCs Chemical transport models – see Atmospheric chem	255, 357-359 histry, modelling
CFCs Chemical transport models – see Atmospheric chem Climate [†]	255, 357-359 histry, modelling
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition	255, 357-359 histry, modelling 87
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†]	255, 357-359 histry, modelling 87
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition	255, 357-359 histry, modelling 87 87
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attribution	255, 357-359 histry, modelling 87 87 bution
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attribution of climate change	255, 357-359 histry, modelling 87 87 bution
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment	255, 357-359 histry, modelling 87 bution 531-536, 675-679
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attribution of climate change Climate change commitment Climate change signals – see also Detection and attribution	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fibution
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change 532-536, 538-540, 5 502, 602, 602, 602, 612, 615, 622, 622, 622, 602, 602, 602, 602, 602	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fibution 543-554, 565-570,
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attribution of climate change Climate change commitment Climate change signals – see also Detection and attribution of climate change 532-536, <i>538-540</i> , 5 593-603, 607, 613-615, 622-623, 0	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fibution 643-554, 565-570, 664-666, 757-759
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 4 Climate extremes modelling are Climate modelling	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fibution 543-554, 565-570, 664-666, 757-759 92, 432
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 0 Climate extremes modelling – see Climate modelling	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 ibution 543-554, 565-570, 664-666, 757-759 92, 432
Circuit construction of construction of climate changeClimate change $(a \in A)$ definition $(a \in A)$ climate change $(a \in A)$ definition $(a \in A)$ detection and attribution – see Detection and attributionof climate changeClimate change commitmentClimate change signals – see also Detection and attributionof climate change532-536, 538-540, 5593-603, 607, 613-615, 622-623, 0Climate extremesmodelling – see Climate modellingobserved changes97, 103-104, 155-1	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fbution 543-554, 565-570, 664-666, 757-759 92, 432
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 6 Climate extremes modelling – see Climate modelling observed changes 97, 103-104, 155-1 projections of future changes 570-576, 602-603, 6	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fibution 543-554, 565-570, 664-666, 757-759 92, 432 63, <i>575</i> , 774-775
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 6 Climate extremes modelling – see Climate modelling observed changes 97, 103-104, 155-1 projections of future changes 570-576, 602-603, 6 representation in climate scenarios – see Stenarios – see Stenarios – see Stenarios – see Stenarios – see Stenario scenarios – see Stenarios – see S	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 ibution 543-554, 565-570, 664-666, 757-759 92, 432 63, <i>575</i> , 774-775 606, 615, 774-775 scenarios
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attribution of climate change Climate change commitment Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 6 Climate extremes modelling – see Climate modelling observed changes 97, 103-104, 155-1 projections of future changes 570-576, 602-603, 6 representation in climate scenarios – see scenari	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fbution 543-554, 565-570, 664-666, 757-759 92, 432 63, 575, 774-775 506, 615, 774-775 scenarios
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 0 Climate extremes modelling – see Climate modelling observed changes 97, 103-104, 155-1 projections of future changes 570-576, 602-603, 6 representation in climate scenarios – see Climate = Climate forcing – see Radiative forcing Climate modelling	255, 357-359 nistry, modelling 87 87 bution 531-536, 675-679 ibution 543-554, 565-570, 664-666, 757-759 92, 432 63, <i>575</i> , 774-775 506, 615, 774-775 scenarios
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change signals – see also Detection and attri of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 6 Climate extremes modelling – see Climate modelling observed changes 97, 103-104, 155-1 projections of future changes 570-576, 602-603, 6 representation in climate scenarios – see Climate = Climate forcing – see Radiative forcing Climate modelling atmospheric circulation	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 ibution 543-554, 565-570, 664-666, 757-759 92, 432 63, <i>575</i> , 774-775 scenarios 435
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attribution of climate change Climate change commitment Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 6 Climate extremes modelling – see Climate modelling observed changes 97, 103-104, 155-1 projections of future changes 570-576, 602-603, 6 representation in climate scenarios – see Climate = Climate modelling atmospheric circulation boundary layer	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fbution 543-554, 565-570, 664-666, 757-759 92, 432 63, <i>575</i> , 774-775 506, 615, 774-775 scenarios 435 428-429
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 0 Climate extremes modelling – see Climate modelling observed changes 97, 103-104, 155-1 projections of future changes 570-576, 602-603, 6 representation in climate scenarios – see Climate : Climate modelling atmospheric circulation boundary layer cloud processes and feedbacks 427-4	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 ibution 543-554, 565-570, 664-666, 757-759 92, 432 63, <i>575</i> , 774-775 506, 615, 774-775 scenarios 435 428-429 131, 484, 775-776 67, 569, 570, 570, 570
CFCs Chemical transport models – see Atmospheric chem Climate [†] definition Climate change [†] definition detection and attribution – see Detection and attril of climate change Climate change commitment Climate change signals – see also Detection and attril of climate change 532-536, 538-540, 5 593-603, 607, 613-615, 622-623, 0 Climate extremes modelling – see Climate modelling observed changes 97, 103-104, 155-1 projections of future changes 570-576, 602-603, 6 representation in climate scenarios – see Climate 9 Climate forcing – see Radiative forcing Climate modelling atmospheric circulation boundary layer cloud processes and feedbacks 427-4 confidence in models 511-512, 531-532, 5	255, 357-359 histry, modelling 87 87 bution 531-536, 675-679 fbution 543-554, 565-570, 664-666, 757-759 92, 432 63, 575, 774-775 506, 615, 774-775 scenarios 435 428-429 131, 484, 775-776 67-568, 570-576, 564 666 772 782

