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Abstract. The interaction between physical drivers from
oceanographic, hydrological, and meteorological processes
in coastal areas can result in compound flooding. Compound
flood events, like Cyclone Idai and Hurricane Harvey, have
revealed the devastating consequences of the co-occurrence
of coastal and river floods. A number of studies have re-
cently investigated the likelihood of compound flooding at
the continental scale based on simulated variables of flood
drivers, such as storm surge, precipitation, and river dis-
charges. At the global scale, this has only been performed
based on observations, thereby excluding a large extent of
the global coastline. The purpose of this study is to fill this
gap and identify regions with a high compound flooding po-
tential from river discharge and storm surge extremes in river
mouths globally. To do so, we use daily time series of river
discharge and storm surge from state-of-the-art global mod-
els driven with consistent meteorological forcing from re-
analysis datasets. We measure the compound flood potential
by analysing both variables with respect to their timing, joint
statistical dependence, and joint return period. Our analysis
indicates many regions that deviate from statistical indepen-
dence and could not be identified in previous global studies
based on observations alone, such as Madagascar, northern
Morocco, Vietnam, and Taiwan. We report possible causal

mechanisms for the observed spatial patterns based on ex-
isting literature. Finally, we provide preliminary insights on
the implications of the bivariate dependence behaviour on
the flood hazard characterisation using Madagascar as a case
study. Our global and local analyses show that the depen-
dence structure between flood drivers can be complex and
can significantly impact the joint probability of discharge and
storm surge extremes. These emphasise the need to refine
global flood risk assessments and emergency planning to ac-
count for these potential interactions.

1 Introduction

Flooding in deltas and estuaries is driven by the interac-
tions of oceanographic, hydrological, and meteorological
phenomena such as extreme rainfall, river discharge, storm
surge, and wave action. When these co-occur in space and
time, they can exacerbate the flood extent, depth, and dura-
tion locally, resulting in a so-called compound flood event
(Zscheischler et al., 2018). These events have the potential
to cause large social and economic impacts and can directly
or indirectly impact flood emergency response and infras-
tructure (Leonard et al., 2014; Zscheischler et al., 2018).
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The potentially extreme impacts of compound flood events
were recently highlighted by Cyclone Idai in March 2019.
The long-lived tropical cyclone travelled within the Mozam-
bique Channel, causing catastrophic damage along its path in
Madagascar, Malawi, Zimbabwe, and, most importantly, in
Mozambique, where it made landfall twice. Its second land-
fall near Beira on 14 March devastated the city and surround-
ing villages. The combination of extreme winds of more
than 160 km h−1 with torrential rains happening several days
prior to and after the landfall contributed to the severe and
widespread flooding observed in this area. At this moment,
there are no observations of sea levels freely available; max-
imum storm surge of 4.4 m was calculated for this location
and more than 600 mm of accumulated rainfall were mea-
sured over a period of 2 weeks, resulting in local rivers going
out of their bank (JRC, 2019; Probst and Annunziato, 2019).
It was reported that Idai directly affected 3 000 000 people,
caused at least 960 casualties, destroyed about USD 1 bil-
lion in infrastructure, ruined 500 000 ha of crops, and caused
widespread power outages and multiple road closures that
complicated aid distribution and the humanitarian interven-
tions to keep cholera outbreaks under control (Nhamire and
Hill, 2019; ERCC, 2019; USAID, 2019). In Europe, between
1870 and 2016, at least 23 damaging flood events reported
the co-occurrence of coastal and river floods, representing
about 1.5 % of all flood events (Paprotny et al., 2018b). For
this study, Paprotny at al. (2018b) used four indicators (i.e.
losses, persons affected, persons killed, or area flooded) as a
threshold to consider an event damaging. However, little is
known about the impacts and occurrence of compound flood
events globally (Bevacqua et al., 2017).

Classical methodologies for large-scale flood hazard and
flood risk studies mainly consider univariate flooding mech-
anisms and do not include compound flood events (Ward et
al., 2015). These assessments therefore focus on either river
(e.g. Alfieri et al., 2014; Dottori et al., 2016; Hirabayashi et
al., 2013; Ward et al., 2013, 2017; Winsemius et al., 2013,
2016) or coastal floods (e.g. Brown et al., 2016; Hinkel et
al., 2014; Muis et al., 2016; Vousdoukas et al., 2018), ne-
glecting riverine and sea level interactions. Yet, these interac-
tions can significantly influence the magnitude of simulated
water levels (Santiago-Collazo et al., 2019). At the global
scale, Ikeuchi et al. (2017) found the annual maximum river
water level for 2005 in low-lying flat areas to be underes-
timated by more than 0.5 m when ignoring sea level interac-
tions. Local studies have shown that ignoring the dependence
between river discharge and storm surge can underestimate
the return period of a given water level within a river mouth
(Bevacqua et al., 2017; Couasnon et al., 2018; Moftakhari et
al., 2019; Serafin et al., 2019).

Compound flood events can occur due to synoptic weather
systems (Seneviratne et al., 2012). Clearly, tropical cyclones
have the potential to cause simultaneous high river discharge
and storm surge, as exemplified by Cyclone Idai. Storms with
prevailing wind directions hitting mountains have also been

documented to generate strong sustained winds accompanied
with intense rainfall, due to orographic effects (Martius et
al., 2016; Svensson and Jones, 2002, 2004). However, the
co-occurrence of coastal and river floods can also occur by
chance and not be related to an underlying common synop-
tic weather system. The expected number of co-occurrences
happening by chance (i.e. statistical independence) can be
determined based on probability theory (Kew et al., 2013;
Martius et al., 2016). The impact of a compound flood event
is influenced by the magnitude of the river and coastal flood
drivers. The presence of a positive and significant statistical
dependence between flood drivers indicates a higher proba-
bility for the occurrence of extreme combinations of these
variables when compared to statistical independence (Dier-
manse and Geerse, 2012).

