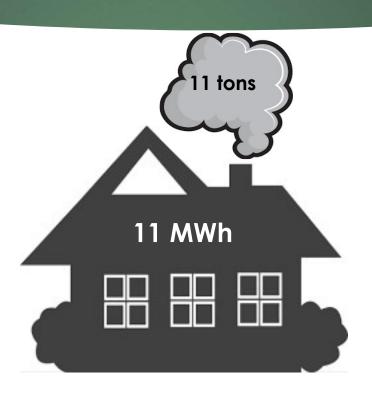
# "Green home"- Home of the future

ZEEL MAHESHWARI

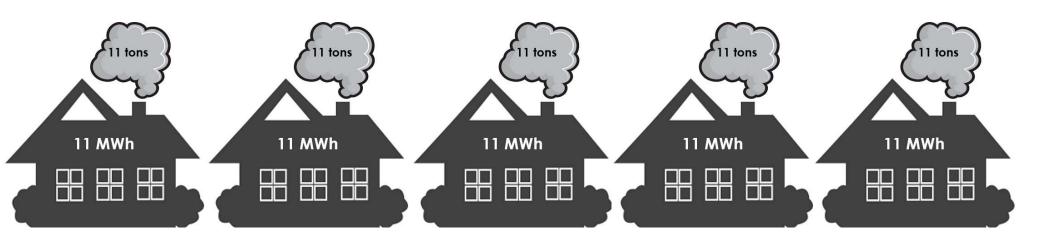
ASSISTANT PROFESSOR

DEPARTMENT OF PHYSICS, GEOLOGY AND ENGINEERING TECHNOLOGY

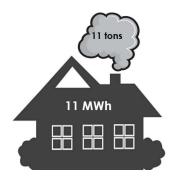

NORTHERN KENTUCKY UNIVERSITY

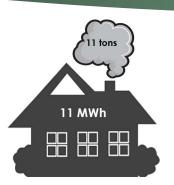
#### Outline

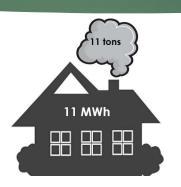
- ▶ Background
- ► Introduction
- ▶ Green Home
- ► Cost and Environmental Benefits
- ► Concluding Remarks

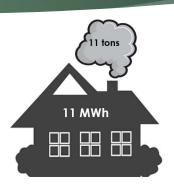


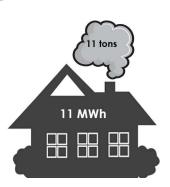

# Background

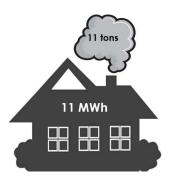




Reference: US Energy Information Administration (EIA)


# Background

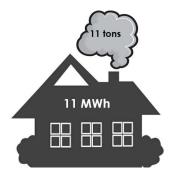


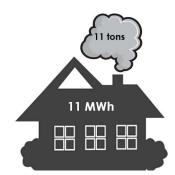


# Background























#### Introduction to Green Home



#### Definition

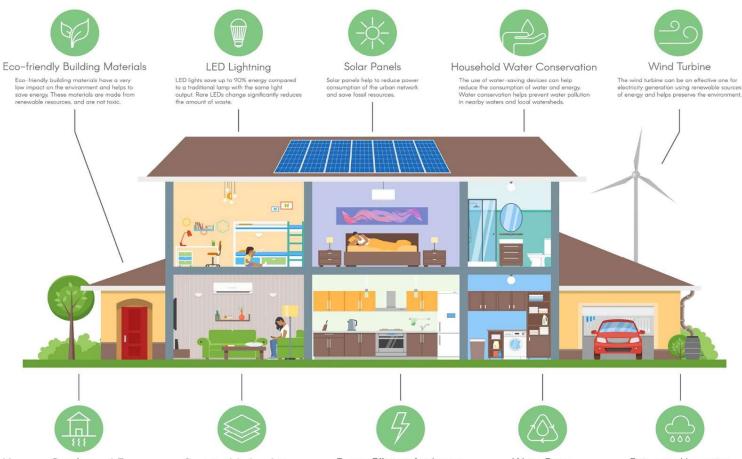
A green home is a type of home designed to be environmentally sustainable. It means being smart about how we use energy, water and building materials without needlessly damaging the environment.



Reference: Roberts, Jennifer (2003). Good green homes

#### Alternative names for Green Home

Smart Energy Home


Eco-Friendly Home Sustainable Home

Green Home

Zero Energy Home Home Renewable Energy System

Residential Renewable Energy

# A typical "Green Home"



#### Harness Geothermal Energy Geothermal energy can heat and cool your

Geothermal energy can heat and cool your home, preserving natural resources and no harm to the environment.

#### Sustainable Insulation

Good insulation helps keep a significant amount of energy. The insulation is made from recycled and biodegradable natural material is not toxic.

#### Energy Efficient Appliances

These devices offer a significant savings of resources, limiting greenhouse gas emissions without compromising performance.

#### Water Reuse

Reusing waste water significantly reduces the consumption of water in urban and rural households.

#### Rainwater Harvestina

Installing a rainwater harvesting system saves water consumption by up to 50%. This is one of the easiest and most energy-efficient way to save water.