dependence on resolution	509-511, 603-607, 774
Earth System models	476
Energy Balance Models	577, 670-673
ENSO	503-504, 567-568
evaluation	471-523 , 591-593, 603-607, 760
extra-tropical storms	508, 573
extreme events	432, 499-500, 503-509, 570-576,
	592-593, 604, 610-613, 774-775
flux adjustment 94	, 449-450, 476-479, 530-532, 773
General Circulation Models (GCI	Ms), description 94-95, 475,
	476-479
initialisation	476, 773
land ice	448-449, 615, 652-653
land surface 440-443, 490)-493, 493-496, 570-572, 779-781
Madden-Jullian Oscillation (MJO) 505-506
mean sea level pressure	479-484, 548, 592
mixed layer models	530-531
monsoons	484, 505, 568, 572-573, 612-613
North Atlantic Oscillation	506, 568-570, 573, 715
ocean processes, circulation and f	feedbacks 421, 435-440, 486-489,
	493, 561-565, 646-647
orographic processes	435
Pacific North American (PNA) pa	attern 506
parametrization	94, 427-432, 436-438, 440-443
precipitation processes	431-432, 479-484, 572-573,
	591-592, 604, 610
projections of future climate: des	cription
of methods 94-96, 476	-479, 532-536, 588-591, 593-603,
	617-618, 622-623, 666-679
projections of future climate: resu	ilts (see also entries
for individual variables and ph	nenomena) 525-582 , 607,
	613-615, 666-679
radiative processes	432-434
sea ice	445-446, 489, 543, 548
simple climate models 94-95,	475-476, 531-532, 533, 554-558,
	577, 646-647, 670-673, 749
simulation of 20th century climat	e 496-498, 502-503, 592
simulation of past climates	493-496
snow	543, 548
stratospheric climate	434-435, 484-486
temperature	479-484, 591-592, 604, 610
thermohaline circulation 439,	439-440, 486-488, 562-563, 565,
	577, 776-777
tropical cyclones	508-509, 574, 606, 774-775
uncertainties 492-493,	511-512, 531-532, 536, 554-558,
567-568, 577	, 591, 601-602, 755-756, 772-782
variability 432, 499	-500, 503-509, 534-536, <i>538-540</i> ,
	565-570, 592-593, 604, 610-613
water vapour and water vapour fe	edback 424, 425-426, 484