A consistent mathematical definition of compound flood
events does not exist and multiple statistical methods have
been suggested to study this phenomenon (Hao et al., 2018;
Tilloy et al., 2019). These methods usually examine the num-
ber of joint extremes or the statistical dependence between
proxy variables of different flood hazard types such as rain-
fall and storm surge, river flow and storm surge, and river
flow and sea level (Bevacqua et al., 2019; Hendry et al., 2019;
Kew et al., 2013; Paprotny et al., 2018a; Sadegh et al., 2018;
Svensson and Jones, 2002, 2004; Wahl et al., 2015; Ward et
al., 2018; Wu et al., 2018; Zheng et al., 2013). Recent com-
pound flooding studies carried out at the regional to global
scale used copula theory to characterise the bivariate joint
distribution and assess complex dependence structures, e.g.
in the case of upper tail dependence (Bevacqua et al., 2019;
Paprotny et al., 2018a; Ward et al., 2018). Possible compound
flooding mechanisms are examined by sampling a set of
events from the full bivariate time series and then analysing
the dependence structure of the latter. Wahl et al. (2015),
Moftakhari et al. (2017), and Ward et al. (2018) used condi-
tional sampling to assess the bivariate relationship between
a riverine flood driver and a coastal flood driver when one
variable was in an extreme state (e.g. by selecting annual
maxima or peaks over threshold). Other studies defined com-
pound flood events as pairs based on joint exceedances above
a predefined quantile such as the 95th or 97.5th percentile of
the respective marginal distribution (Bevacqua et al., 2019;
Hawkes, 2008; Kew et al., 2013). However, directly applying
such approaches for flood hazard quantification can be diffi-
cult due to the challenge of both defining independent and
identically distributed events and capturing extremes from
both time series (Hawkes, 2008; Hawkes et al., 2008).

A statistically robust analysis of bivariate flood drivers re-
quires an extensive set of high-quality observations. Studies
based on observations from gauge data have therefore pro-
vided an overview of the compound flood potential globally
but are strongly biased towards gauge-rich areas. In the case
of Ward et al. (2018), this resulted in a selection of 187 pairs
of stations located mainly around the coasts of North Amer-
ica, Europe, Australia, and Japan. Non-stationarities in the
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observations may be present due to anthropogenic activities,
such as water extractions, dam construction, and land-use
changes. These factors increase the complexity of the signal
and make the attribution of the dependence to synoptic mete-
orological drivers challenging. One way to address these lim-
itations is by using hydrodynamic models to simulate river
discharge and storm surge, and using these simulated time
series for the statistical analysis of compound flood poten-
tial. Such an approach has been carried out for the European
(Bevacqua et al., 2019; Paprotny et al., 2018a) and the Aus-
tralian coastlines (Wu et al., 2018).

In this paper, we identify potential hotspot regions for
compound floods from riverine and coastal floods along the
entire global coastline by taking advantage of the extensive
spatial and temporal coverage from a global river discharge
and a global storm surge model. In doing so, we provide a
first statistical assessment of the compound flood potential
in areas where observations from discharge and tide gauges
are absent or insufficient. We do not limit our analysis to
one specific statistical approach but purposefully examine
the compound flood potential by analysing both the timing
between river discharge and storm surge extremes, and their
dependence. We further suggest and apply a new methodol-
ogy to quantify compound flood hazard that integrates these
characteristics while fully capturing both extreme marginal
distributions. Finally, we exemplify the critical influence of
the dependence structure on the probability of compound dis-
charge and coastal flood events by means of a case study ex-
ample in Madagascar. Therefore, our global analysis should
be considered a first step towards statistically characterising
compound flooding from extreme river discharge and storm
surge worldwide.

This paper is divided in four parts, as follows. Section 2 in-
troduces the global datasets used and the method developed
for this study. Section 3 presents the results and discusses the
observed spatial patterns of high (low) compound flood po-
tential based on previous literature. We also emphasise the
implication of compound flood events for flood hazard quan-
tification by looking at a selected location in Madagascar and
the limitations of our study. The conclusions and outlook for
future research are presented in Sect. 4.

2 Data and methods

We assess the compound flood potential between riverine
and coastal flood drivers using simulated daily river dis-
charge and maximum daily storm surge as proxy variables,
respectively. The latter is a common choice for studying com-
pound flood hazard analysis in deltas and estuaries (Khanal
et al., 2019; Klerk et al., 2015; Svensson and Jones, 2002;
Ward et al., 2018). The research involves the following steps,
each of which is described in the following subsections:

1. selecting global datasets of river discharge and storm
surge time series,

2. defining sets of events to analyse compound flooding,

3. quantifying compound flood potential using the defined
sets.

2.1 Selecting global datasets of river discharge and
storm surge variables

We use simulations of instantaneous daily discharge of the
river-routing model CaMa-Flood version 3.62 (Yamazaki et
al., 2014) forced by daily average runoff data of the land sur-
face model JULES WRR2 eartH2Observe (Best et al., 2011;
Clark et al., 2011; Dutra et al., 2017; Schellekens et al., 2017)
available at https://doi.org/10.5281/zenodo.3552820 (Eilan-
der, 2019). The maximum daily storm surge is obtained from
the Global Tide and Surge Model (GTSM) (Muis et al., 2016;
Verlaan et al., 2015). These two datasets are selected because
they have shown good performance when compared to out-
puts from other global-scale models and are in good agree-
ment with observations (Beck et al., 2017b; Muis et al., 2016;
Schellekens et al., 2017). Both models were forced based on
the same meteorological dataset, namely the ERA-Interim
global reanalysis dataset developed by the European Cen-
tre For Medium-Range Weather Forecasts (Dee et al., 2011).
For precipitation, the MSWEPv1.2 dataset was used, which
complements the ERA-Interim dataset with other reanalysis,
satellite, and gauge datasets (Beck et al., 2017b). In the fol-
lowing paragraphs, we provide an overview of both global
models.

