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In the first part of this chapter, we give a review of the relationship of climate and tropical cyclones
on various time scales, from intra-seasonal to decadal. The response of tropical cyclone activity to
natural modes of variability, such as El Niño-Southern Oscillation and the Madden Julian Oscil-
lation in various regions of the world are discussed. Genesis location, track types and intensity of
tropical cyclones are influenced by these modes of variability. In the second part, a review of the
state of the art of seasonal tropical cyclone forecasting is discussed. The two main techniques cur-
rently used to produce tropical cyclone seasonal forecasts (statistical and dynamical) are discussed,
with a focus on operational forecasts.

1. Introduction

Natural climate variability strongly modulates
the seasonal statistics of tropical cyclones (TCs).
This modulation of TC activity occurs on mul-
tiple time scales (Elsberry, 1997). Here we
review these influences as they have been docu-
mented in the literature.

We limit our discussion to timescales
between the intraseasonal (30–60 day) and
multi-decadal (20–50 year). In setting our short-
timescale limit at the intraseasonal we exclude
consideration of convectively coupled waves
(Wheeler and Kiladis, 1999) which significantly
influence TC genesis (Dickinson and Molinari,
2002; Frank and Roundy, 2006). At longer
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timescales, we exclude all variability outside
that resolvable in the modern observational
record, for which historical (e.g., Liu et al., 2001;
Garcia-Herrera et al., 2007) or geological (e.g.,
Liu and Fearn, 2000; Donnelly et al., 2001) and
other proxy data must be used. Recent progress
in paleotempestology is expanding the spatial
and temporal coverage of the TC record, as well
as improving the temporal resolution, dating
precision, and accuracy of intensity estimates
(Frappier et al., 2007), but this subject is outside
our scope. Some further discussion can be found
in Knutson et al. (this volume).

Our knowledge of the relationships between
various modes of climate variability and TCs
comes mainly from empirical studies, in which
statistical methods are used to extract these
relationships. Physical insight naturally enters
into such studies in a variety of ways, but ulti-
mately our understanding of the mechanisms
which determine the relationships is limited by
the same factors that limit our understanding
of the mechanisms of the genesis and inten-
sification of individual TCs. For intensity, we
have potential intensity theory (Emanuel, 1986,
1988) but this is not a complete theory for the
actual intensity of TCs and has been recently
challenged (Smith et al., 2008). In any case,
potential intensity theory has been relatively
little used in statistical studies of TC vari-
ability, with some exceptions (Emanuel, 2000;
Camargo et al., 2007a; Wing et al., 2007).
For TC numbers, we have little theoretical
guidance. While there are some theories for
aspects of genesis (Bister and Emanuel, 1997;
Montgomery et al., 2006) and a number of
interesting recent developments (e.g., Raymond
et al., 2008; Dunkerton et al., 2008) there is
no quantitative theory that goes so far as to
give the probability of genesis given some large-
scale conditions. We know that variables such
as sea surface temperature, vertical wind shear,
and midlevel humidity influence genesis (Gray,
1979), and this gives us an empirical basis for
understanding how climate variations influence
TC numbers. But, first-principles understanding

is still very limited. Integrated indices such as
accumulated cyclone energy (ACE) and power
dissipation depend on intensity, number, and
lifetime, and our ability to understand varia-
tions in these indices is limited by our lack
of understanding of each of the individual
factors.

Despite our relative lack of a theo-
retical foundation for understanding them,
the observed relationships between large-scale
climate variability and tropical cyclone statistics
are strong enough that they make it possible to
produce statistical forecasts of tropical cyclone
activity on seasonal to interannual time scales.
Dynamical forecasts using numerical models are
also now feasible, and have hindcast skill that is
comparable to the statistical ones.

In the first part of this chapter, the TC-
climate relationship on intraseasonal to decadal
time-scales will be discussed. In the following
section we briefly review the different modes of
climate variability whose influences on TCs have
been investigated, and in section 3 we review the
influences these modes have been found to have,
treating each TC basin separately. In the rest of
the paper, the state of the art of seasonal TC
forecasting will be reviewed.

2. Modes of Variability

The El Niño–Southern Oscillation (ENSO)
is a major mode of natural climate vari-
ability. ENSO is generated by coupled ocean-
atmospheric dynamics in the tropical Pacific
(e.g., Trenberth, 1997). ENSO is associated with
sea surface temperature (SST) changes in the
tropical Pacific, as well as shifts in the seasonal
temperature, circulation, and precipitation pat-
terns in many parts of the world (Bradley et al.,
1987; Ropelewski and Halpert, 1987). El Niño
and La Niña (warm and cold) events usually
recur every 3 to 7 years and tend to last
for approximately a year. As the ENSO phe-
nomenon can be predicted with some accuracy
months in advance (Cane and Zebiak, 1985),
ENSO forecasts are routinely used as a major
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component in the making of probabilistic sea-
sonal climate forecasts (Goddard et al., 2001).

ENSO affects TCs strongly in several basins,
though its influence is different in each. The
impact of ENSO on North Atlantic TCs (hurri-
canes) was first discussed by Gray (1984a), and
recent reviews of the relationship of ENSO and
TCs are presented in Chu (2004) and Landsea
(2000). Because of this strong influence and
the predictability of ENSO, it is probably the
largest single factor in seasonal TC forecasts. A
summary of the relationship of ENSO with TCs
in all basins is given in Table 1 and is discussed
in more detail below.

The North Atlantic basin is the site of several
modes of variability, all of which influence
TCs. Some aspects of the relationships of these
Atlantic modes to each other, and especially
of each to global climate change, are contro-
versial. We will be brief on this subject here;
we discuss it further to some extent in the
Atlantic subsection of section 3, and Knutson
et al. (this volume) discuss the relationship to
climate change in particular in more detail.

The North Atlantic oscillation (NAO) is the
dominant mode of winter climate variability in
the North Atlantic region (Hurrell et al., 2003);
it is closely related to the global “Arctic Oscil-
lation” pattern (Thompson and Wallace, 2000).
The NAO is a large scale atmospheric seesaw
between the Atlantic subtropical high and polar
low. It is not a true oscillation, but rather has
variation at all time scales, with a red spectrum
(Stephenson et al., 2000; Feldstein, 2000), and
apparently owes its existence largely to the
interaction of the jet streams with baroclinic
eddies (Woolings et al., 2008; Vallis and Gerber,
2008).

The Atlantic Multi-decadal Oscil-
lation (AMO) is a natural mode of variability
in the North Atlantic Ocean on multi-decadal
time scales whose existence has been inferred
from analysis of the observed sea surface tem-
perature after removing a linear trend (Folland
et al., 1986; Delworth and Mann, 2000). It has
also been found to exist in coupled numerical

models, in which it is a manifestation of vari-
ability in the Atlantic Ocean’s thermohaline cir-
culation. Further discussion of this mode, and
its relationship to other possibly related modes
[such as the tropical multidecadal modes (Chel-
liah and Bell, 2004; Bell and Cheliah, 2006)] as
well as to anthropogenically forced global cli-
mate change, can be found in Knutson et al.
(this volume).

The Atlantic Meridional Mode (AMM;
Servain et al., 1999; Xie and Carton, 2004;
Chiang and Vimont, 2004) is the leading mode
of coupled ocean-atmosphere variability in the
tropical Atlantic. The AMM is a “meridional
mode” (Xie, 1999; Xie and Carton, 2004) asso-
ciated with meridional displacements of the
intertropical convergence zone and attendant
shifts in SST and winds. Recent studies (Vimont
and Kossin, 2007; Kossin and Vimont, 2007)
have shown that Atlantic TC characteristics are
closely related to the AMM. Vimont and Kossin
(2007) provided evidence that the AMM is likely
to be excited on multidecadal timescales by the
AMO. While the AMM and the NAO are inde-
pendent during the hurricane season (Xie et al.,
2005c), the AMM was shown to be excited by
variations of the NAO (Xie and Tanimoto, 1998;
Czaja et al., 2002). The Pacific Decadal Oscil-
lation (PDO) is a pattern of Pacific climate
variability with a decadal time scale, impacts
in the North Pacific and North American
sectors, and secondary signatures in the tropics
(Mantua, 2002). The spatial pattern of the
PDO is similar to that of ENSO, and it is not
entirely clear whether the PDO is a truly inde-
pendent mode or simply the decadal residual
of ENSO variability (e.g., Zhang et al., 1997;
Vimont, 2005).

The quasi-biennial oscillation (QBO) is a
global-scale, zonally symmetric oscillation of
the zonal winds in the equatorial strato-
sphere (Wallace, 1973) which owes its exis-
tence to wave-mean flow interaction (Holton and
Lindzen, 1968; Plumb and McEwan, 1978). The
QBO has a period of approximately 26 months
and its largest amplitude occurs near 30 hPa.
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Table 1. Summary of the ENSO impacts on TC activity in the different regions, including references.

Basin Characteristic ENSO Change References (e.g.)