Climate models ^{\dagger} – see also Clima	te modelling 94-95
high resolution	587, 589-590, 603-607
intercomparison	479-512
nested	587, 590, 607
types	475-476
variable resolution	587, 589-590, 603-607
Climate projection [†] – see Climate	modelling
Climate response	94, 532-534, 559-565, 705-712
time-scales	563-565
to anthropogenic forcing – see	Detection and attribution
of climate change	
to natural forcing – see Detecti	on and attribution of
climate change	
transient 5	33, 538-540, 561-562, 593-596, 600
Climate scenarios [†]	739-768
analogue	748
application to impact assessme	nt 743-745, 752
baseline climate	749-751
definition	743-744
derived from climate models	748-759 750-751
expert judgement	740-739, 730-731
inconsistencies	760-761
incremental	746 748
pattern scaling	740-740
	750-757
risk assassment	745, 755-760
userishility and sytremes	759-700
variability and extremes	(17, (10, (20, 750, 752
	017, 019-020, 750, 755
	535-535, 590, 755-750
епеснуе	534, 559-562, 577
equilibrium	93, 530-531, 532-536, 559-561, 5//
Climate system	85-98
components	87-89
description	87-89
Climate variability	452-453
human-induced	
modelling – see Climate mode	lling
natural	89-92, 702-705
observed changes	155-163
projections of future changes	565-570, 602-603, 615
representation in climate scena	rios – see Climate scenarios
Cloud condensation nuclei (CCN	$)^{\dagger}$ – see Aerosol(s), cloud
condensation nuclei	
Cloud/radiative feedback(s) – see	e Clouds, processes and feedbacks
Clouds	
influence of aerosol(s) on - see	e Aerosol(s)
modelling - see Climate mode	lling
observed changes	103, 148-149
processes and feedbacks	90, 91, 421, 423-431

radiative forcing - see also Aerosol(s), indirect forcing and effect on clouds 429-431, 430 379, 395, 399 Contrails Convection atmospheric 428 oceanic 436-437 Corals 130, 131 Cosmic rays (effect on clouds) 384-385 Coupled ocean/atmosphere models - see Climate modelling Cryosphere[†] 456 definition 88, 444-449 444-449 processes and feedbacks

D

Dansgaard-Oeschger events	137, 140-141, 203
Deforestation [†] 192	2, 193, 194, 204-205, 212-213
CO ₂ released from – see Carbon diox	kide
Detection and attribution of climate ch	ange [†] 97, 695-738
circulation patterns	715
conclusions	730-731
definition(s)	700-701
estimates of internal variability	702-705, 713, 729
hydrological indicators	715
observed data	701
optimal methods - see Optimal detec	ction of climate change
pattern correlation methods	718-721
qualitative comparison of observation	n with models 713-716
response to anthropogenic forcing	711-712, 729
response to natural forcing	708-709, 729
uncertainties	725-727, 729
using horizontal temperature patterns	5 711-712, 714, 718-720
using temperature time-series	709, 714, 716-718
using vertical temperature patterns	711, 714-715, 720-721
Dimethylsulphide $(DMS)^{\dagger}$	301, 331
Diurnal temperature range (DTR) – se	e Temperature
Downscaling	619-621
empirical/statistical	587, 591, 616-621
issues	619-620
predictors and predictands	616-617, 619-620
statistical/dynamical	587, 591, 616-621, 751-752
Drought	572-573, 603, 615
observed changes	143-145, 161-162
Dust – see Aerosol(s)	

Е

Earth System Models - see Climate modelling	
Eemian	<i>137</i> , 141
El Chichon	107, 121