Daily river discharge is obtained by routing the mean daily
runoff of the JULES model from the eartH2Observe WRR2
reanalysis data at 0.5◦ resolution (Best et al., 2011; Clark
et al., 2011; Schellekens et al., 2017) with CaMa-Flood at
a 0.25◦ resolution (Yamazaki et al., 2011). The output is
the instantaneous discharge at 00:00 GMT daily for the pe-
riod 1980–2014. For the eartH2Observe WRR2 reanalysis
dataset, the hydrological model was forced with temperature
and potential evaporation derived from ERA-Interim and pre-
cipitation from the MSWEPv1.2 dataset (Beck et al., 2017c).
The effect of human water use on the water balance was not
included, and therefore the dataset characterises the com-
pound flood potential stemming from the climate forcing
only. Additional preprocessing of the runoff data was re-
quired to define runoff and remove negative runoff outliers
(Eilander et al., 2018). The river discharge obtained at the
coast is based on the assumption of a constant 0m+EGM96
coastal water level and not corrected for coastal discharges,
e.g. due to the influence of tidal currents, which means that
the discharge variable is the result from upstream catchment
processes only. The JULES model was specifically selected
as it showed one of the best mean overall performances in
terms of runoff signatures and temporal correlation when ex-
cluding polar regions (Beck et al., 2017b).

Storm surge, the change in sea level driven by high winds
and low atmospheric pressure, is simulated in GTSM with
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wind speed and atmospheric pressure from ERA-Interim
(Muis et al., 2016; Verlaan et al., 2015). The model is a
global hydrodynamic model using an unstructured grid with
a higher resolution on the shallow continental shelf (up to
3 arcmin) than in deeper parts of the oceans (0.5◦). The surge
component is modelled separately from the tide and thereby
does not include surge–tide interactions, which allows us
to isolate the meteorological contribution only. Storm surge
time series are available at 16 395 output locations unevenly
distributed along the coastline, with a temporal resolution of
10 min between 1979 and 2014.

We carry out additional validation for both models ex-
tending the validation performed by Beck et al. (2017b) and
Muis et al. (2016) by looking more specifically at the timing
and correlation of discharge and storm surge extremes over a
time period of at least 20 years between 1980 and 2014; see
Sect. S1 in the Supplement. We calculate the percentage of
annual maxima dates correctly predicted, termed “hit rate”,
and the Spearman’s rank correlation coefficient between ob-
served and simulated annual maxima. For the discharge, we
find a relatively high rank correlation globally (median: 0.57;
SD: 0.22). Capturing the timing of extreme river discharge is
more challenging (median hit rate: 0.21; SD: 0.18), but the hit
rate increases close to the coast (see Fig. S1). For the storm
surge, we find a higher hit rate (median: 0.34; SD: 0.22) and
a lower rank correlation coefficient (median: 0.37; SD: 0.31)
than for the discharge. In this case, coastal stations with a
high correlation coefficient also capture the timing of storm
surge extremes well. As a result, the timing and correlation of
extreme storm surge is generally well represented along the
European, North American, Japanese, and Australian coasts
but not the South African and South American coasts. We
further assess how the respective performance of both mod-
els can affect the compound flood potential measures defined
in Sect. 2.3 (see Sect. S1.3). Due to the selection criteria we
impose, this results in 25 pairs of observation stations, which
is insufficient for a rigorous comparison at large regional
scales. In general, we find that using the simulated discharge
and storm surge variables captures the sign of the dependence
correctly, but the magnitude of this dependence can largely
vary. Moreover, the models tend to correctly identify the lo-
cations with the highest number of co-occurring discharge
and storm surge annual maxima but overestimate this num-
ber. This additional validation showed that the performance
of both models vary globally, which as a result can locally
bias the compound flood potential. Nevertheless, it provides
an acceptable performance on average for the purpose of this
study, i.e. to provide a first-cut assessment of the compound
flood potential at the global scale.

Finally, each discharge location at the river mouth of
coastal catchments larger than 1000 km2 is paired with
the nearest (≤ 75 km) GTSM output location (Eilander et
al., 2018). This leads to 3434 stations of paired river dis-
charge and storm surge time series between 1980 to 2014,
representing 35 years of daily data.

2.2 Defining sets of events to analyse compound
flooding

We do not restrict our analysis to one specific set of extreme
river discharge and storm surge events per location but in-
stead define different sets of events from the paired time se-
ries in order to measure the compound flood potential (pre-
sented in Sect. 2.3). In this subsection, we explain the dif-
ferences between the sets and illustrate them for an example
location along the coast of Madagascar (Fig. 1c). Figure 1a
and b present the paired time series of simulated daily dis-
charge q and the maximum daily storm surge s for the exam-
ple location.

To investigate the strength of the dependence between the
two variables, we select the conditional sampling method
used in Wahl et al. (2015) and Ward et al. (2018). We cre-
ate two sets of events based on the conditional sampling of
the annual maxima of the river discharge Q and storm surge
S. We select for year n the maximum of the daily storm surge
height sn within tn±1 (days) from the occurrence of the an-
nual maximum of the river discharge Qn:

sn =max
(
stn−1, . . ., stn+1

)
where t (Qn)= tn. (1)

Conversely, the other set is created as follows:

qn =max
(
q tn−1, . . ., q tn+1

)
where t (Sn)= tn. (2)

This leads to two sets of pairs (Qn, sn) and (Sn, qn) with
n= 1, 2, . . ., 35. The two sets of events are shown in Fig. 1d
for the example location and a time window of1= 3 d. They
can be interpreted as the highest daily storm surge height
(river discharge) associated with the river discharge (storm
surge) annual maximum. Note that peaks could also be se-
lected based on a peaks over threshold (POT) approach. We
do not expect this choice to significantly influence the results
if selecting an equivalent threshold, as investigated by Ward
et al. (2018).