Western North
Pacific

Number of TCs Strong EN increase Wang and Chan (2002)

Number of TCs Summer
following EN

decrease Chan (1985), Wu and Lau
(1992), Chan (2000)

Mean genesis location EN/LN Displacement to the
Southeast/
Northwest

Chan (1985), Chen et al.
(1998), Wang and
Chan (2002), Chia and
Ropelewski (2002)

Lifetime EN/LN Increase/decrease Wang and Chan (2002),
Camargo and Sobel
(2005)

Number of intense
typhoons and ACE

EN/LN Increase/decrease Camargo and Sobel
(2005), Chan (2007)

Track types EN Long tracks, recurve
northeastward and
reach more
northern latitudes

Wang and Chan (2002),
Wu and Wang (2004),
Camargo et al.. (2007e)

Eastern North
Pacific

Number of intense
TCs

EN/LN Increase/decrease Gray and Sheaffer (1991),
Frank and Young
(2007)

Mean genesis location EN Westward shift Irwin and Davis (1999),
Kimberlain (1999)

Tracks EN Longer westward
direction

Chu (2004), Camargo
et al. (2008a)

Central North
Pacific

Number of TCs EN Increase Wu and Lau (1992), Chu
and Wang (1997),
Clark and Chu (2002),
Camargo et al. (2007a)

Atlantic Number of TCs,
number of
hurricanes, number
of intense
hurricanes, number
of hurricane days,
number of tropical
storms, ACE

EN/LN Decrease/Increase Gray (1984a); Gray et al.
(1983); Landsea et al.
(1999); Bell et al.
(2000)

US landfalls EN/LN Decrease/increase O’Brien et al. (1996);
Bove et al. (1998);
Pielke and Landsea
(1998); Larson et al.
(2005)

North Indian Number intense TCs EN Decrease (Bay of
Bengal)

Singh et al. (2000)

South Indian Number of TCs east
of 70◦E

LN Increases Kuleshov (2003)

Peak of the season EN/LN February/January Kuleshov (2003)
Start of the season LN 1 month earlier Kuleshov (2003)
Mean genesis location EN Westward shift —

increase (decrease)
west (east) of 75◦E

Ho et al. (2006)

Tracks EN Movement further
east

Ho et al. (2006),
Kuleshov et al. (2008)
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The Madden-Julian Oscillation (MJO;
Madden and Julian, 1972, 1994; Zhang, 2005) is
the strongest mode of intraseasonal variability
in the tropics. The MJO has a 30–90 day period
and consists of large-scale coupled patterns of
deep convection and atmospheric circulation,
with coherent signals in many atmospheric vari-
ables. The MJO propagates eastward across the
global tropics, with signatures in deep convec-
tion primarily in the Indian and western Pacific
Oceans. The MJO is stronger in boreal winter
than in boreal summer (e.g., Wang and Rui,
1990) and modulates the formation of tropical
cyclones in several basins.

3. Regional Variability

3.1. Western North Pacific

There is pronounced interannual variability in
TC activity in the western North Pacific, in
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Figure 1. The seasonal mean (July to October) genesis position from 1979 to 2007, “87” is the seasonal mean from
1987, for instance. The triangle shows the long term (1979–2007) seasonal mean genesis position at the center of the
circle. The radius of the circle (333 km, i.e., near 3◦ of latitude) is the standard deviation of the seasonal TC position.
El Niño years are shown in red, La Niña years in blue. This is an updated version of a figure that appeared originally
in Chia and Ropelewski (2002).

large part due to ENSO. Wang and Chan (2002)
observed an increase in the number of TCs in
the western North Pacific during strong El Niño
events, though they found no significant linear
relationship between TC number and indices
of ENSO. A reduction in the number of TCs
occurring in the summer following an El Niño
event has also been found, and is related to
the longitudinal shift of the Walker circulation
(Chan, 1985; Wu and Lau, 1992; Chan, 2000).

ENSO has an important and well-
documented impact on the mean TC genesis
location, with a displacement to the southeast
(northwest) in El Niño (La Niña) years, as
shown in Fig. 1 (Chan, 1985; Chen et al., 1998;
Wang and Chan, 2002; Chia and Ropelewski,
2002). Because of this shift to the southeast, fur-
ther away from the Asian continent, typhoons
in El Niño years tend to last longer (Wang and
Chan, 2002) and be more intense than in other
years (Camargo and Sobel, 2005; Chan, 2007).
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In contrast, in La Niña years, the mean genesis
location is shifted to the northwest, so that the
storms have shorter lifetimes and tend to be less
intense (Camargo and Sobel, 2005).

The genesis location shift has been com-
monly attributed to the eastward extension
of the monsoon trough and westerlies (asso-
ciated with increased cyclonic low-level vor-
ticity) and the reduction of vertical wind shear
near the date line, both of which enhance
the likelihood of genesis east of the climato-
logical mean genesis point (Lander, 1994, 1996;
Clark and Chu, 2002; Wang and Chan, 2002).
The emphasis on these dynamical factors (as
opposed to thermodynamic ones) in interannual
variability is consistent with the emphasis
placed on the monsoon trough more broadly
in studies of TC genesis in the western north
Pacific (e.g., Harr and Elsberry, 1995; Lander,
1996; Ritchie and Holland, 1999; Chen et al.,
2006). While concurring with this, Camargo
et al. (2007e) also presented evidence that a
decrease of mid-level relative humidity near the
Asian continent in El Niño years may play
a role in the eastward shift as well, by sup-
pressing genesis in the western part of the basin.
ENSO affects not only the starting points and
lengths of TC tracks but also the shapes of
the tracks. In El Niño years, the TCs have a
tendency to recurve northeastward and reach
more northward latitudes, due both to the shift
in mean genesis location and ENSO-induced
changes in the mean steering flow (Wang and
Chan, 2002; Wu and Wang, 2004). Wang and
Chan (2002) and Wu and Wang (2004) showed
that in strong El Niño years, the deepening of
the east Asian trough in the midtroposphere
provides a favorable anomalous steering flow
that leads to TCs recurving northward to the
extratropics.

Camargo et al. (2007d,e) stratified western
North Pacific tropical cyclone tracks into seven
clusters. Two clusters which start from genesis
locations southeastward of the climatological
mean and are relatively intense occur more fre-
quent in El Niño years while the largest cluster

type is more typical of La Niña events. Con-
sistent with this, storms affect the southern
South China Sea more frequently during La
Niña years (Zuki and Lupo, 2008), but affect the
Central Pacific more frequently in El Niño years
(Chu and Wang, 1997; Clark and Chu, 2002).
Some Central Pacific storms reach the western
North Pacific.

The ENSO’s influence on western North
Pacific TC tracks is reflected in the landfall
rates throughout the region, with different
landfall patterns according to the ENSO phase
(Saunders et al., 2000; Elsner and Liu, 2003).
Wu et al. (2004) found a significant relationship
between late season landfalls over China and
ENSO. Fudeyasu, et al. (2006a) noticed an
increase in landfalls in the Korean Peninsula
and Japan during the early monsoon and in the
Indochinese peninsula during the peak monsoon
months in El Niño years. The interannual vari-
ability of typhoon landfalls in China shows
a north-south anti-correlation in the historical
and modern records. This is related to sea-
level pressure differences between Mongolia and
western China, as well as SST over the western
North Pacific (Fogarty et al., 2006).

While ENSO has clearly been shown to
influence TCs in the western north Pacific, it
has also been argued that TCs may play an
active role in the dynamics of ENSO itself. El
Niño years feature the relatively frequent occur-
rence of tropical cyclone pairs north and south
of the equator over the central and western
Pacific Ocean, associated with westerly wind
bursts on the equator (Keen, 1982; Lander,
1990; Harrison and Giese, 1991; Ferreira et al.,
1996). It has been argued that the twin TCs
themselves contribute to the generation of the
equatorial westerlies and thus amplify El Niño
events, through the standard Bjerknes’ mech-
anism (Keen, 1982; Gau, 1988). While cyclone
pairs are spectacular, they are not actually nec-
essary to this scenario, as a single cyclone can
generate equatorial westerlies if it is close to
the equator (Harrison and Giese, 1991; Kindle
and Phoebus, 1995). Since Pacific cyclones tend
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to form closer to the equator and reach greater
intensities in El Niño years, there is the pos-
sibility of a positive feedback between ENSO
and TCs, with single as well as twin cyclones
playing a role (e.g., Sobel and Camargo 2005;
see also Yu and Rienecker, 1998; Yu et al.,
2003; Eisenman et al., 2005). On the other hand,
the causality is difficult to extract from obser-
vations, because equatorial westerlies are asso-
ciated with off-equatorial cyclonic vorticity and
other conditions conducive to genesis. It is pos-
sible that the westerlies occur primarily for other
reasons and that cyclones are largely a passive
by-product, as argued by Lander (1990).

The relationship of the quasi-biennial oscil-
lation (QBO) to TC activity in the western
North Pacific was examined by Chan (1995),
who found that in the westerly phase of the
QBO, there are more TCs in the western
North Pacific. Chan (2005) attributed this to
a decrease in the upper-tropospheric vertical
shear over the tropics in the westerly phase. The
QBO-TC relationship will be discussed further
in the Atlantic subsection, below. Associations
on the interannual time scales between western
north Pacific TCs and a number of other factors,
besides ENSO, have been found. These factors
include Tibetan plateau snow cover (Xie et al.,
2005b; Xie and Yan, 2007), North Pacific sea-
ice cover (Fan, 2007), the large-scale circulation
in the extratropical southern hemisphere (Ho
et al., 2005; Wang and Fan, 2007), and various
other empirically-derived oscillations such as the
Asian-Pacific oscillation (Zhou et al., 2008), and
the North Pacific oscillation (Wang et al., 2007).

A few studies have examined the decadal
and multi-decadal variability of tropical cyclone
activity in the western North Pacific. The
subject is important, but any results on this
time scale must be interpreted with great
caution due to the shortness of the data
record. The observational record in the western
north Pacific is unreliable before the 1950s,
and perhaps even before the 1970s (e.g., Wu
et al., 2006). Matsuura et al. (2003) related
the decadal variability in the western North

Pacific to long term variations of sea surface
temperature in the tropical Central Pacific and
westerly winds anomalies associated with the
monsoon trough. Chan (2008a) examined the
decadal variability of intense typhoon occur-
rence. Using wavelet analysis, besides the ENSO
time-scale (3–7 years), he identified another
major oscillation with a multi-decadal period
(16–32 years) for intense typhoons, and argued
that the environmental conditions conducive
to periods of intense typhoons occurrence are
largely modulated by ENSO and the Pacific
Decadal Oscillation. The decadal variability of
TC tracks has also been largely attributed to
the Pacific Decadal Oscillation (Liu and Chan,
2008). Ho et al. (2004) associated the inter-
decadal changes of typhoon tracks with the
westward expansion of the subtropical North
Pacific High since 1970. The regions with the
greatest inter-decadal changes identified in Ho
et al. (2004) are the East China Sea and the
Philippine Sea.