El Niño – see El Niño-Southern Osc	illation
El Niño-Southern Oscillation (ENS	SO) [†] 92, <i>454-455</i> , 456
and behaviour of carbon cycle	208-210
influence on climate 109,	121, 123, 130, 143-145, 148, 151,
	152-153, 453-455, 567-568, 588
modelling – see Climate modelli	ng
observed changes	97, 103, 139-140, 141, 150, 154
projections of future changes	567-568
representation in climate scenari	os 754
Emission scenarios ^{\dagger} – see IS92 and	SRES scenarios
Energy Balance Model – see Clima	te modelling
Ensembles of climate integrations	534-536, 543-554,
	593-596, 602, 774
Equilibrium climate change †	
definition	530, 533
Equivalent carbon dioxide $(CO_2)^\dagger$	533, 761
Eustasy [†]	643, 654-656, 661
Evaporation	
observed changes	148
External variability (of climate sys	stem) 91
Extra-tropical cyclones	
modelling – see Climate modelli	ng
observed changes	161, 664
projections of future changes	573, 602-607, 675
Extreme events ^{\dagger} – see Climate extre	emes

F

Feedback(s) [†]	(91, 93, 275, 417-470
carbon cycle – see Carbon cyc	ele, feedbacks	
chemical		245-246, 247, 278
cloud - see Clouds, processes	and feedbacks	
ice albedo		445-446
land ice - see Land ice, proce	sses and feedbac	ks
land surface - see Land surfac	e, feedbacks	
ocean - see Ocean processes a	and feedbacks	
sea ice - see Sea ice, processes and feedbacks		
temperature/moisture - see Temperature/moisture feedback		
water vapour - see Water vapo	our, feedback	
Fingerprint methods - see Optim	nal detection of c	limate change
Flux adjustment ^{\dagger} – see Climate n	nodelling	
Forcing – see Radiative forcing		
Forests [†]	192, 19	3, 204-205, 212-213
Fossil fuel burning	204, 205, 248	8, 251-252, 257-258,
	259-260, 290	6, 299-301, 322, <i>323</i>
Framework Convention on Climate Change [†] – see United		
Nations Framework Conve	ntion on Climate	e Change
Future climate – see Climate mod	delling and entrie	es under
individual variables and ph	enomena	

G	
General circulation models $(GCMs)^{\dagger}$ –	see Climate modelling
Glacial/interglacial cycles - see Ice ages	5
Glaciers [†]	647-650, 680
mass balance	647-649
observed changes 102, 127-129, 13	3-135, 138, 153, 647-649, 665
projections of future changes	667-668, 677
Global energy balance	90
Global Warming Potential $(GWP)^{\dagger}$	385-391
Absolute (AGWP)	385-386
definition of	385-386
direct	386-387
indirect	387-391
net	391
values of	386-391
Greenhouse effect [†]	
description	89-90, 93
enhanced	93
Greenhouse gases ^{\dagger} – see also entries und	ler
individual gases 89-90, 9	3, 183-237 , 239-287 , 391-396
budgets	243, 246-247
definition of lifetime	247
derivation of sink strength	246-247
derivation of source strength	246
radiative forcing from	356-359, 361-365, 391-395,
	397, 400-402, 709-711
trends	246-247
Greenland ice sheet – see Ice sheets	
Gross Primary Production (GPP) †	191, 197-198
Groundwater	657-658, 680-681

Н

Hail	104, 162-163, 573
Halocarbons [†]	255, 357-359, 390-391
HCFCs	243, 244, 245, 253-254, 266, 358, 391
Heinrich events	<i>137</i> , 140-141, 202
Holocene 137,	138-140, 141, 142, 493-495, 654-656, 659-661
Human influence on cl	imate – see Detection and attribution of
climate change	
Hurricanes – see Tropio	cal cyclones
Hydrocarbons	257-258, 300
Hydrofluorocarbons (H	IFCs) 253-254
Global Warming Po	tential (GWP) 388
Hydrogen (H ₂)	256
Hydrogen Sulphide (H	2S) 296, 303
Hydrological cycle	142, 161-162, 164, 421, 779-781
Hydrosphere [†]	
definition	88
Hydroxyl radical (OH)	263-266, 365

ge(s)	