We also examine the co-occurrence of annual maxima by
defining another set of events, the annual maxima pairs of
river discharge and of storm surge: (Q1,S1) , . . ., (Qn,Sn).
If the timing between both annual maxima in a year is less
than or equal to1 (days), i.e.

∣∣tQn − tSn ∣∣≤1, we consider it
as a co-occurring event. We denote such a co-occurrence with
(Q∗n, S∗n). Figure 1e shows all the pairs of annual maxima ob-
tained for the example location for 1= 3 d. In this case, 14
co-occurring events are recorded over the whole 35 years of
simulation period (red dots). We transform the annual max-
ima pairs (Qn, Sn) to probability space using the empirical
cumulative distribution functions of both variables (Fig. 1f).
The pseudo-observations of the co-occurring events (shown
in red) do not only correspond to joint high quantiles but also
a combination of high, moderate, and low storm surge with
moderate to high quantiles of discharge. Unlike the condi-
tional sampling method, the marginal distribution using this
sampling approach now corresponds to the respective annual
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maxima distribution. This means that we can easily convert
the corresponding quantiles to their marginal return period.

In the extreme case where annual maxima of discharge
and surge are always co-occurring, this means that all the
sets of events defined above are equivalent. In other words,
(Qn, sn)= (Sn,qn)= (Qn,Sn)= (Q

∗
n,S
∗
n). We do not ex-

pect to observe such an extreme case, but this highlights that
(Q∗n, S∗n) events are always part of all sets. For the example
location, the 14 overlapping pairs from both conditional sets
in Fig. 1d correspond to the co-occurring annual maxima in
Fig. 1e and 1.

2.3 Quantifying compound flood potential using the
defined sets

We use the different sets of events constructed from the
marginal extremes as defined in Sect. 2.2 to measure the
compound flood potential at all the paired locations in three
ways. First, we calculate the conditional dependence strength
between river discharge and storm surge. Second, we calcu-
late the total number of co-occurring annual maxima from
the simulation period globally and analyse the probability of
obtaining such a result if discharge and surge were indepen-
dent. Finally, we calculate the compound flood hazard that
corresponds to the probability of observing a co-occurring
discharge and storm surge annual maxima above a certain
magnitude in a given year. These three approaches are de-
scribed in the three subsections below.

2.3.1 Conditional dependence strength

We characterise the interactions between river discharge and
storm surge by calculating the rank correlation coefficient
for the two sets of pairs (Qn, sn) and (Sn, qn) constructed
from the conditional sampling method at all paired loca-
tions. We use Spearman’s rank correlation coefficient rs to
assess the monotonic dependence strength. This is an advan-
tage over the Pearson’s linear correlation coefficient, which
quantifies the presence of linear relationships. We present re-
sults for values with a statistical significance up to 5 % level
(α = 0.05) and a time period of 1= 3 d but perform a sen-
sitivity analysis of 1 for up to 7 d and α = 0.10 (Table S1 in
the Supplement). For the example in Fig. 1d, the dependence
patterns observed correspond to rs = 0.38 (p value: 0.02) for
the (Qn, sn) pairs and rs = 0.51 (p value: 0.001) for the (Sn,
qn) pairs. This positive and significant dependence behaviour
for both sets of pairs suggests a high compound flood poten-
tial. This is further analysed in Sect. 3.1.

2.3.2 Number of co-occurring annual maxima

We analyse the number of co-occurrences of annual maxima
of river discharge and storm surge along the global coast-
line. To do so, we count the total number x of co-occurring
annual maxima (Q∗n, S

∗
n) obtained for each paired location

over the whole simulation period. Let X represent the total

number of co-occurrences within N years (here N = 35 and
x = 0,1, . . .,35), we use a binomial distribution to calculate
the probability of obtaining X = x co-occurrences under the
assumption of statistical independence:

P (X = x)=

(
N

x

)
px(1−p)N−x, (3)

where p is the probability of a co-occurrence in a given pe-
riod under the assumption of statistical independence. We
empirically derive p by assuming that the co-occurrence
can happen randomly within a period of a year (365 d) or
3 months (90 d), based on 1 000 000 repetitions and for dif-
ferent values of the time window 1. For example, for 1=
3 d, we find p = 0.0187 for the former and p = 0.0760 for
the latter.

As shown in Fig. 2a, one can expect a higher chance of
observing two or more co-occurrences within the 35 years
if both annual maxima are consistently occurring within the
same 90 d season (red curve) compared to if they occur ran-
domly throughout the whole year (blue curve). This finding
can be summarised as the exceedance probability of obtain-
ingX or more co-occurrences P (X ≥ x) and is calculated as
the area under the curve right of X = x; see Fig. 2b. As the
number of co-occurrences increases, the exceedance proba-
bility of observing such a situation in the data due to ran-
domness decreases for all cases and approaches 0, but this
value is modulated by the period in which both annual max-
ima can occur. For our example location, we observe X = 14
co-occurrences. Assuming that both annual maxima occur
randomly within the year, we read an exceedance proba-
bility of P (X ≥ 14)≈ 1× 10−15 from Fig. 2b, whereas if
they can occur randomly within the same season of 90 d
this probability increases to P (X ≥ 14)≈ 1× 10−7 but in
both cases remains a very low probability. The right tail of
the distributions in Fig. 2b nevertheless show that one could
expect to observe some locations with a large number of
co-occurrences even under the assumption of statistical in-
dependence, but these situations are expected up to a cer-
tain frequency. In other words, if the total number of co-
occurrences along all stations would be statistically indepen-
dent, we would expect to observe this situation at none of
the stations (= ·P (X ≥ 14)× 3434 stations). Therefore, we
compare the distributions of co-occurrences along the global
coastline obtained with the ones shown in Fig. 2.