On the intraseasonal time scale, tropical
cyclone activity in the western north Pacific
is strongly modulated by the MJO. The MJO
changes the distribution of TC tracks (Camargo
et al., 2007e), and genesis is favored during
the active phase of enhanced deep convection
(Nakazawa, 1986; Liebmann et al., 1994).
The environment during the active phase is
favorable to genesis in multiple ways. Midlevel
humidity and low-level relative vorticity are
both enhanced during the active phase, and
the increased occurrence of convection is more
likely to generate potential seed disturbances
which can undergo genesis. Sobel and Maloney
(2000) argued that MJO-induced modulation of
wave accumulation (Chang and Webster, 1988;
Holland, 1995; Sobel and Bretherton, 1999;
Kuo et al., 2001), by which large-scale conver-
gence can amplify synoptic-scale disturbances
which can be precursors to TC genesis, might
play a role. The idealized numerical calcula-
tions of Aiyyer and Molinari (2003) show in par-
ticular how MJO-related circulation anomalies
can, through dry dynamics alone, amplify mixed
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Rossby-gravity waves and change their structure
to be “tropical depression type” (e.g., Takayabu
and Nitta, 1993) and thus more favorable can-
didates for genesis.

3.2. Central and Eastern North

Pacific

During its peak season, the eastern North Pacific
is the most active tropical cyclogenesis region
per unit area (Molinari et al., 2000). Tropical
cyclogenesis in the eastern North Pacific is influ-
enced by wind surges, African easterly waves,
topographical effects, ITCZ breakdown, upper-
level potential vorticity, and the confluence
between the monsoon westerlies and trade east-
erlies (e.g., Avila, 1991; Bosart and Bartlo, 1991;
Zehnder, 1991; Bister and Emanuel, 1997; Fer-
reira and Schubert, 1997; Zehnder et al., 1999;
Molinari and Vollaro, 2000; Vincent and Fink,
2001).

There has been considerable investigation
into the influence of ENSO on TC activity in
the eastern north Pacific. With very few excep-
tions (e.g., Whitney and Hobgood, 1997), these
studies have found clear relationships between
ENSO and various measures of TC activity.
Frank and Young (2007) obtained a strong rela-
tionship between storm counts and a multi-
variate ENSO index. Gray and Sheaffer (1991)
found an increased number of intense hurri-
canes during El Niño events. Several studies
have found a westward shift in the mean genesis
region during El Niño events (Irwin and Davis,
1999; Kimberlain, 1999; Chu and Zhao, 2007;
Wu and Chu, 2007; Camargo et al., 2008a). A
consequence of this westward shift is that more
hurricanes propagate into the central North
Pacific region (Chu, 2004).

Some studies have attempted to understand
the environmental factors by which ENSO influ-
ences eastern north Pacific TCs. Using com-
posites of a genesis potential index keyed to the
ENSO state, Camargo et al. (2007a) concluded
that wind shear is the main contributor, with
potential intensity also playing a contributing

role. Collins and Mason (2000) identified dif-
fering environmental parameters affecting TC
activity for the regions east versus west of
116◦W. They observed that in the eastern part
of the region, the environmental parameters are
nearly always at levels conducive to TC for-
mation during the peak season, while in the
western region, there are some years when the
parameters are conducive to cyclogenesis but
other years when they are less so.

Several studies have found a see-saw of TC
activity between the North Atlantic and the
eastern North Pacific, with enhanced activity
in the eastern Pacific when the Atlantic is sup-
pressed, and vice versa (Elsner and Kara, 1999).
Stronger anti-correlations are found for stronger
TCs (Frank and Young, 2007). It is not entirely
clear whether this is simply a result of the
fact that ENSO influences the two basins in
opposite ways (which is certainly the case), or
whether in fact the TC activity in one basin
directly influences that in the other by another
route.

On decadal time scales, Zhao and Chu (2006)
examined the variability of TC activity in the
eastern North Pacific using a Bayesian multiple
change-point analysis. Their results indicated
that hurricane activity in the eastern North
Pacific had two inactive eras (1972–1981, 1999–
2003) and an active era during 1982–1998.

The probability of cyclogenesis in the eastern
North Pacific is strongly modulated by the
MJO, as shown in Fig. 2 (Molinari et al.,
1997; Molinari and Vollaro, 2000; Maloney and
Hartmann, 2000b, 2001; Aiyyer and Molinari,
2008; Camargo et al., 2008a). In the convective
MJO phase, anomalous westerlies and cyclonic
vorticity occur over the eastern Pacific and Gulf
of Mexico. Four times the number of tropical
cyclones form in the active phase of the MJO
than in the suppressed phase. Additionally,
storms forming in the active MJO phase tend
to do so closer to the Mexican coast, further
increasing the chance of hurricane landfall com-
pared to the suppressed phase (Maloney and
Hartmann, 2000b).
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Figure 2. Number of hurricanes as a function of
MJO phase for the eastern North Pacific during
May — November for 1979–95. Error bars represent
95% confidence level (figure originally from Maloney and
Hartmann 2000a).

Various studies have suggested that to a
first order, barotropic dynamics can be used to
understand the influence of the MJO on eastern
north Pacific TCs. Significant barotropic energy
conversion from the mean state to the eddies
occurs during the convective phase of the MJO
(Molinari et al., 1997; Maloney and Hartmann,
2001; Hartmann and Maloney, 2001; Aiyyer and
Molinari, 2008). This is consistent with, but
more general than, the hypothesis of wave accu-
mulation made in the western North Pacific
by Sobel and Maloney (2000); wave accumu-
lation involves barotropic conversion, but the
conversion can also happen by other means such
as barotropic instability. Aiyyer and Molinari
(2008) noticed that in the active phase of the
MJO, the vertical shear is relatively weak and
tropical cyclones tend to form mainly within
the ITCZ. In contrast, during the suppressed
phase, the vertical wind shear exceeds 10m s−1

over much of the region, and tropical cyclone
development is shifted northward, nearer the
Mexican Pacific coast. While these studies have
focused on dynamics over thermodynamics,
recent work (Camargo et al., 2009) using a
genesis potential index to compare thermody-
namic and dynamic factors in a quantitative

way suggests that MJO-induced variations in
thermodynamic variables, particularly midlevel
humidity, are important. This is consistent with
results from the EPIC field experiment on the
MJO’s influence on generalized ITCZ convection
(Raymond et al., 2003).

The central North Pacific is sometimes con-
sidered as a distinct TC basin, though it can
share storms (during the course of their lifetime)
with either the eastern or western North Pacific.
Tropical cyclone occurrence in the central North
Pacific is low, with an average of four to five
TCs per year. In El Niño years, the number
is greater. The higher level of activity in the
central North Pacific in warm ENSO events has
been attributed to smaller vertical shear and
greater low-level vorticity in that region (Wu
and Lau, 1992; Chu and Wang, 1997; Clark and
Chu, 2002; Camargo et al., 2007a).

Chu and co-workers (Chu and Clark, 1999;
Chu, 2002; Chu and Zhao, 2004) also examined
the decadal-scale variability in the central North
Pacific. They found change points in 1982 and
1995, with fewer cyclones during the 1966–1981
and 1995–2000 periods, and more during the
1982–1994 epoch. In the more active period,
warmer sea surface temperatures, lower sea
level pressure, stronger low-level anomalous
cyclone vorticity, reduced vertical wind shear,
and increased total precipitable water were
present in the tropical North Pacific, compared
to the reduced activity periods. The atmospheric
steering flows were also different in October and
November of the active period, so that eastern
North Pacific cyclones had a higher chance of
entering the central North Pacific. During the
more active period, the storms that formed
within the region were more likely to affect the
Hawaiian Islands.

3.3. North Atlantic

North Atlantic TC activity has a strong rela-
tionship with ENSO. Gray (1984a,b) used this
relationship to develop the first Atlantic TC
seasonal forecasts. In El Niño years, hurricane
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activity in the Atlantic is reduced, while in La
Niña, it is enhanced. The negative correlation of
Atlantic TC activity with ENSO is evident in a
wide range of TC activity indices: the number of
hurricanes, number of hurricane days, number of
tropical storms and ACE (accumulated cyclone
energy). The influence of ENSO is very signif-
icant for the number of intense hurricanes, as in
La Niña years there are usually twice as many
intense hurricanes as in El Niño years. The cor-
relations of the number of intense hurricanes
with ENSO indices are higher than for weaker
storms (Gray et al., 1993; Landsea et al., 1999).

ENSO is generally thought to influence
Atlantic TC activity by altering the large-scale
environment for genesis and intensification, par-
ticularly in the so-called Main Development
Region (MDR), where many tropical cyclones
form from African easterly waves. During an
El Niño year, the vertical wind shear is larger
than normal in most of the tropical Atlantic and
especially in the Caribbean. This inhibits the
formation of TCs. Reductions in vertical wind
shear typically occur in La Niña years (e.g.,
Goldenberg and Shapiro, 1996; Knaff, 1997).
Besides these dynamical influences of ENSO,
thermodynamic effects have also been identified.
Knaff (1997) argued that increased midlevel
dryness during El Niño events might be respon-
sible for some of the TC suppression during
those events, while Tang and Neelin (2004)
argued for the importance of increased moist
stability, due to increased tropospheric temper-
ature during El Niño (e.g., Yulaeva and Wallace,
1994; Soden, 2000; Sobel et al., 2002). Camargo
et al. (2007a) used variants on an empirical
genesis index to compare the dynamic and ther-
modynamic effects of ENSO directly, and found
the dynamic effects of wind shear to be more
important than the thermodynamic effects in
the North Atlantic. In addition to modulating
Atlantic TC activity as a whole, ENSO also
influences the probability of landfalling hurri-
canes in the U.S., with an increased probability
of landfall in La Niña years (O’Brien et al.,
1996; Bove et al., 1998; Pielke and Landsea,

1998; Larson et al., 2005). The probability of
two or more hurricane landfalls during a La Niña
event is 66%, while in El Niño years it is 28%
(Bove et al., 1998). On a more regional basis,
the differences in landfall frequencies in the cold
and warm ENSO phases are particularly signif-
icant for the U.S. East coast (Georgia to Maine),
and smaller for the Florida and Gulf coasts
(Smith et al., 2007). On a still finer scale, signif-
icant differences between specific U.S. Southeast
states have been found (Xie et al., 2002). U.S.
hurricane losses, unsurprisingly, are also sig-
nificantly related to ENSO, with much more
damage occurring in La Niña events (Pielke
and Landsea, 1999). An ENSO influence on
landfalling storms has also been found in the
Caribbean, both in the modern record (Tar-
glione et al., 2003) and in proxy records from the
past 5,000 years (Donnelly and Woodruff, 2007).