I

Ice age(s)	136-142, 136, 654-656
Ice caps [†]	647-650, 665, 667-668, 677, 680
Ice cores	131, 137
CO ₂ measurements from	202-203
methane measurements from	249, 250
nitrous oxide measurements from	253
temperature derived from	133, 249
Ice nuclei	311-312
Ice sheets [†]	448-449, 648, 665
Antarctic	650-654, 668-670, 677-680
Greenland	650-654, 668-670, 677-680
mass balance	650-652
Ice shelves [†]	125-126, 650-654, 678-679
Ice thickness	102, 126-127
Industrial dust – see Aerosol(s)	
Infrared (or long-wave) radiation †	89, 293, 297
Internal variability (of climate syste	em) [†] 91, 702-705, 713
Inverse modelling ^{\dagger} (of carbon cycle)) – see Carbon cycle,
inverse modelling	
IS92 scenarios	95, 314, 330, 541
emissions	266
implications for future climate	541
implications for future concentrat	ions 219, 222-223, 274-275
implications for future radiative for	orcing 403-404
Isostasy [†]	643, 654-656, 661

J

```
K
```

```
Kyoto Protocol<sup>†</sup>
```

L

La Niña – see El Niño-Southern (Dscillation
Lake ice	129, 163
Land ice - see also Glaciers, Ice sheets, Ice shelves and Ice caps	
modelling – see Climate mode	elling
processes and feedbacks	445, 448-449, 596, 615
Land surface	88-89
change – see also Land-use ch	ange 443-444
modelling – see Climate mode	elling
processes and feedbacks	440-444, 493-496
Land-use change [†]	93-94, 193-194, 204-205, 212-213,
215, 380, 3	395, 399-400, 443, 500-503, 782-783
CO ₂ sources and sinks – see C	Carbon dioxide
Last Glacial Maximum	137, 140, 495-496, 654-656
Latent Heat	423, 431, 432, 445, 449-452, 454
Lifetime of greenhouse gases – see Greenhouse gases	
Liquid Water Path	307-308, 310, 311

212-213, 224, 243

Little Ice Age	102, 127, 133-136
Μ	
Madden-Julian Oscillation	505-506
Markov chain	617
Maximum temperature(s) – see Temperature,	maximum
Medieval Climate Optimum – see Medieval V	Warm Period
Medieval Warm Period	102, 133-136
Mesoscale eddies (in ocean) – see Ocean proc	esses and feedbacks
Methane (CH ₄)	248-251
adjustment time	247, 250-251
atmospheric chemistry	248, 365
concentration(s) past and current	248-250
future concentration	275
Global Warming Potential (GWP)	244-245, 387, 388
indirect forcing	247, 365-366
interannual variability of concentrations	248-250
lifetime	248, 250-251
radiative forcing from	357, 358-359, 391-396
scenarios of future emissions	266-267
sources and sinks	248
trends - see Methane, concentration(s) past	and current
Mid-Holocene – see Holocene	
Mid-latitude storms – see Extra-tropical cyclo	ones
Minimum temperature(s) – see Temperature,	minimum
Model – see Climate model	
Monsoons	451-452
modelling – see Climate modelling	
observed changes	152
projections of future changes	568, 600, 602, 613-615
Montreal Protocol [†]	243, 255-256
MSU (Microwave Sounder Unit) - see also T	emperature,
upper air	119, 122, 145
Mt. Pinatubo (eruption of)	107
Ν	
Natural climate forcing – see Radiative forcin	g
Net Ecosystem Production (NEP) [†]	- 191
Net Primary Production (NPP) [†]	191, 197-198
Nitrate (NO₃) aerosol(s) – see Aerosol(s)	·
Nitrogen fertilisation ^{\dagger} – see Carbon cycle, effect	cts of nitrogen deposition
Nitrogen oxides (NO _x)	259-260, 366, 391