2.3.3 Quantification of the compound flood hazard
potential

Finally, we examine the probability PF of observing a co-
occurring riverine and coastal event in any given year with
a discharge magnitude and a storm surge magnitude higher
than a threshold value z1, z2, respectively. We refer to prob-
ability PF as the compound flood hazard and calculate it as
follows:

PF = P (Q > z1 ∩ S > z2)×Pc, (4)
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Figure 1. Maximum daily storm surge s (a) and daily discharge q (b) paired for a location along the coast of Madagascar (c). Discharge
Q and storm surge S annual maxima from both (a, b) are used to construct event time series based on the conditional sampling method,
(Qn, sn) and (Sn,qn), using a time window of 1= 3 d (d) and joint annual maxima (Qn,Sn) (e). Joint annual maxima co-occurring within
1= 3 d, (Q∗n,S

∗
n), are shown in red. Events shown in (e) are shown in probability space in (f).

Figure 2. Probability mass function for the probability of observingX co-occurrences of annual maxima inN = 35 years and for1= 3 d (a).
The same as (a) but shown as the exceedance probability P(X ≥ x) (b). Note that the y axis for (b) is logarithmic.
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where Pc is the probability of a co-occurrence in a given
year. We estimate Pc from the number of co-occurring an-
nual maxima obtained within the time series. Here, we as-
sume that Pc is not a function of the threshold considered.
This assumption seems reasonable based on visual observa-
tions at randomly selected locations (see Fig. S9) since the
pseudo-observations of co-occurring annual maxima (red cir-
cles in Fig. S9) are not concentrated in a specific area of the
probability space. Therefore, at a given paired location, we
approximate Pc with the following equation:{
Pc = p,X = 0
Pc =

X
N
,X > 0

. (5)

If no co-occurrences were measured (X = 0), we cannot rule
out that co-occurrences will never happen and we select Pc =

p, i.e. the probability of observing a co-occurrence under the
assumption of statistical independence in any given year. As
explained in Sect. 2.3.2, this requires some knowledge about
the coastal and riverine flood season. Here, we simplify the
analysis by selecting a flood season of 365 d. The joint sur-
vival probability, P (Q > z1 ∩ S > z2), can be quantified as
follows using copula modelling (Serinaldi, 2015):

P (Q > z1 ∩ S > z2)= 1− u− v+C(u,v), (6)

where C is the copula function joining the uniform ranks u
and v of variables Q and S, respectively. We might under-
estimate the joint probability C(u,v) if the strength of the
dependence between the (Q, S) pairs significantly deviates
from the (Q∗, S∗) pairs. We use bootstrapping to calculate
whether the correlation between co-occurring annual max-
ima is statistically different to the correlation between non
co-occurring annual maxima (two-tailed test, significance
level α = 0.05). Note that the latter is possible only if we
observe at least two pairs of (Q∗, S∗) pairs. Finally, if no
statistical dependence is measured, we assume independence
between the magnitude of the joint exceedances and Eq. (6)
reduces to the following product:

P (Q > z1 ∩ S > z2)= (1− u)× (1− v). (7)

Given the limited temporal coverage of the data, we
present the result for a quantile threshold equivalent to a 5-
year discharge magnitude and a 5-year storm surge magni-
tude (i.e. u= v = 0.8). While this represents a relatively low
threshold value, we note that such conditions can be suffi-
cient to cause flooding in areas with no or low flood pro-
tection standards (see Scussolini et al., 2016 for a global
overview). Overbank flooding from unprotected rivers can
already happen for discharge return periods higher than
1.5 years (Dunne and Leopold, 1978) and result in dam-
aging floods when impacting human livelihoods (Ward et
al., 2013). We also select the Gaussian copula to model the
dependence structure but assess the sensitivity of this choice
on the compound flood hazard, using Madagascar as a case
study.

3 Results and discussion

In this section, we present the results for each compound
flood potential measure introduced in Sect. 2.3 along the
global coastline. We compare the results with respect to ex-
isting literature on compound flooding. Relevant meteorolog-
ical processes likely to lead to the observed regional patterns
of high compound flood potential are also discussed.

3.1 Conditional dependence strength

Figure 3 presents the Spearman’s correlation coefficient rs
for all paired locations along the global coastline and a time
window of 1= 3 d around the flood annual maxima. For
storm surge conditional on extreme discharge (Qn, sn) pairs,
we find statistically significant (α = 0.05) and positive de-
pendence for 14 % of locations (Fig. 3a). For discharge con-
ditional on extreme storm surge, (Sn, qn) pairs, we find sta-
tistically significant and positive dependence for 20 % of lo-
cations (Fig. 3b). On average, the dependence is also slightly
stronger for the latter case compared to the former: overall
mean rs = 0.09 for (Qn, sn) pairs; overall mean rs = 0.11 for
(Sn, qn) pairs; Welch’s t test p value: 0.0007. Finally, 67 %
of the locations do not exhibit statistically significant corre-
lation for either case. A similar analysis was performed by
varying the time window1 from 0 to 7 d (Table S1) and was
found to lead to similar results, except for 1= 0 d where
we observe a smaller value of 11 % for (Qn, sn) pairs. For a
higher significance level (α = 0.10), a higher percentage of
statistically significant correlations is found: 17 %–22 % for
(Qn, sn) pairs; 24 %–25 % for (Sn, qn) pairs. However, the
results are consistent with those obtained under α = 0.05.

We observe clear regional patterns of positive dependence
globally. These dependence behaviour patterns are similar
to those found by Ward et al. (2018) using observations
from river and tide gauges. We obtain more locations for
southwestern Japan that exhibit statistically significant de-
pendence when conditional on extreme storm surge (Fig. 3b)
than when conditional on extreme discharge (Fig. 3a). We
also find positive and statistically significant dependence for
locations both on the West and East coasts of the United
States (US). However, our results also highlight regions that
could not be examined by Ward et al. (2018) due to a lack of
gauge observations. Along the South American coastline, we
find a cluster of positive dependence along the south coast of
Chile. Along the African coastline, the coast of Madagascar
is consistently highlighted in both cases, as well as the coast
of Morocco. Finally, the coasts of India and large parts of
East Asia also show large regions with positive dependence.