A robust relationship existed between
Atlantic TC activity and the QBO (Gray,
1984a; Shapiro, 1989; Gray et al., 1992a,b) from
approximately 1950–1994. The influence of the
QBO appeared to be especially significant for
intense hurricane days. Gray et al. (1993) found
that the number of intense hurricane days which
occurred in the easterly phase of the QBO was
half that which occurred in the westerly phase.
The largest correlation between storm activity
and stratospheric winds occurred in June, three
months prior to the peak of the Atlantic hur-
ricane season (Shapiro, 1989). The relationship
of QBO with the Atlantic TC activity is not sta-
tistically significant since 1995 (Klotzbach and
Gray, 2004; Camargo and Sobel, 2010).

In our view the mechanism of the QBO-TC
relationship is not yet satisfactorily explained.
Gray (1988) and Gray et al. (1992a,b) argue that
the influence comes about due to QBO modu-
lation of vertical wind shear, a finding echoed by
Chan (1995) in his study of the QBO influence
on western north Pacific TC activity. However,
the QBO modulates vertical shear substantially
only in the stratosphere, with perhaps a very
weak modulation in the very uppermost tro-
posphere. If the shear variations at these high
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levels are responsible for the QBO-induced TC
variations, it means that TCs are quite sensitive
to shear even when that shear is confined to
their very tops. We know of no evidence to rule
this out, but on the other hand we are aware
of no studies of any kind (observational, mod-
eling, or theoretical), apart from those on the
QBO influence itself, which directly examine the
influence of shear at such high levels on TC for-
mation or development, and which thus might
provide support for shear as the mechanism of
the QBO TC signal. There is a large modeling
literature on the influence of shear on TCs, but
to our knowledge all those studies examine only
the role of tropospheric shear (e.g., Kepert, this
volume, and references therein).

Besides the direct effect of shear on TCs,
other mechanisms can be considered. Shapiro
(1989) conjectured a mechanism involving the
difference between the tropospheric and lower
stratospheric winds and its influence on the
vertical structure of pre-cyclogenesis easterly
waves. The QBO also affects lower stratospheric
temperature, and the temperature anomalies
might be expected to influence TC intensity
by the arguments of potential intensity theory.
However, the phasing of the QBO-TC activity is
inconsistent with this as an explanation for the
observed TC variations. TC activity is enhanced
during the westerly QBO phase, when the lower
stratosphere is warm. This would tend to reduce
the potential intensity, not increase it, and thus
would be unfavorable rather than favorable for
TC activity (Shapiro, 1989).

Atlantic TCs show strong variations on
decadal and multi-decadal time scales in the
observed record. The literature on these vari-
ations is large, and uses a variety of dif-
ferent concepts and nomenclature to describe
and interpret them. Our understanding of the
decadal and especially multi-decadal variability
is somewhat related to that of anthropogenic
climate change and its possible long-term
influence on TC activity. These issues are dis-
cussed in detail in Knutson et al. (this volume)
and we address this time scale only briefly here,

leaving the relationship to global climate change
to those authors.

At least until recently, the dominant
paradigm for describing these low-frequency TC
variations has been the “Atlantic Multidecadal
Oscillation” (AMO). The relationship of the
AMO to major hurricane activity in the Atlantic
through changes in vertical wind shear was dis-
cussed by Gray, et al. (1997) and Goldenberg
et al. (2001). The increase in hurricane activity
in the Atlantic since 1995 was related by those
authors to the modulation of the MDR by the
AMO, with above normal SSTs and decreased
vertical shear. More recently, a metric was
created to describe the AMO based on North
Atlantic SST anomalies and basin-wide North
Atlantic sea level pressure anomalies, which
shows a remarkable agreement with observed
multidecadal variability of Atlantic TC activity
and U.S. landfall frequency (Klotzbach and
Gray, 2008). Normalized U.S. hurricane damage
also shows a modulation following the AMO.
The 1970s and 1980s saw very little damage
compared with other decades, while the 1920s
and 1930s, as well as the recent period from
1996–2005 saw very high levels of damage
(Pielke et al., 2008). Bell and Chelliah (2006)
related the interannual and multidecadal vari-
ability of TC activity in the Atlantic to ENSO
and two tropical multidecadal modes (TMM).
Comparing periods of high activity in the
Atlantic, they showed that the most recent
increase in TC activity is related to one of
the first tropical modes, associated with excep-
tionally warm SSTs in the Atlantic; while the
high activity period in the 1950s and 1960s
was more closely associated with the second
tropical mode, associated with the West African
monsoon.

Other work has related seasonal TC activity
in the Atlantic on both interannual and decadal
time scales to the so-called Atlantic Meridional
Mode (AMM) (Xie et al., 2005a,c; Vimont and
Kossin, 2007; Kossin and Vimont, 2007). An
attractive feature of this interpretation is that
the AMM is not defined purely statistically,
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Figure 3. Tropical cyclogenesis points for the five strongest and five weakest AMM years, superimposed on com-
posites of SST (shaded) and shear (contours) anomalies. Crosses show the genesis points for all storms that reached
tropical storm strength. Storms that reached major hurricane strength also have a circle around their genesis point.
Solid (dashed) shear contours denote positive (negative) values. The contour interval is 0.25 ms−1, and the zero
contour has been omitted. Figure originally from Kossin and Vimont (2007).

but has a dynamical interpretation as a natural
mode of the climate system in the Atlantic (Xie
and Carton, 2004). [Interestingly, the eastern
Pacific also appears to have an analogous merid-
ional mode, though ENSO must be removed
from the data in order to see it (Chiang and
Vimont, 2004). Figure 3 shows the TC genesis
locations, SST and vertical shear anomalies in
the different phases of the AMM. The AMM
modulation comes about through its influence
on a number of environmental variables that
influence TC activity, such as SST and vertical
wind shear. During the positive AMM phase
(above normal SSTs in the North Atlantic) there
is an overall increase of TC activity in the
Atlantic, with the mean genesis location shifting
eastward and towards the equator. Also asso-
ciated with a positive AMM is an increase in
storm duration and the intense hurricane fre-
quency (Kossin and Vimont, 2007). The rela-
tionships between Atlantic TC variability and
various other aspects of regional climate vari-
ability implicit in the AMM have been docu-
mented previously. For instance, the relationship

of African Sahel rainfall to Atlantic hurricane
activity is well known (Gray, 1990; Gray and
Landsea, 1992; Landsea and Gray, 1992), as is
the relationship of the AMM to Sahel rainfall
(Folland et al., 1986). The AMO influence on
TCs can also be viewed as manifesting itself
through the excitation of the AMM by the AMO
(Vimont and Kossin, 2007). The value of the
AMM is that it provides a unified, physically-
based framework for interpreting a variety of
influences on Atlantic TCs on a range of time
scales.

Similarly to the Pacific, the MJO also mod-
ulates TC activity on intraseasonal time scales
in the Atlantic. When the MJO is in its
active phase over the eastern Pacific, four times
more hurricanes form in the Gulf of Mexico
and western Caribbean than in the suppressed
MJO phase (Maloney and Hartmann, 2000a).
During the active phase (westerly over the
eastern Pacific), cyclogenesis tends to be shifted
northward, to near the Mexican Pacific coast
and the Gulf of Mexico. Idealized numerical
calculations of the MJO show that in the
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active phase, easterly waves tend to propagate
westward into the eastern Pacific, while during
the suppressed phase, they are steered into the
Gulf of Mexico (Aiyyer and Molinari, 2008).

The role of easterly waves in Atlantic TC
variations on all time scales is an interesting
question. In general, interannual and longer-
timescale variations in Atlantic TC activity
tend to be interpreted in terms of variations in
the large-scale environment. This amounts to
assuming a constant supply of precursor dis-
turbances, so that variations in TC number
(for example) are assigned to variations in the
probability that those disturbances will undergo
genesis. However, one might also ask whether
TC variations might be related to variations
in the supply of easterly waves impinging on
the Atlantic from Africa. African easterly waves
have considerable interannual variability, in
number, intensity and tracks. The low-frequency
(i.e., decadal) variability of the easterly waves
is correlated with Atlantic TC activity, as
well as with the west African monsoon and
Atlantic SSTs. However, on interannual time
scales the Atlantic TCs and the number of
easterly waves are not significantly correlated,
though a synoptic-scale measure of easterly
wave activity (variance of meridional wind fil-
tered to synoptic time scales) does show a sig-
nificant positive correlation with TC activity on
interannual time scales (Hopsch et al. 2007).
Similarly, the number of easterly wave distur-
bances is not correlated with ENSO on inter-
annual time scales, though the variance of
filtered meridional wind is (S. Hopsch, personal
communication). Since enhanced wind variance
could be partly a result as well as a cause of
enhanced TC activity, it seems reasonable to
conclude tentatively that easterly wave vari-
ability is not an important factor responsible for
the ENSO signal in Atlantic TCs. Nonetheless,
the relative importance of variations in the
supply of precursor disturbances vs. varia-
tions in the large-scale environment is worthy
of further study in all basins, including the
Atlantic.

3.4. North Indian Ocean

In contrast to other ocean basins, where the
TC activity has a peak in the late summer
or early fall of the corresponding hemisphere,
North Indian Ocean cyclones primarily form in
the traditional monsoon seasons — spring and
autumn. One interpretation is that this is the
case because it is only during these periods that
the monsoon trough is located over open water
(e.g., Lee et al., 1989; Singh et al., 2000), though
it seems to us likely that the strong vertical wind
shear associated with the peak monsoon may
play a role in suppressing cyclones during that
time.