# Solar Radiation Map for Kentucky



Model estimates of monthly average daily total radiation, averaged from hourly estimates of direct normal irradiance over 8 years (1998-2005). The model inputs are hourly visible irradiance from the GOES geostationary satellities, and monthly average aerosol optical depth, precipitable water vapor, and ozone sampled at a 10km resolution.

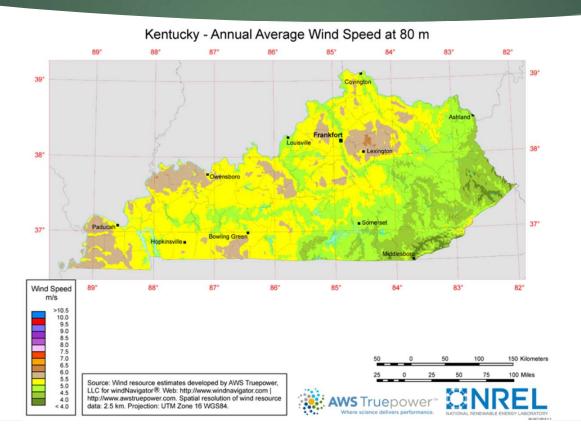


15 30 60





## Cost Benefits (Solar Panels)



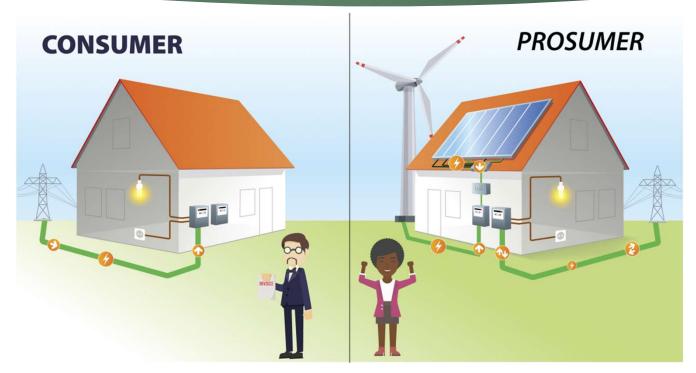

1000 units/month x \$0.1/unit=\$100/month \$1200 for one year \$30,000 for 25 years

7 kilowatt(kW) x \$3.18/W = \$22,260 26% Federal solar tax credit = \$16,472 \$16,472 for 25 years

Reference: US Energy Information Administration (EIA)

# Wind Speed Map for Kentucky




## Cost Benefits (Wind turbine)



1000 units/month x \$0.1/unit=\$100/month \$1200 for one year \$30,000 for 25 years 5 kilowatt(kW) x \$3/W = \$15,000 30% Federal tax credit = \$10,500 \$5,000 for Operations & Maintenance for 25 years

Reference: US Energy Information Administration (EIA)

#### Consumer vs Prosumer



Reference: Office of Energy Efficiency and Renewable Energy

#### **Environmental Benefits**

- Reducing air pollution
- Help to slow climate change
- Reducing your household's carbon footprint- Around 11 tons of emissions saved per home annually!
- Using less water
- Reducing reliance on fossil fuels

# Green Building Materials



The global market for green building materials is set to reach \$364.6 billion by 2022

Source: "Green Building Market Overview, Industry Top Manufactures, Market Size, Industry Growth Analysis & Forecast to 2023," Grand View Research, 2018

### Future Green Buildings

- 1000-unit Mark, in the Dutch city of Utrecht
- Project will complete by 2023
- Greenhouses on roof and patios to grow vegetables
- Solar panels on parking garages to produce enough power
- Garage capacity of 3500 bikes
- Provision for electric car sharing service
- Affordable to most people, majority will be sold to lowincome or elderly



Reference: https://www.fastcompany.com/90295742/this-sustainable-apartment-complex-of-the-future-has-farms-community-space-and-bike-parking-galore

### Future Green Building

- Milwaukee Common Council approved 21-story tower, North America's tallest timber tower
- Other cities where big timber towers are proposed- Chicago, Cleveland, Portland in US and Tokyo, Japan
- 25 King Tower, Brisbane, Australia- 10 story eco-friendly office

#### The construction of the 25 King tower

compared to a traditional concrete building





Source: "Australia's tallest timber building makes a towering case for eco-friendly construction," New Atlas, 2018

Reference: https://urbanmilwaukee.com/2019/02/27/eyes-on-milwaukee-council-approves-north-americas-tallest-timber-tower/

### Concluding Remarks

- ► Green home effectively use energy, water and building materials to reduce impacts on human health and environment
- Plan installing renewable energy for home
  - Estimating energy needs throughout the year
  - Size and cost of the system you will need
  - ▶ Deciding on solar ,wind or both depending on your location
  - Other measures to reduce electricity use
- Transitioning to a green home not just saves money but is also eco-friendly
- ▶ The future of home is not just smart; its green, sustainable and affordable

#### Related Research at NKU

- Solar based smart outdoor lighting system
- Creative solar space at NKU
- ▶ Wind turbine emulator
- ▶ Solar array emulator

### Quote

"THE GREATEST THREAT
TO OUR PLANET IS THE
BELIEF THAT SOMEONE
ELSE WILL SAVE IT."

ROBERT SWAN

Thankyous