Nitrogen oxides (NO _x)	259-260, 366, 391
Nitrous oxide (N ₂ O)	251-253, 391-396
concentration(s) past and current	252-253
future concentration	275
Global Warming Potential (GWP)	244, 388
interannual variability of concentrations	252-253
lifetime	252

radiative forcing from	357, 358-359
scenarios of future emissions	266-267
sources and sinks	251, 252
trends - see Nitrous oxide, concentration	on(s) past and current
Non-linear climate processes †	91, 96, 455-456
Non-methane hydrocarbons (NMHC)	257-258, 365-366, 391
North Atlantic Oscillation (NAO) †	92, 451-452, 456, 588, 715
modelling - see Climate modelling	
observed changes	103, 117, 152-153
projection of future changes	568-570, 573

0

Observations of climate and climate ch	nange – see also
Detection and attribution of clima	te change
and entries for individual variable	es 96, 99-181
Ocean circulation – see also Ocean proce	esses and feedbacks
modelling - see Climate modelling	
observed changes	103
Ocean heat transport – see Ocean proce	sses and feedbacks
Ocean processes and feedbacks 435-440), 493, 588, 609, 644-647, 680
circulation	438-439
heat transport	449-450
mesoscale eddies	437-438
mixed layer	436
mixing	437
modelling - see Climate modelling	
Ocean/atmosphere interaction – see atm	osphere/ocean interaction
Optimal detection of climate change	721-729
multiple fixed pattern studies	722-723
single pattern studies 721-72	
using spatially and temporally varying patterns 723-728	
Organic aerosol(s) ^{\dagger} – see Aerosol(s)	
Organic carbon – see also Aerosol(s)	
Organic carbon aerosol(s) – see Aerosol	(s)
Orography	435
OxComp	267-268
Ozone $(O_3)^{\dagger}$, stratospheric	255-256
depletion of	256, 277-278, 359-361
future concentration	361
radiative forcing from	359-361, 393, 400-402
Ozone $(O_3)^{\dagger}$, tropospheric	260-263, 278
chemical processes	262
concentration past and current	262
future concentration	272, 275, 364-365
radiative forcing from	361-365, 393-395, 400-402
sources and sinks	262
Ozone hole ^{\dagger} – see Ozone, stratospheric	

Ozone layer^{\dagger} – see Ozone, stratospheric

Р

Pacific Decadal Oscillation (PDO)	150, 504-505	
Pacific oscillation(s)	150, 151-152	
Pacific-North American (PNA)	152-153, 451-452	
Palaeoclimate	101, 130-133, <i>137</i> , 143-145, 748	
Palaeo-drought	143-145	
Parametrization [†] – see Climate mod	lelling	
Perfluorocarbons (PFCs)	254	
Permafrost	127, 444-445, 657-658, 665	
Photochemistry	263-266	
Photosynthesis [†]	191, 195, 442	
Precipitation		
extremes - see Climate extremes		
modelling – see Climate modelling		
observed changes 101, 103-104, 142-145, 157-160, 163, 164, 575		
processes	431-432	
projections of future changes	538-540, 541-554, 566, 572-573,	
575, 593-602, 607, 613-615, 653-654, 668-670		
Predictability (of climate) 91, 95-96, 422-42		
Projection of future climate – see Climate modelling and entries		
under individual variables and phenomena		
0		

Q

Quasi-biennial	Oscillation	(QBO)	
----------------	-------------	-------	--

R

Radiative balance	89
Radiative forcing ^{\dagger} – see also the entries for in	dividual greenhouse
gases and aerosols	349-416
and climate response relationship	353-355, 361, 396,
	400, 532-534, 706-712
anthropogenic 353, 356-359	, 379, 391-396, 397-399,
400-404, 532-534, 554	4-558, 577, 709-711, 729
definition of	90-91, 353
description	405-406
from land-use change – see Land-use char	ige
from volcanoes - see Volcanoes	
geographic distribution	396-400, 711
global mean estimates	391-396
indirect 365-367, 375	5-379, 395, 397-399, 404
natural 89-91, 353, 379-380, 391-396	6, 400-402, 706-709, 729
solar – see Solar variability	
strengths/limitations of concept	355, 396
time evolution	400-404
Radiative processes	
modelling - see Climate modelling	
stratosphere	433-434
troposphere	432-433
Radiosondes – see Weather balloons	