There is a link between western North Pacific
TCs and monsoon depressions over the Indian
Ocean (e.g., Chen and Weng, 1999). Many
monsoon depressions can be traced back to
northwest Pacific TCs. Remnants of these TCs
can propagate into the Bay of Bengal, where
they can reintensify under the influence of warm
SSTs and high moisture content that is present
in the monsoon flow. Depending on the season,
these monsoon depressions can then redevelop
as cyclones in the Indian Ocean (Fudeyasu et al.,
2006b). In 1997, an El Niño year, there was
a particularly close association between intense
monsoon depressions and strong tropical cyclone
activity in the northwest Pacific (Slingo and
Annamalai, 2000). In El Niño years, during the
months of July and August, there is also a higher
number of monsoon depressions in the Bay of
Bengal (Singh et al., 2001).

There is a strong association between the
variability of sea surface temperatures in the
Indian and Pacific Oceans (Pan and Oort,
1983). During most El Niño events, the overall
SSTs in the Indian Ocean increase, with a
lag of 3–6 months after the peak SST in the
central and eastern Pacific. The Indian Ocean
warming is often associated with weaker surface
wind speeds, though the tropospheric temper-
ature increase throughout the global tropics,
leading to increased stability to deep con-
vection, may also play a role (Chiang and Sobel,
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2002). Singh et al. (2000) noticed fewer intense
tropical cyclones in the months of May and
November in the Bay of Bengal during El Niño
years.

Frank and Young (2007) observed a positive
correlation between Indian Ocean TC activity
and that in the Atlantic, and related this to
reduced activity in the Indian Ocean during the
positive phase of the NAO.

On the intraseasonal timescale, cyclone
activity in the North Indian Ocean is strongly
modulated by the MJO, with more activity
when the MJO convective phase is over the
Indian Ocean (Liebmann et al., 1994).

A role for tropical cyclones in influencing
large-scale climate variability in the Indian
Ocean has also been suggested. Francis et al.
(2007) argued that positive Indian Ocean dipole
events (Saji et al., 1999) could be triggered by
the occurrence of severe cyclones over the Bay
of Bengal during April–May.

3.5. South Indian Ocean

Several studies have examined ENSO’s influence
on TC activity in the South Indian Ocean
basin. Jury (1993) did not find a statisti-
cally significant relationship, and attributed
this to the opposing influences of increased
upper-level westerly winds and enhanced con-
vection during El Niño years. Xie et al. (2002)
found an association between local ENSO-
related SST anomalies and TC activity in the
southwestern Indian Ocean. Kuleshov (2003)
and Kuleshov and de Hoedt (2003) found an
increase in TC numbers east of 70◦E during
La Niña years. Maximum TC frequency in
the Southern Hemisphere occurs at the end of
January during La Niña years and at the end
of February to early March during El Niño
years. The TC season usually starts one month
earlier in the South Indian Ocean in La Niña
years.

The tracks of the South Indian Ocean TCs
are significantly more zonal during a La Niña
event, and tend to be more frequent when

local SSTs are warmer. The combination of
both conditions in 2000, led to an exceptional
number of TCs landfalls in Mozambique, which
could be reproduced using a high-resolution
coupled ocean-atmosphere model (Vitart et al.,
2003).

Ho et al. (2006) found that TC genesis
is shifted westward during El Niño years,
enhancing cyclogenesis west of 75˚E and
reducing it east of that longitude. They
explained this shift through the changes in the
Walker circulation associated with ENSO, with
the formation of an anomalous anticyclonic low-
level circulation in the eastern part of the South
Indian Ocean during warm events. There are
also changes in tracks between cold and warm
events, with a decrease of activity southeast
of Madagascar and a moderate increase in
activity in the central subtropical South Indian
Ocean during El Niño events compared to
La Niña events. These track changes indicate
that South Indian Ocean TCs move farther
east during El Niño events, possibly due to
anomalous southwesterly winds east of Mada-
gascar. This shift in the TC activity was
recently confirmed by Kuleshov et al. 2008
using an updated TC dataset for the southern
hemisphere.

Jury (1993) obtained a relationship between
TC frequency in the Southwest Indian Ocean
and the QBO. They found that more TCs occur
in the easterly phase than in the westerly phase.
This is a somewhat surprising result, since it is
of opposite sign to that found in the western
North Pacific and North Atlantic basins, as dis-
cussed above, and the dynamical signals asso-
ciated with the QBO itself are quite uniform
throughout the tropics. More investigation of
this relationship would be worthwhile.

Bessafi and Wheeler (2006) and Ho et al.
(2006) analyzed the modulation of South Indian
Ocean tropical cyclones by the MJO. Bessafi and
Wheeler (2006) attributed the MJO modulation
to perturbations in vorticity and vertical shear.
Ho et al. (2006) noticed changes in TC tracks
depending on the MJO phase.
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3.6. South Pacific and Australian

Region

Neville Nicholls was the first to relate tropical
cyclone activity to ENSO in a series of
papers in which he explored the environ-
mental factors affecting TC activity in the
Australian region (Nicholls, 1979, 1984, 1985,
1992). The predictability of TC activity in the
Australian region was then explored, and a
seasonal forecast scheme for TC activity was
developed.

Years with many Australian TCs are usually
preceded by below normal SST in the equa-
torial Pacific (La Niña event), low Darwin
pressure and high North Australian SST, while
years with relatively few TCs are preceded
by El Niño events. As the strongest relation-
ships occur before the start of the TC season,
these variables can be used to predict TC
activity in the Australian region. The rela-
tionship with ENSO is clearest for moderate
intensity TCs; there is only a weak relationship
with the numbers of either intense or weak TCs
(Nicholls et al., 1988). Various follow up studies
have confirmed the relationship between ENSO
and Australian TCs found in Nicholls’ early
studies (Dong, 1988; Hasting, 1990; Solow and
Nicholls, 1990), and have shown them to be
in some cases indicative of larger-scale signals
for the entire basin. For example, the total
number of TCs in the southwest Pacific tends
to increase with El Niño (Basher and Zeng,
1995).

The region of mean TC genesis shifts with
ENSO in the southwest Pacific, similarly to
the western North Pacific. There is a well-
documented eastward shift in the warm ENSO
phase (Evans and Allan, 1992; Basher and Zeng,
1995; Kuleshov, 2003; Camargo et al., 2007a;
Kuleshov et al., 2008) so that TCs are more
likely to form away from the Australian coast
and closer to the dateline in El Niño years.
In some El Niño events TCs occur in French
Polynesia, a location usually not affected by

TCs. During La Niña events, the mean genesis
location shifts westward, and TCs are more
likely to make landfall in northeast Australia
(Evans and Allan, 1992). The relationship of
western Australian TCs with ENSO, on the
other hand, is weaker than when the whole Aus-
tralian region is considered (Broadbridge and
Hanstrum, 1998).

In addition to the east-west shifts in TC
genesis location with ENSO, there are also
north-south shifts, with mean genesis shifting
northward during El Niño and southward during
La Niña (Revell and Goulter 1986a; Camargo
et al., 2007a). Among other impacts, this implies
that TC landfall in Indonesia is more likely
during El Niño years than in other years, a
result which might be counter-intuitive since
precipitation overall is suppressed there during
El Niño years. Preliminary analysis of best
track data (not shown) indicates that this is
the case, though the statistics are poor since
there are very few cyclone landfalls altogether
in Indonesia.

A number of studies have used the ENSO
signal to examine the influence of specific envi-
ronmental factors on TC statistics. Ramsey
et al. (2008) found larger correlations between
TC activity and ENSO indices than between
TC activity and local SST in the region of
most frequent cyclogenesis. This is somewhat
similar to findings in the western north Pacific
(Chan, 2007). Correlations of TC frequency
with low-level relative vorticity and vertical
shear over the main genesis area are also
significant.

As elsewhere, the MJO modulates TC
activity in the Australian region, with more
cyclones forming in the active phase of the MJO
and fewer in the suppressed phase. The modu-
lation is more pronounced to the northwest of
Australia and is strengthened during El Niño
events (Hall et al., 2001). Low-level relative vor-
ticity anomalies related to the MJO have been
associated with changes in large-scale cycloge-
nesis patterns (Hall et al., 2001).
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4. Seasonal Forecasts of Tropical
Cyclone Activity: Background

Nicholls (Nicholls, 1979, 1985, 1992) used the
relationship between Australian TCs and ENSO
to develop a statistical forecast scheme to
forecast the number of cyclone days in a season
based on the preceding July–September sea level
pressure at Darwin — one of the two stations
used to formulate the ENSO-related Southern
Oscillation Index (SOI). Gray (Gray, 1984a)
developed a statistical forecast methodology for
forecasting seasonal Atlantic hurricane activity
in early June and early August, which has been
issued several times each year thereafter. We will
discuss these forecasts in more detail below.

A discussion of the historical developments
preceding the appearance of routine Atlantic
seasonal hurricane forecasts appeared in Hess
and Elsner (1994). They discussed the early
work that uncovered the physical relationships
among various factors such as sea level pressure
(Brennan, 1935; Ray, 1935), easterly waves
(Dunn, 1940) and mid-latitude troughs, and
their influences on Atlantic hurricane frequency
(Riehl, 1956). A summary of the early Atlantic
forecasts as well as their verification is presented
in Hastenrath (1990).

Currently, many institutions issue opera-
tional seasonal TC forecasts for various regions.
In most cases, these are statistical forecasts,
the seasonal typhoon activity forecasts of the
City University of Hong Kong (Chan et al.,
1998, 2001), the Atlantic hurricane forecasts
of Colorado State University (Gray, 1984a,b;
Gray et al., 1992c; Klotzbach and Gray,
2003, 2004; Klotzbach, 2007a,b), and Tropical
Storm Risk (Saunders and Lea, 2005). The
National Oceanic and Atmospheric Admin-
istration (NOAA) issues hurricane outlooks
based on a blend of statistical techniques,
climate model outputs, and forecasters input.
More recently, dynamical forecasts have started
being issued (Vitart, 2006; Vitart et al., 2007;
Camargo and Barnston, 2008). We will briefly
discuss these forecasts, and their strengths and

weaknesses. A more complete recent review of
TC seasonal forecasts can be found in Camargo
et al. (2007c).