Other regions, such as the East Coast of the US, Italy, the
United Kingdom (UK) or China, show a more complex de-
pendence behaviour. Riverine flooding in these regions is re-
lated to multiple mechanisms, not all of which are related to
the mechanisms causing high storm surge. On the East Coast
of the US, even though tropical cyclone activity is known
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to contribute to high storm surge levels and intense precip-
itation (Villarini and Smith, 2010; Wahl et al., 2015), other
river flood generating mechanisms also play a role. For ex-
ample, high river discharge could also be due to snowmelt
or convective storms happening upstream in the catchment
(Berghuijs et al., 2016). Similarly, for the eastern coast of
the UK, Hendry et al. (2019) found that storms that gener-
ate high river discharge are different to the ones that generate
high storm surge. This explains why the presence of a statis-
tical significance for discharge conditional on extreme storm
surge (Fig. 3a) may be absent when conditionally sampling
on extreme discharge (Fig. 3b).

Locations in several regional clusters exhibit a positive sta-
tistical dependence in both cases (6 % of all the locations
studied) and therefore present the highest potential for com-
pound flooding. Among others, we note the coasts of Mada-
gascar, Portugal, northern Morocco, northern Australia, Viet-
nam, and Taiwan, which all consistently show a positive and
significant dependence between discharge and storm surge.

3.2 Number of co-occurring annual maxima

We examine the total number of co-occurrences between
discharge and storm surge annual maxima obtained from
the simulation period and assess their probability of co-
occurrence under the assumption of statistical independence.
Figure 4 presents the total number of co-occurring annual
maxima, (Q∗n, S∗n) events, considering a time window of
1= 3 d. We observe a minimum of 0 co-occurrence and a
maximum of 19 co-occurrences within the 35 years simula-
tion period. At 64 % of the locations, we observe at least 1
co-occurrence. Clearly, the absence of a significant depen-
dence (measured at 67 % of the locations; see Sect. 3.1) does
not preclude the co-occurrence of discharge and storm surge
annual maxima. Finally, at 5 % of the locations, yearly max-
ima co-occur more than 30 % of the time (i.e. representing
10 co-occurrences or more over 1980–2014).

We test the significance of these results globally by com-
paring the empirical distribution obtained from the data with
the binomial distributions shown in Fig. 2. Figure 5 presents
the uncertainty bounds around the empirical distribution us-
ing non-parametric bootstrapping with 5000 bootstrap sam-
ples and a significance level α = 0.05. The right tail obtained
in our results significantly deviates from any of the binomial
distributions considered here. Therefore, we obtain more co-
occurrences than we would expect under the assumption of
independence (i.e. compared with binomial draws). This sug-
gests that in regions with a high number of co-occurrences,
discharge and storm surge annual maxima are very unlikely
to be independent and cannot be explained by seasonality
only. Instead, we argue that synoptic weather systems could
explain the high number of co-occurring annual maxima.
We note that even though the influence of the time window
clearly influences the number of co-occurrences measured
(see Fig. S14), it will not affect the interpretation of Fig. 5.

This is because the time window is already accounted for
when deriving the binomial probability distributions. There-
fore, selecting a larger time window would only result in a
shift of all distributions to the right, but similar conclusions
would prevail.

Locations where results deviate the most from indepen-
dence coincide with areas of strong tropical or extratropical
cyclone activity. Martius et al. (2016) found that coastal re-
gions affected by frequent tropical cyclones experience the
highest number of co-occurring wind and precipitation ex-
tremes. Their study highlighted very similar regional patterns
compared to the ones presented in Fig. 6 but with less geo-
graphical spread. This can be attributed to the fact that they
focused on the analysis of climate extremes, whereas we use
river discharge and storm surge where these meteorological
phenomena are propagated through model chains. In other
regions, they identify the interaction of weather systems with
regional orographic features that cause compound wind and
precipitation extremes. Atmospheric rivers landing on the
West Coast of the US have caused recurrent major flood
events (Gimeno et al., 2014). Composite analyses of these
systems show that they can be accompanied by extreme skew
surge (Ridder et al., 2018; Ward et al., 2018). The Iberian
Peninsula and the Atlas Mountains contain major orographic
features that can block prevailing wind flows and trigger oro-
graphic rainfall during low pressure systems, thereby causing
high river discharge. These synoptic weather systems were
documented to have caused serious flood events in Portu-
gal during windstorms Klaus in 2009, Xynthia in 2010, and
Gong in 2013 (Liberato, 2014).

3.3 Quantification of the compound flood hazard
potential

We use Eq. (4) to calculate the probability PF of a dis-
charge and storm surge annual maxima co-occurring in any
given year with a magnitude higher than a threshold value,
and referred to as the compound flood hazard potential.
Figure 6 shows the result using a threshold equivalent to
a 5-year return discharge level and a 5-year return storm
surge level. The probability PF is presented as a joint re-
turn period in years (1/PF). A low (high) joint return pe-
riod indicates a high (low) probability of a river discharge
and storm surge annual maxima co-occurring, each higher
than their individual 5-year return level. Assuming indepen-
dence between the two variables, these conditions would
be exceeded about once every 1337 years on average, i.e.
1
/

[(0.2× 0.2)× 0.0187] . In the case of complete depen-
dence, this would happen once every 5 years on average, i.e.
1
/

[0.2× 1] . In 66 % of the paired locations, the joint return
period obtained is lower than that of independence. There-
fore, this indicates some compound flood hazard potential
along most of the global coastline. However, the magnitude
of this potential varies per region.
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Figure 3. Spearman’s rs correlation coefficient between storm surge conditional on annual maxima discharge (Qn, sn) (a) and discharge
conditional on annual maxima storm surge (Sn, qn) (b). Black dots denote locations with no significant dependence (α = 0.05). Major rivers
are shown in light blue.