Rapid climate change [†] – see also Non-linear climate		
processes	96, 136, 455-456	
Reanalyses data	96, 120-121	
Reforestation ^{\dagger} – see Forests		
Regional climate change	97, 583-638	
climate variability and extremes	602-603, 607, 615	
mean climate	593-602, 607, 613-615	
Regional climate change information		
methods of deriving	587-591, 622-623	
Regional climate models (RCMs)	589-590, 607-616	
derivation of climate scenarios – see also Climate scenarios 751		
projection of future climate using	613-615	
simulation of current climate	609-613	
Regionalisation	587-588, 621-623	
Resolution (of models) – see Climate modelling and Climate models		
Respiration [†]	191, 442	
River flow	143, 159-160	
River ice	129, 163	
Runoff 444		

S

434

S Stabil	sation profiles	224, 557-559
Salinity	(of oceans)	118, 138
Satellite	altimeter observations of sea	level 663-664
Satellite	s 120, 123-125, 1	45, 147, 148-149, 163, 380-381
Scenari	\mathbf{s}^{\dagger} – see Climate scenarios and	SRES and IS92 scenarios
Sea ice		445-448
Anta	rctic	124-127, 129, 448
Arct	ic 124-12	27, 129, 153, 445, 447-448, 777
mod	elling – see Climate modelling	
obse	rved changes	124-127, 129, 446
proc	esses and feedbacks	445, 446, 596
Sea leve	l	639-693
acce	leration in sea level rise	663, 665-666
char	ges since last glacial period	654-656, 659-661
extre	mes	664, 675
obse	rved changes over last 100 to 2	200 years 661-666
proc	esses contributing to change	644-659
proj	ections of future changes	666-679
regi	onal changes	659, 673-674
scen	arios	761
unce	rtainties	679-682
Sea salt	- see Aerosol(s)	
Severe v	veather	162-163
Simple	limate models – see Climate 1	nodelling
Sink str	ength of greenhouse gases – s	ee Greenhouse gases
Snow co	ver	444-445
exte	nt (SCE) 1	02, 123-124, 129, 142, 159-160
mod	elling – see Climate modelling	

observed changes	102, 123-124	1
Soil carbon – see Carbon cycle		
Soil dust – see Aerosol(s)		
Soil moisture [†]	444, 570-573	
Solar cycle ^{\dagger} – see Solar variability		
Solar (or short-wave) radiation [†]	9, 293, 297, 380-385	
Solar forcing of climate – see Solar variability		
Solar variability		
influence on climate 91, 120, 136, 380-38	5, 500-502, 708-709	
radiative forcing from 380	0-385, 395, 400, 706	
Soot ^{\dagger} – see Aerosol(s), black carbon		
Source strength of greenhouse gases - see Green	house gases	
Southern Oscillation Index (SOI)	455	
SRES scenarios [†]	95	
emissions	266-267, 755	
implications for future climate	541-543, 554-558,	
	600-601, 670-673	
implications for future concentrations	223, 224, 274-275,	
	330, 332-334	
implications for future radiative forcing	402-404	
markers 266, 531-532, 541-54	3, 554-558, 600-601	
Stabilisation of climate – see also WRE and S		
stabilisation profiles	557-558, 675-677	
Stabilisation of concentrations – see entries unde	r	7
individual gases and aerosols	557-558	7
Statistical downscaling – see Downscaling		7
Storm surges [†]	664, 675	7
Storms – see Tropical Storms, Tropical Cyclones		7
and Extra-tropical cyclones		
Stratosphere [†]		
aerosol(s) – see Aerosol(s)		7
cooling – see Temperature, stratospheric		7
dynamics	434-435	7
influence on surface climate	435	7
modelling - see Climate modelling, stratospher	ric climate	7
temperatures – see Temperature, stratospheric		
water vapour – see Water vapour, stratospheric		1
Stratospheric ozone – see Ozone		1
Stratospheric/tropospheric coupling	434	7
Sulphate aerosol(s) – see Aerosol(s)		
Sulphur dioxide (SO₂) – see also Aerosol(s)	301, 303	
Sulphur hexafluoride (SF_6)	254	
Sunspots [†]	381-382	7
Surface Boundary Layer – see Boundary layer		7
- · ·		7
Т		7
Taiga	194-195	1
Tectonic land movements	658-659	7
Teleconnections	139, 151, 451-452	