The public and media interest in seasonal
TC forecasts has increased tremendously since
the time they were first produced. The disas-
trous impacts of the Atlantic basin hurricane
seasons of 2004 and 2005 along with discussions
of the possible impacts of global warming on
Atlantic hurricane activity brought Atlantic sea-
sonal hurricane forecasting to the forefront of
the media.

Landfall forecasts are particularly important
to users, as discussed in Elsner (2003) for
the case of Florida residents. However, landfall
forecast skill is quite limited. As seasonal TC
forecasts improve, more attention will be able
to be given to particular details such as local
landfall probabilities, and the use of such spe-
cific forecasts will become more widespread and
significant to decision makers and residents in
coastal areas. However, the probability of a
small area along the coastline being impacted
by a tropical cyclone in any year is minimal,
and therefore, landfall probabilities at the local
level, based on seasonal forecasts, will always be
quite low.

Predicting ENSO well in advance is fun-
damental for producing accurate seasonal TC
forecasts. ENSO predictability follows a well-
known seasonal cycle, in which the ENSO state
for 4–6 months into the future is more accu-
rately predicted from a starting time between
July and November than between January and
March. This is due to a “predictability barrier”
that exists between April and June such that
forecasts made just before this period are hin-
dered by the barrier. The seasonal timing of
the predictability barrier is related to the life
cycle of ENSO episodes, which often emerge
between April and June and endure until the
following March to May. Once an episode has
begun, predicting its continuation for the next
9 to 12 months is a much easier task than pre-
dicting its initial appearance. Even a strong El
Niño, such as the one in 1997–98, was not well
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anticipated before signs of the initial onset were
observed in the Northern Hemisphere spring
of 1997 (Barnston et al., 1999). Even after
becoming apparent in the observations in late
April and May 1997, the strength of this extreme
El Niño event was under-predicted by most
models, although a few models did correctly
anticipate the rapid weakening in the spring of
1998 (Landsea and Knaff, 2000).

Due to the predictability barrier, the pre-
dictive skill for ENSO forecasts made in March
is high for only 2–3 months, while for forecasts
made in August the skill extends to longer lead
times. Improvements in predictive skill using
today’s more advanced dynamical models have
been small, and it remains to be seen whether
or not improvements are possible (Chen and
Cane, 2008) given the inherent signal-to-noise
characteristics of the ocean-atmosphere system.
The “slow physics” relevant to ENSO dynamics
may become better predicted by both statistical
and dynamical models of the future. However,
better prediction of the shorter time-scale events
that can also be important in triggering El
Niño onset, such as the Madden-Julian Oscil-
lation, may prove to be nearly impossible at
multi-month lead times. Westerly wind bursts
are often associated with MJO events and can
have an impact on the magnitude and/or timing
of an El-Niño event, like in 1997 (Slingo, 1998;
van Oldenborgh et al., 2000; Lengaigne et al.,
2003), although they may not be necessary for
the occurrence of the event itself (Kleeman and
Moore, 1997).

The ENSO predictability barrier has clear-
cut implications for predictions of TC activity
in the Northern Hemisphere when compared to
predictions of TC activity in the Southern Hemi-
sphere. TC activity in the Northern Hemisphere
is considerably more challenging to predict
because its peak TC seasons occur shortly
after the ENSO predictability barrier. When an
ENSO event appears somewhat later than usual,
such as was the case in the late Northern Hemi-
sphere summers of 1986 and 2006, the inhibiting
effect on North Atlantic TCs is unanticipated

until the peak season of August to October is
already beginning. This can necessitate a sudden
change as a final update to the seasonal TC
prediction, and can potentially disrupt plans
already being followed in accordance with an
earlier seasonal TC prediction. The peak season
for Southern Hemisphere TC activity occurs at
least 6 months after the Northern Hemisphere
spring ENSO predictability barrier, which pro-
vides a safer cushion of lead time in which to
become fairly certain about the ENSO state
to be expected during the peak season. Thus,
last-minute surprises in seasonal TC outlooks
for basins south of the equator are less likely
to occur. Nonetheless, it is clear that a major
hurdle in improving TC predictions for any
ocean basin is the far-from-perfect quality of
today’s state-of-the-art ENSO forecasts. Indeed,
Landsea and Knaff (2000) showed that it is
still very difficult to outperform a simple sta-
tistical model that uses as predictors only the
recent evolution of SST anomalies in a few
tropical Pacific regions. This modest skill level
for detecting El Niño onset still exists currently,
as illustrated by the poor predictions of the late-
starting 2006–07 El Niño. If the ENSO forecast
challenge could be overcome, the skill of TC
predictions could improve significantly — most
notably in the Northern Hemisphere.

5. Statistical Forecasts

5.1. Operational Statistical

Forecasts

Initial seasonal predictions for the North
Atlantic basin (Gray, 1984a,b) were issued from
Colorado State University in early June and
early August beginning in 1984 and used sta-
tistical relationships between tropical cyclone
activity and ENSO, the Quasi-Biennial Oscil-
lation (QBO) and Caribbean basin sea-level
pressures. Statistical forecast techniques for
North Atlantic TCs have evolved since these
early forecasts. Additional predictors have been
added to the original forecast scheme, and the
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QBO is not used as a predictor any more.
In addition, seasonal forecasts are now issued
as early as December of the previous year.
Klotzbach and Gray (2004) and Klotzbach
(2007a,b) explain the current forecast scheme.

Owens and Landsea (2003) examined the
skill of Gray’s operational Atlantic seasonal
tropical cyclone forecasts relative to climatology
and persistence. Their analysis indicated that
for the analyzed period (1984–2001), their sta-
tistical forecasts demonstrated skill over cli-
matology and persistence, with the adjusted
forecasts being more skillful than the basic sta-
tistical forecasts. Figure 4 shows the correlation
skill of the CSU seasonal forecasts for different
variables.

NOAA has been issuing seasonal hurricane
outlooks for the Atlantic and the eastern North
Pacific regions since 1998 and 2003, respec-
tively. These outlooks are provided to the
public in both a deterministic and probabilistic
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Figure 4. Correlations of the CSU seasonal forecasts for different leads: December (1992–2006), April (1995–2006),
June (1984–2006 or 1990–2006) and August (1984–2006 or 1990–2006). The correlations are given for: number of
named storms (NS), number of named storm days (NSD), number of hurricanes (H), number of hurricane days (HD),
number of intense hurricanes (IH), number of intense hurricane days (IHD), and net tropical cyclone activity (NTC).
Significant correlations at the 95% significant level are June — NS, NSD, H, HD, IH, IHD, NTC, August — NS, NSD,
H, HD, IH and NTC. None of the correlations is significant for the December and April leads. Figure originally from
Camargo et al. (2007c).

format, using terciles. The deterministic pre-
diction is given as a range — rather than a
single number — and it represents about a 2/3
chance of the forecasts being in that range. The
NOAA outlooks are based on the state of ENSO
(Gray, 1984a) and the state of the tropical multi-
decadal mode (TMM) (e.g., Chelliah and Bell,
2004), which incorporates the leading modes of
tropical convective rainfall variability occurring
on multi-decadal time scales. Important aspects
of this signal that are related to an active
Atlantic hurricane season include a strong West
African monsoon, reduced vertical wind shear
in the tropical Atlantic, and suppression of con-
vection in the Amazon basin and high tropical
Atlantic SSTs (Goldenberg et al., 2001).

Tropical Storm Risk (TSR) issues statistical
forecasts for TC activity in the Atlantic, western
North Pacific and Australian regions. In a recent
paper (Saunders and Lea, 2005), TSR describes
their new forecast model, issued in early August,
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for seasonal predictions of hurricane landfall
activity for the United States coastline. The
model uses July wind patterns to predict the
seasonal U.S. ACE index (effectively the cumu-
lative wind energy from all U.S.-striking tropical
cyclones). The July height-averaged winds in
these regions are indicative of atmospheric cir-
culation patterns that either favor or hinder hur-
ricanes from reaching U.S. shores. The model
correctly anticipates whether U.S. hurricane
losses are above- or below-median in 74% of
the hindcasts for the 1950–2003 period. As
far as we know, this forecast is the only sta-
tistical forecasts that uses the steering flow.
If this finding is corroborated, it would be
a major advance for statistical foreasts. The
western North Pacific seasonal prediction model
uses Niño 3.75 (5◦S–5◦N, 180◦–140◦W) forecasts
(Lloyd-Hughes et al., 2004) to predict ACE.

Johnny Chan and colleagues at the City
University of Hong Kong have issued seasonal
TC forecasts for the western North Pacific
basin (number of TCs and typhoons) since
1997. The statistical predictions are based on
various environmental conditions in the prior
year, up to the Northern Hemisphere spring of
the forecast season. The most prominent atmo-
spheric and oceanic conditions include ENSO,
the extent of the Pacific subtropical ridge and
the intensity of the India-Burma trough (Chan
et al., 1998, 2001). For a few years, forecasts of
the number of TCs making landfall were also
issued (Liu and Chan, 2003). Currently, the
landfall forecast scheme for the South China
Sea is being improved. More recently, a simple
method was proposed to update seasonal pre-
diction of the annual number of TCs in a given
ocean basin, based on the cumulative number
of TCs up to a given month in the early season
(Chan, 2008b).

Various other agencies have been issuing
forecasts for different regions of the world. The
National Meteorological Services of Mexico has
produced eastern North Pacific statistical sea-
sonal forecasts since 2001. The China Meteoro-
logical Administration and the National Climate

Center in China issue forecasts of typhoon
activity for the western North Pacific, as well
as landfalling typhoon frequency in the whole
South China Sea and eastern China. The Cuban
Meteorological Institute has been issuing sea-
sonal forecasts of Atlantic hurricane activity,
including hurricane landfall in Cuba, since
1996. The North Carolina State University
forecast group developed a seasonal forecast
methodology for Atlantic hurricane activity and
landfall based on ENSO, vertical wind shear,
the Atlantic dipole mode and the NAO (Xie
et al., 2005a,c; Keith and Xie, 2008). Forecasts
for the Australian/Southwest Pacific region are
presented annually in the December issue of
the Experimental Long-Lead Forecast Bulletin
since the 2004–5 season for the Southern Hemi-
sphere tropical cyclone season. These fore-
casts are based on a Poisson regression model
and use as predictors the September satu-
rated equivalent potential temperature gra-
dient and the SOI (McDonnell and Holbrook,
2004a,b).