Figure 4. Number of co-occurring annual maxima of discharge and storm surge obtained between 1980 and 2014 using a time window of
3 d. Major rivers are shown in grey.
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Figure 5. Comparison of the empirical distribution of the number of co-occurrences from the simulations (in black) with the binomial
distributions, assuming that annual maxima can happen randomly within the year (365 d, blue curve) or within the same season (90 d, red
curve). Probability mass function (a) and exceedance probability function (b). The 95 % confidence intervals (CI) are calculated using
bootstrapping.

Focusing on Europe (inset in Fig. 6), we find the high-
est compound flood hazard potential mainly on the west-
ern coast, more specifically along the coasts of Portugal and
Ireland, the western coast of the United Kingdom, and the
Straits of Gibraltar. This regional pattern is also observed
in the studies of Bevacqua et al. (2019) and Paprotny et
al. (2018a). However, contrary to Bevacqua et al. (2019), we
do not find a high compound flood hazard potential for the
coast of France. We attribute this difference to the fact that
we focus on river discharge, whereas their study examined
rainfall. In this area, a cross-correlation analysis on the re-
sults from this study (not shown here) shows a lag between
±12 to 30 d, which exceeds the maximum lag of ±3 d con-
sidered for this analysis.

Regions with a high compound flood hazard potential
identified in Fig. 6 coincide with regions with a high number
of co-occurring annual maxima (Fig. 4) and a strong positive
statistical dependence (Fig. 3). This is to be expected since
co-occurring annual maxima (Q∗n, S∗n) events are present in
both sets of events (Qn, sn) and (Sn, qn). Similarly, regions
with a large joint return period (500 years or more) corre-
spond with areas with a low probability of annual maxima
co-occurrence and/or no statistical dependence. Finally, we
observe regions with no clear spatial patterns, such as along
the Mediterranean Sea, the Gulf of Mexico, and India. This
could be explained by one or a combination of the following
reasons. First, the fact that there are multiple river flood gen-
erating mechanisms that lower the likelihood of co-occurring
discharge and storm surge annual maxima. Second, even in

the presence of synoptic weather systems, this does not en-
sure a strong and positive dependence between storm surge
and discharge. Drivers of maximum storm surge heights are
particularly complex, and are influenced by external factors
such as local bathymetry and the geometry of the coastline
(Bloemendaal et al., 2019). Third, in large catchments, there
may also be a lag of several days for river flood waves to
reach the basin outlet (Allen et al., 2018), such that the river-
ine and coastal flood annual maxima do not interact (Kew et
al., 2013; Klerk et al., 2015; Ward et al., 2018).

We assess the sensitivity of the joint return period shown
in Fig. 6 to the selected dependence model by selecting on a
location in a region with a high compound flood hazard po-
tential in Madagascar. The selected paired location is shown
in Fig. 1. Figure 7 presents the probability PF as a joint return
period but for multiple dependence models, and for different
threshold values corresponding to from 5-year to 100-year
marginal return levels. We use the lowest Akaike informa-
tion criteria (AIC) value as an indication for the best fitting
bivariate copula model for the data, as implemented in the R-
package VineCopula. Out of the 40 copula families tested, we
find the Joe Clayton (BB7) copula to best model the depen-
dence structure. For a 5-year marginal return level, the dif-
ference in joint return period between the Gaussian and the
BB7 copula models is minor (27 and 21 years, respectively).
This is not the case for higher threshold values. For threshold
values corresponding to a 100-year return discharge or storm
surge level, we observe an approximate fourfold increase be-
tween the two (joint return period of 1588 years with the
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Figure 6. Probability of a co-occurring annual maxima in a given year PF presented as the return period in years exceeding the marginal
5-year return periods of discharge and of storm surge. Major rivers are shown in light blue.

Figure 7. Effect of the dependence structure on the joint return pe-
riod of a discharge and storm surge annual maxima co-occurring in
any given year with a magnitude higher than a selected threshold.
The latter corresponds to the marginal return period of discharge
and of storm surge levels.

Gaussian copula versus 428 years with the best fitting copula
model). Therefore, for large thresholds this shows that the de-
pendence structure model can greatly influence the probabil-
ity of concurrent extremes. This is because, unlike the Gaus-
sian copula, the BB7 copula models upper tail dependence
(Joe, 2015). In the presence of upper tail dependence, the de-
pendence coefficient in the tail of the distribution is higher
than the overall dependence coefficient, thereby increasing
the probability of observing a concurrent extreme (Hobaek
Haff et al., 2015). Even though detecting upper tail depen-
dence with confidence from limited data length remains chal-
lenging (Serinaldi et al., 2015), these results show that it can
significantly impact the joint return period. For flood im-
pact assessments, it is therefore recommended to thoroughly
assess the dependence structure when considering multiple
flood drivers.

3.4 Limitations

While we identify potential compound flooding hotspot re-
gions from extreme discharge and storm surge variables, sub-
stantial uncertainties remain as to how this phenomenon will
propagate into inland flooding. Flood events in a coastal
catchment typically result from the interactions of other
drivers not considered in this study, such as local rainfall,
wave effects, tidal amplitude, and surge–tide interactions
(Saleh et al., 2017; Vousdoukas et al., 2016). Moreover, lo-
cal characteristics like the bathymetry, catchment properties,
and the presence of water control structures further influ-
ence the extent to which these interactions contribute to wa-
ter level extremes at the considered river mouths (Gori et
al., 2019; Veldkamp et al., 2018). Specific compound flood
event modelling studies (Bilskie and Hagen, 2018; Kumbier
et al., 2018) and comprehensive probabilistic simulations at
local scales show that multivariate flood drivers result in
highly non-linear responses of flood impact variables such as
flood depth and flood extent (Couasnon et al., 2018; Serafin
et al., 2019). Future assessments of compound flood hazard
at the global scale should therefore focus on incorporating
those multivariate processes and is left for future work.