Temperature	
20th century trends	101, 108, 115
consistency of surface and upper a	air measurements 121-123
diurnal range (DTR)	101, 108, 129, 570-572, 575
during Holocene	138-140
during last glacial	140-141
during previous inter-glacials	141-142
extreme(s)	156-157
instrumental record	105-119
land surface	105-110
maximum	108-110, 570-572, 575
minimum	108-110, 570-572, 575
night marine air (NMAT)	<i>108</i> , 110
observed changes	101-103, 105-130
ocean	110-112, 118-119, 644-646
over past 1,000 years	130-133
projections of future changes	538-540, 541-554, 570-572,
593-602,	607, 613-615, 649, 653-654, 669
satellite record	120, 121-123
sea surface	108, 110-112
stratospheric	122
sub-surface land	132, 136
upper air	119-121, 122
Temperature/moisture feedback	432
Terrestrial (or long-wave) radiation	89-90
Terrestrial storage (of water)	657-658, 680-681
Thermal expansion (of ocean) †	644-647, 665, 666-667, 675-677
Thermohaline circulation [†]	138, 141, 436, 439-440, 456, 565
modelling – see Climate modellin	g
projection of future changes	562-563, 677
Tide gauge observations of sea level	† 661-664
Time-slice AGCM experiment	589-590, 603-607
Tornadoes	162-163, 573
Transfer function	617, 620
Transient climate change [†]	
definition	533
Transient climate response ^T – see Cl	imate response, transient
Tree rings	130, 131, 133
Tropical cyclones	455
modelling – see Climate modellin	g
observed changes	160-161, 575
projections of future changes	574, 575, 606, 675
Tropical monsoons – see monsoons	
Tropical storms	160, 455, 574, 606
Tropospheric aerosol(s) – see Aeroso	bl(s)
Tropospheric OH – see Hydroxyl rac	lical (OH)
Tropospheric ozone – see Ozone	
Iropospheric/stratospheric coupling	g – see Stratospheric/
tropospheric coupling	

Tundra	194-195	
Typhoons – see Tropical cyclones		
U		
United Nations Framework Convention	n on Climate Change	
(UNFCCC) Article 2	557-558	
Upwelling-diffusion model	646-647, 670-673	
Urban heat island – see Urban influence	e on temperature	
Urban influence on temperature	94, 106, 163	
UV radiation	88, 89	
V		
Volatile organic compounds (VOCs)	257-259	
Volcanoes - see also Mt. Pinatubo and El Chichon		
as source of aerosol(s) - see Aerosol((s)	
influence on climate	91, 136, 500-502, 708	
radiative forcing from	379-380, 395, 400-402, 706	
W		
Warming commitment – see Climate ch	ange, commitment	
Water vapour (H ₂ O)		
feedback	93, 421, 423-427	

observed changes	103, 146-148	
representation in climate models - see Clim	nate modelling	
stratospheric	146-148, 263, 366-367	
surface	146-147	
tropospheric	146-148	
Weather balloons (radiosondes)		
temperature measurements from	119-120	
water vapour measurements from	147	
Weather generators – see Climate scenarios		
Weather typing	617-618, 620	
Well-mixed greenhouse gas(es) 356-359, 386-387, 393-395, 400-402		
- see also individual entries for CO2, CH4, N2O, halocarbons		
West Antarctic Ice Sheet – see Ice Sheets		
WRE stabilisation profiles	557-558	

Х

Y

Younger-Dryas

Warming commitment – see Climate change, commitment		
Water vapour (H ₂ O)		
feedback	93, 421, 4	

Z

137, 140