5.2. Methodology for statistical

forecasts

The first statistical seasonal forecasts for TCs
in the Australian regions were developed using
the values of the pressure in Darwin in the
months preceding the Australian TC season to
forecast the number of TCs (Nicholls, 1979).
Other indices for ENSO and North Australia
SST were also examined by Nicholls (1984).
The performance of the forecasts using the SOI
in the months prior to the season as the pre-
dictor (Solow and Nicholls, 1990) was discussed
in Nicholls (1992).

James Elsner and colleagues at Florida State
University (FSU) have been developing tech-
niques for modeling seasonal hurricane activity
and landfall (e.g., Elsner and Jagger, 2004).
Although their forecasts are not produced oper-
ationally, their methodology is currently used to
issue region-specific forecasts for various com-
panies. The FSU group pioneered various topics
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in TC seasonal forecasting such as the use of a
Poisson distribution for hurricane counts (Elsner
and Schmertmann, 1993), the influence of the
phase of the North Atlantic Oscillation (NAO)
on Atlantic hurricane tracks and U.S. coastal
hurricane activity (Elsner et al., 2001), and the
development of a skillful statistical model for
seasonal forecasts of landfall probability over
the southeastern United States (Lehmiller et al.,
1997). More recently, Elsner and Jagger (2006)
built a Bayesian model for seasonal landfall
over the U.S. using as predictors May–June
values of the NAO, May–June values of the SOI,
and May–June values of the AMO, and then
extended the methodology to long-lead seasonal
forecasts (Elsner et al., 2006). Similar statistical
techniques are used for multi-seasonal forecasts
(Elsner et al., 1998; Elsner et al., 2008) and for
building climatological models for extreme hur-
ricane winds near the U.S. (Jagger and Elsner,
2006). It should be noted though, that only
a statistical link between May–June NAO and
subsequent Atlantic hurricane tracks was found.
There has been no corroboration of the physical
connection between the NAO and the tropo-
spheric steering flow, either concurrent or pre-
dictive.

Two different methods, a binary classifi-
cation scheme and a Poisson regression, are used
to forecast annual Atlantic TC counts. Modeling
the annual counts as a state-dependent Poisson
process using a binary classification approach,
only two factors are necessary to explain a large
portion of the variance: ENSO and MDR SST.
If a Poisson regression is used, the most skillful
statistical model also considers the NAO as a
predictor (Sabatelli and Mann, 2007).

Chu and Zhao (2007) developed a sea-
sonal forecast for the Central North Pacific in
the peak season (July to September), using a
linear regression model in a Bayesian framework.
Five large-scale environmental variables in the
antecedent May and June months are used
as predictors and the cross-validated procedure
applied to the period 1966–2003 produced satis-
factory results.

A statistical multivariate prediction model
for the number of tropical cyclone days in
the Southwest Indian Ocean one season in
advance was developed by Jury et al. (1999).
The chosen predictors are SST anomalies, OLR
anomalies, upper level winds and surface winds
in different regions, depending on the forecast
lead time.

6. Dynamical Forecasts

6.1. TCs in climate models

Extended integrations of global climate models
in principle allow for an assessment of the
frequency, intensity, duration, structure, and
tracks of tropical cyclone-like features in the
model. In practice, simulation of realistic inten-
sities and detailed structures of TCs is ham-
pered by the coarse resolution generally required
of such global models, as discussed below. In
addition, the fidelity of the global model’s TC
genesis process compared to that of the real
world has not been well established.

For the global models, TCs are located and
tracked in model data using objective techniques
that are usually based on a local maximum of
cyclonic relative vorticity at 850 hPa and often
involving other criteria such as: system life-
time, evidence of a warm core, maximum winds
above a threshold, and a local minimum in sea
level pressure (e.g., Tsutsui and Kasahara, 1996;
Vitart et al., 1997; Camargo and Zebiak, 2002;
Sugi et al., 2002; McDonald et al., 2005). The
location and tracking method tends to be unique
to each study which makes it difficult to com-
pare the results of the different studies directly.
Walsh et al. (2006) provide recommendations
for providing homogeneous comparisons of var-
ious resolution models for determining tropi-
cal cyclone frequencies. They base this upon
an analysis of how minimal tropical storms
(with maximum winds at 17.5m/s) would be
depicted under various resolutions. Use of such
resolution-based criteria for determining trop-
ical cyclone occurrence should allow for more
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rigorous quantitative comparisons of global
(and regional) climate model output of tropical
cyclones frequencies. For seasonal forecasting,
however, simulated interannual variability of
TC activity is more important than evaluation
of the models’ absolute performance in TC
simulation. Model-specific detection thresholds
which adjust for model biases (Camargo and
Zebiak, 2002) may be more appropriate for this
application.

The global climate models used for tropical
cyclone analysis have tended to be of low
(300 km) horizontal resolution (e.g., Vitart
et al., 1997; Tsutsui, 2002; Bengtsson et al.,
2006) or of medium (120 km) resolution (e.g.,
Sugi et al., 2002; McDonald et al., 2005;
Hasegawa and Emori, 2005; Yoshimura and
Sugi, 2005; Bengtsson et al., 2007; LaRow et al.,
2008). The grid-scale of the low and medium
resolution models is larger than the typical
scale of tropical cyclones. This can lead to a
poor simulation of tropical cyclones (e.g., Vitart
et al., 1997; McDonald et al., 2005). The sim-
ulated cyclones tend to have a larger hori-
zontal scale, and although they have warm cores,
the intense inner core is not well-simulated.
Thus, the simulated cyclones have lower wind
speeds than occurs in observed tropical cyclones
(Vitart et al., 1997). Minimum central pres-
sures tend to be better simulated than the
maximum surface wind speeds. Recent studies
have used higher resolutions of 50 km (Chauvin
et al., 2006) and 20 km (Oouchi et al., 2006),
but models of this resolution are too expensive
for most modeling centers to use for long
climate change experiments, though they may
soon become practical for seasonal forecasting.
An alternative approach is to use a global
model with a stretched grid (i.e., higher reso-
lution) over the region of interest (e.g., Chauvin
et al., 2006), although this limits the study
to the region where the resolution is high.
Even at that resolution, the highest simulated
TC intensity reported by Oouchi et al. was
about 932hPa, compared with the observed
record of 870hPa, indicating the limitation

of their global model in simulating very
intense TCs.

Even though smaller-scale features of the
individual cyclones are typically not well simu-
lated in the global models, these models are able
to reproduce some aspects of the observed cli-
matology and inter-annual variability of tropical
cyclones (Tsutsui and Kasahara, 1996; Sugi
et al., 2002; Camargo et al., 2005; McDonald
et al., 2005; Bengtsson et al., 2007). Most models
are able to simulate tropical cyclone-like distur-
bances in roughly the correct location and at
the correct time of the year, although all models
exhibit some biases. Several models simulate
tropical cyclones in the South Atlantic (Vitart
et al., 1997; Sugi et al., 2002; McDonald et al.,
2005; Oouchi et al., 2006) where they are rarely
observed (Pezza and Simmonds, 2005). It should
also be pointed out that not all models simulate
storms in the South Atlantic (Camargo et al.,
2005).

The global models’ simulated TC tracks are
sometimes shorter than observed (Tsutsui and
Kasahara, 1996; Sugi et al., 2002; Camargo
et al., 2005). High resolution models such as that
of Oouchi et al. (2006) are able to better sim-
ulate the length of TC tracks. Low resolution
models such as ECHAM3 and ECHAM4 exhibit
TC tracks that are too long (Camargo et al.,
2005). Some of these differences in length may be
due to the objective techniques used to identify
and track the cyclones in the model data.

The simulated global annual frequency of
TCs in global models varies, with some models
simulating too many TCs (e.g., McDonald et al.,
2005) while others simulate too few (Camargo
et al., 2005). Both from comparing results
among different models (e.g., Camargo et al.,
2005) and from sensitivity experiments with a
given model (Vitart et al., 2001; Emori et al.,
2005), it is evident that both model resolution
and model physics can play important roles
in determining the frequency of TC occurrence
in the global models. The dynamics of the
genesis process in a coarse resolution model
was explored by Camargo and Sobel (2004).
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The genesis process in that model was found
to be qualitatively similar to that in observa-
tions (though with major quantitative differ-
ences), featuring a convectively coupled vortex,
which intensifies, partly due to enhanced surface
fluxes, after an initial period of constant
intensity or slight weakening.

While models in many existing studies
have demonstrated an ability to simulate many
aspects of the seasonal variability of tropical
cyclone frequency in each basin, all of the models
have some errors in both frequency and timings.
These errors are basin-, season- and model-
dependent. Increasing the horizontal resolution
of global models typically improves the simu-
lation of individual cyclones (Bengtsson et al.,
1995) but may not improve the tropical cyclone
climatology and interannual variability. One
reason for that may be biases of the variability
in large-scale climate itself. On the other hand,
a comparison of several models suggests that
differences in the simulation of the large-scale
environment for TC genesis do not translate in
a simple way to differences in simulated TC
statistics (Camargo et al., 2007f).

More realistic maximum TC intensities have
been simulated by downscaling individual storm
cases from a coarse-grid global model into an
operational regional high-resolution hurricane
prediction system (Knutson et al., 1998) or into
a regional climate model (Walsh and Ryan,
2000). Another promising approach involves
embedding a regional climate model within a
global model or atmospheric reanalysis in order
to simulate the seasonal evolution of more real-
istic TC formation, evolution, and intensities
(e.g., Walsh et al., 2004; Knutson et al., 2007;
Stowasser et al., 2007; Feser and Von Storch,
2008; Knutson et al., 2008). However, the TC
simulations using a regional climate model have
uncertainties due to model domain choices,
parameterizations, and other issues (Landman
et al., 2005; Camargo et al., 2007b).