In this study, we base our statistical analysis on annual
maxima, which results in 35 data points per paired loca-
tion. Alternative strategies, such as a peaks over threshold
approach or sampling the r-largest events per year, could
be used to increase the sample size (Coles et al., 2001;
Tawn, 1988). However, those approaches also suffer from
disadvantages (Hawkes, 2008). For example, they may re-
sult in sampling events that are not relevant for the flood
hazard analysis and therefore add some noise in the sets of
events used to measure the compound flood potential. Ward
et al. (2018) found lower statistical dependence when using
a POT method with a 95th percentile. POT methods may
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also result in a different number of events for the discharge
than the storm surge variable if they are used to obtain inde-
pendent and identically distributed extremes. This becomes
particularly problematic for the analysis of their joint prob-
ability, which requires pairs. Instead, another more promis-
ing option to increase the sample size could be to work with
climate ensemble models, such as those applied in Kew et
al. (2013) and Khanal et al. (2019), provided that their per-
formance is satisfactory and that the multivariate dependence
structure is not affected by bias adjustments (Zscheischler et
al., 2019).

Moreover, the results presented in this study are dependent
on the accuracy of the models. The validation performed in
this study indicates an acceptable performance on average,
albeit with large spatial differences. The timing of the simu-
lated storm surge compared with observations shows a poor
performance of the model for stations along the coasts of
South America and Africa. Yet, the accuracy of the models
in measuring the compound flood potential along large parts
of the coastline in South America, Africa, and Asia could not
be assessed due to a lack of long-term gauge observations of
discharge and sea levels. This was the main motivation for
examining different compound flood measures and selecting
moderate joint return period conditions, in order to identify
regions potentially most exposed to this phenomenon. Never-
theless, important processes for compound flood events may
be underestimated or absent in the global models used for
this study. Small-scale convective and short-lived processes
affecting both wind and precipitation extremes are not fully
represented in the weather forcing but may be of critical
importance in areas affected by tropical cyclones (Beck et
al., 2017a; Martius et al., 2016; Muis et al., 2016). Interac-
tions with ice and snow cover are also currently not resolved
at higher latitude, which affects the timing and magnitude of
both storm surge heights (Muis et al., 2016) and river dis-
charge (Yamazaki et al., 2011). Therefore, results in north-
ern regions, where we find the lowest compound flood hazard
potential, are particularly uncertain and should be interpreted
with care. More generally, this emphasises the need for local-
scale studies in order to accurately quantify compound flood
hazard locally.

Finally, we investigate compound flooding interactions
under current climate conditions from hydrometeorologi-
cal processes only, and neglect anthropogenic changes on
the catchment and the climate. Human interventions, such
as water extractions, water retention, or flood protection
infrastructure can affect the travel time and magnitude
of extreme discharges and modify the discharge time se-
ries (Allen et al., 2018; Veldkamp et al., 2018). Com-
bined with changes in environmental conditions, e.g. due
to sea-level rise and changes in storminess, these additional
non-stationary drivers can strongly modulate the multivari-
ate dependence structure between flood drivers and affect
compound flood hazard (Moftakhari et al., 2017; Wahl et
al., 2015).

4 Conclusions and outlook

This paper provides a global perspective of the compound
flood potential from riverine and coastal flood drivers. By se-
lecting time series of flood drivers for both hazard types, we
derived a global overview of areas particularly exposed to
the co-occurrence of high discharge and storm surge level,
and we quantified the strength of the interactions between
the two variables. We analysed important characteristics of
compound flooding related to the timing and joint depen-
dence between river discharge and storm surge extremes. Re-
gional clusters consistently exhibit a high potential for com-
pound flooding. Hotspot regions such as Madagascar, Portu-
gal, northern Morocco, northern Australia, Vietnam, and Tai-
wan all show a positive and significant dependence between
flood drivers and a large number of co-occurring annual max-
ima. Using the binomial distribution for different flood sea-
son lengths, we showed that the dependence between these
variables cannot be explained by random extreme interac-
tions within a season. Instead, we hypothesise that this de-
pendence results from synoptic weather systems and interac-
tions between these weather systems and topography.

Extreme impact events caused by synoptic weather sys-
tems, like Hurricane Harvey or Idai, highlight the importance
of considering compound flood events for flood protection
in coastal communities. Currently, regulatory flood hazard
maps, such as those used in the US, often only model flood-
ing due to one flood driver (Federal Emergency Manage-
ment Agency, 2015; Moftakhari et al., 2019). Because such
a methodology discards the interactions between river and
coastal floods, it can strongly flaw the representation of flood
hazard in deltas and estuaries. This is also the case for current
global state-of-the-art flood models, and our study provides
a first indication of regions along the global coastline where
discharge and storm surge extremes are likely to co-occur. In
areas coinciding with rapid economic development, this can
have strong implications for emergency responders, reinsur-
ance, and local decision makers.

How compound flood events will affect flood impacts,
adaptation strategies, and management operations at local
scales is strongly dependent on local conditions and is there-
fore left for future research. We presented our first insights
into how the dependence structure impacts on the probability
of hazardous riverine and coastal conditions globally. Such
a method could be used to generate stochastic events to ex-
plore the impact of unforeseen events within a certain catch-
ment through hydrodynamic and impact model experiments.
Similarly, future studies should investigate the importance of
synoptic weather conditions with respect to the contributions
from local drivers such as estuarine topography, land cover,
human interventions, and water management and control in
determining the impacts from current and future compound
flood events.
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