Climate models also must simulate realistic
ENSO and decadal variability under present day
and future climate conditions as a necessary

condition for providing reliable future projec-
tions of TC activity in these regions (e.g.,
Nguyen and Walsh, 2001). The interannual vari-
ability of TC occurrence in global models can
be tested by comparing cyclones simulated in
models forced with observed SSTs to tropical
cyclone observations from the same period (Wu
and Lau, 1992; Tsutsui and Kasahara, 1996;
Vitart et al., 1997; Sugi et al., 2002; McDonald
et al., 2005; Camargo et al., 2005; Bengtsson
et al., 2007; LaRow et al., 2008). The nine-
member ensemble of Vitart et al. (1997) and
the 40-yr experiments used by Camargo et al.
(2005) are better suited for analysis of the inter-
annual variability than are the shorter exper-
iments used by Tsutsui and Kasahara (1996),
Sugi et al. (2002) and McDonald et al. (2005)
because of the larger sample sizes. The corre-
lation of the global annual number of tropical
cyclones with the observed number varies from
0.15 in the JMA model (Sugi et al., 2002) to
0.41 in the GFDL model (Vitart et al., 1997).
The correlations are better in some seasons,
basins and models than in others. The correla-
tions tend to be highest in the western North
Pacific and North Atlantic basins (Vitart et al.,
1997; Camargo et al., 2005), possibly because
of the importance of ENSO in those regions. In
the case of the Atlantic, La Row et al. (2008)
obtained correlations of 0.78 for the interannual
variability of number of tropical cyclones using a
T126 horizontal resolution model, four-ensemble
member, and 20 years of integration. The inter-
annual variability performance of the 20 km grid
global model of Oouchi et al. (2006) has not yet
been assessed.

The longer time-scale variability of TCs in
global models was explored in a few studies.
Vitart and Doblas-Reyes (2007) analyzed the
inter-decadal variability of tropical storm fre-
quency for the period from 1958–2001 in various
regions. The inter-decadal variability of TCs in
the model is more realistic for varying green-
house gas concentrations than for fixed con-
centrations. However, the natural inter-decadal
variability plays a more important role in this
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period than does anthropogenic forcing. Mat-
suura et al. (2003) and Yumoto et al. (2003)
showed that a coupled ocean-atmosphere global
model could reproduce the inter-decadal TC fre-
quency variability in the western North Pacific,
which was related to the decadal variability of
the monsoon westerlies in the model and in the
reanalysis.

Nguyen and Walsh (2001) analyzed the inter-
annual and decadal variability of TCs in the
South Pacific using a regional climate model. A
higher incidence of TCs on the Australian east
coast occurred in La Niña conditions, while in
El Niño conditions, the formation and occur-
rence shifted towards the central Pacific, as in
observations. The TC activity in the model also
exhibited coherent decadal variability similar to
observed patterns on these time-scales. Knutson
et al. (2007) used a high-resolution regional
model over the North Atlantic and were able
to reproduce the observed ENSO and multi-
decadal variability in Atlantic TC activity over
the period from 1980–2006, with a 0.87 corre-
lation between observed and model-derived hur-
ricane frequency.

An alternative approach to explicit global
model simulation is to use an empirical “sea-
sonal genesis parameter” (e.g., Ryan et al.,
1992; Watterson et al., 1995; Thorncroft and
Pytharoulis, 2001) to infer a genesis fre-
quency from climate model data (Tsutsui and
Kasahara, 1996; Royer et al., 1998; McDonald
et al., 2005; Chauvin et al., 2006; Camargo et al.,
2007f). In this approach, the focus is on using
the models’ predictions of seasonal variations
in the large-scale environment for TC genesis
and intensification, rather than their predic-
tions of the TCs themselves. The strength of
this approach is based on the fact that the
ability of climate models to simulate large-scale
climate is clearly superior to their ability to
simulate TCs. Great caution is required when
applying a parameter developed for present day
climate to future predictions, as the statistical
relationships may not be valid under altered
climate conditions (Ryan et al., 1992). Royer

et al. (1998) and Emanuel and Nolan (2004)
(see also Nolan et al., 2007; Caron and Jones,
2008) have proposed refined versions of Gray’s
(1979) genesis index that avoid the use of factors
such as threshold SSTs that themselves may
well vary in an altered climate (e.g., Henderson-
Sellers et al., 1998). These methods typically
produce plausible maps and seasonal cycles of
TC genesis. Camargo et al. (2007a) showed
that the index developed by Emanuel and
Nolan (2004) was able to reproduce the inter-
annual variations of the observed frequency and
location of genesis in several different basins.

6.2. Current operational dynamical

forecasts

While low-resolution simulations are not ade-
quate for forecasting individual cyclones’ tracks
and intensities, some climate models have skill in
forecasting levels of seasonal TC activity. These
climate models are able to reproduce typical
ENSO influences on seasonal TC activity (e.g.,
Vitart et al., 1997).

Currently, three institutions produce sea-
sonal forecasts of tropical cyclone activity by
dynamical methods. The European Centre for
Medium-range Weather Forecasts (ECMWF)
issues experimental seasonal forecasts of tropical
storm frequency based on dynamical models
for various regions since 2001 and are only
available to institutions affiliated with the
ECMWF. The ECMWF forecasts are based on
coupled ocean-atmosphere models (Vitart and
Stockdale, 2001; Vitart, 2006), with tropical
cyclone-like vortices being identified and tracked
in the atmospheric model output. The European
multi-model (EUROSIP) dynamical forecasts of
TC frequency skillfully distinguished the very-
active Atlantic hurricane season in 2005 from
the below-average season in 2006, as shown in
Fig. 5 (Vitart et al., 2007). The EUROSIP fore-
casts have been produced in real time since
2005, but are not currently available to the
public. The United Kingdom Met Office started
issuing dynamical seasonal forecasts for the
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Figure 5. Number of tropical storms from July to November predicted by the EUROSIP (median) starting on
1 June (black thick solid line) for the period 1993–2006. Hindcasts were used for the period 1993–2004, and real-
time forecasts in 2005–2006. The observations are given in the dashed line and vertical lines represent two standard
deviations within the multi-model ensemble distribution. (Reproduced from Vitart et al., 2007, by permission of the
American Geophysical Union.)

Atlantic basin operationally in June 2007, also
using a coupled ocean-atmosphere model (one
of the EUROSIP models, discussed in Vitart
et al., 2007) and a methodology similar to the
ECMWF forecasts.

The International Research Institute (IRI)
for Climate and Society also issues experi-
mental seasonal forecasts based on dynamical
models for tropical storm frequency and accu-
mulated cyclone energy (ACE; Bell et al., 2000)
in Northern Hemisphere regions since 2003.
The experimental IRI forecasts are obtained
using a two-tier procedure. First, various pos-
sible scenarios for SSTs are predicted using
statistical and dynamical models. Then, atmo-
spheric models are forced with those predicted
SSTs. Similar to the ECMWF procedure, the
tropical cyclone-like vortices are then identified
and tracked (Camargo and Zebiak, 2002). The
IRI forecasts are probabilistic by tercile category
(above normal, normal, below normal).

The skill of some of the best performing
dynamical models in predicting the frequency
of tropical storms is comparable to the skill of
statistical models in some ocean basins. Over

the North and South Indian Oceans, dynamical
models usually perform poorly (Camargo et al.,
2005; Bengtsson et al., 2007). It is not clear
to what extent this is due to model errors or
due to a lack of predictability. Similar to the
experience with seasonal climate forecasts, com-
bining different model forecasts (multi-model
ensemble forecasts) appears to produce overall
better forecasts than individual model ensemble
forecasts (Vitart, 2006). The hindcast skill of
various dynamical climate models in predicting
seasonal TC activity is discussed in Camargo
et al. (2005) and Vitart (2006), and the real time
performance of the IRI forecasts is analyzed in
Camargo and Barnston (2009).

Seasonal prediction of tropical cyclone
landfall represents a major challenge
for dynamical models. Tropical cyclones take an
unrealistically poleward track in some of the
models used in seasonal forecasting systems due
partly to the coarse horizontal model resolution,
which leads to larger vortices than observed ones.
These larger vortices would likely be more influ-
enced by the beta effect (Rhines, 1975) leading to
stronger “beta drift”, (e.g., Chan, 2005) and thus
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more poleward tracks. Finer resolution climate
models are able to reproduce landfall differences
related to ENSO impacts, such as in Mozambique
(Vitart et al., 2003).

7. Summary

In this chapter, we reviewed the influence of
various climates modes on tropical cyclone
activity in intraseasonal to decadal time scales.
Globally, ENSO and the MJO, and to some
extent the QBO modulate TC activity. How this
modulation occurs depends on the region con-
sidered. On a regional scale, other climate modes
also affect TC activity, modifying the timing,
genesis location, frequency, tracks and landfall
frequency.

Using the relationships between TC activity
and these climate modes on intraseasonal and
interannual time scales, statistical forecasts of
TC activity can be constructed. Dynamical TC
seasonal forecasts based on TCs in climate
models are now also issued by some centers.

In most cases, the modulation of TC activity
by the climate has been focused on specific time
scales and modes of variability. It would be inter-
esting in the future to have a better under-
standing of the interactions and relationships
of these modes. This would lead to a better
framework for understanding TC variability.

Reflecting the literature, our discussion has
focused on the influence of climate on TCs.
The influence of TCs themselves on the large-
scale climate has been mentioned only briefly,
because relative few studies have tried to assess
that influence. Besides a possible role in ENSO
dynamics (Keen, 1982; Sobel and Camargo,
2005) or the Indian Ocean dipole (Francis et al.,
2007), roles for TCs in controlling the global
thermohaline circulation (Emanuel, 2001; Korty
et al., 2008) and in creating a multi-year per-
sistence in TC activity (Pasquero and Emanuel,
2008) have been hypothesized. A better under-
standing of the role of TCs in the global climate
is desirable and more work in this area would be
worthwhile.
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