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Purpose: To describe a novel biochemical marker in dried blood
spots suitable to improve the specificity of newborn screening for
Pompe disease.

Methods: The new marker is a ratio calculated between the
creatine/creatinine (Cre/Crn) ratio as the numerator and the activity
of acid α-glucosidase (GAA) as the denominator. Using Collabora-
tive Laboratory Integrated Reports (CLIR), the new marker was
incorporated in a dual scatter plot that can achieve almost complete
segregation between Pompe disease and false-positive cases.

Results: The (Cre/Crn)/GAA ratio was measured in residual dried
blood spots of five Pompe cases and was found to be elevated (range
4.41–13.26; 99%ile of neonatal controls: 1.10). Verification was by
analysis of 39 blinded specimens that included 10 controls, 24

samples with a definitive classification (16 Pompe, 8 false positives),
and 5 with genotypes of uncertain significance. The CLIR tool
showed 100% concordance of classification for the 24 known cases.
Of the remaining five cases, three p.V222M homozygotes, a benign
variant, were classified by CLIR as false positives; two with genotypes
of unknown significance, one likely informative, were categorized as
Pompe disease.

Conclusion: The CLIR tool inclusive of the new ratio could have
prevented at least 12 of 13 (92%) false-positive outcomes.
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INTRODUCTION
Acid α-glucosidase (GAA) deficiency (Pompe disease; glyco-
gen storage disease type II; OMIM 232300) results in different
clinical phenotypes depending on age at onset, degree of
organ involvement, and severity of muscle disease.1 Tradi-
tionally, Pompe disease is classified in an infantile-onset and a
late-onset variant. Patients with infantile-onset Pompe disease
suffer from cardiomyopathy, progressive cardiorespiratory
decline, and death, usually by the end of the first year of life.
Late-onset Pompe disease has been classified based on age at
onset as childhood, juvenile, and adult-onset disease, but
more recently classifications have been attempted that are
based on symptomatology such as limb girdle and diaphrag-
matic weakness pattern, rigid spine syndrome, scoliosis, and
cardiocerebrovascular pattern.2 Severity of this emerging
multisystemic and progressive disease correlates best with
length of time since onset of symptoms.3 The nonspecific and
variable presentations that overlap with other, more common
etiologies explain why Pompe disease is often undiagnosed in
older patients. But efforts to increase understanding and
awareness of this previously untreatable condition have been
under way since 2006, when recombinant human GAA was

approved by the US Food and Drug Administration as
enzyme replacement therapy.4

The incidence of Pompe disease of any phenotype varies
greatly among different ethnicities, from an estimated
1:14,000 in African Americans1 to 1:600,000 in a study from
Portugal.5 In the United States the overall incidence was
initially estimated to be approximately 1:40,000,6 but newborn
screening now reveals a higher prevalence of Pompe disease
ranging from 1 in 5,500 in Missouri to 1 in 28,000 in
Washington with most infants identified being affected with
late-onset Pompe disease.7,8 At the genotype level, at least 563
variants are listed in the online database curated by Erasmus
University,9 almost 100 of which are classified as benign
pseudodeficiency alleles that cause low enzyme activity
in vitro with no associated clinical phenotype.10 As a direct
consequence, early newborn screening pilot programs for
Pompe disease showed a high frequency of the c.
[1726A;2065A] pseudodeficiency allele in the Asian popula-
tion, generating a large number of false-positive results.11,12

Reports of screening performance have varied widely among
different pilot programs. For example the positive predictive
value may range from 80% to as low as 0.37%.8
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Although response to enzyme replacement therapy is highly
variable and complicated by the risk of an immune response
against the recombinant enzyme, clinical trials have shown
prolonged survival and better quality of life in early-onset
patients especially when treatment is initiated very early in
life.13 Although enzyme replacement therapy appears to be
well tolerated by patients with late-onset Pompe disease,14 the
benefits of treatment are maximized only when initiated
before irreversible symptoms develop.15 The availability of a
newborn screening test, a treatment option, and evidence that
early treatment improves outcomes led to the addition of
Pompe disease to the Recommended Uniform Screening
Panel in March 2015.16

To minimize the number of false-positive results requiring
unnecessary patient contact, genotyping of borderline cases
has been adopted as for other lysosomal disorders.17 At the
biochemical level, the Taiwan newborn screening program
proposed to calculate the neutral α-glucosidase to GAA
ratio.18 Second-tier tests have shown clinical utility for other
lysosomal disorders,19,20 but no other known marker of
Pompe disease measurable in blood spots has been described
yet. We report here the incidental discovery and preliminary
validation of a new marker applicable to the differential
diagnosis between Pompe disease and false-positive cases.

MATERIALS AND METHODS
Reference population
Residual samples of routine specimens (N = 1,896) collected
at o250 hours of age and screened for three lysosomal
disorders were also analyzed by flow infusion tandem mass
spectrometry to determine a preliminary reference range of
the creatine/creatinine (Cre/Crn)/GAA ratio. Percentiles of
the reference ranges, not adjusted for covariates, are shown in
Table 1.

True-positive and false-positive cases
The initial validation of the new ratio was based on the
analysis of known cases with Pompe disease collected at age
o250 hours and tested for six lysosomal enzymes, four
lysophosphatidylcholines, creatine, and creatinine (12-plex
assay). Three cases were detected prospectively as part of
newborn screening in the Commonwealth of Kentucky since
February 2016.21 Two additional true-positive samples, also
collected within 10 days of age, were follow-up specimens for
abnormal newborn screening results from other state
programs (IRB 15-0055393). As no residual samples of

genotype-confirmed false-positive cases were available to
measure creatine and creatinine, an exchange of specimens
with the New York State newborn screening program under
an approved New York State quality improvement project was
arranged. Thirty-nine samples were sent blindly and later
their case resolution was provided after return of the results
and interpretation shown in Table 2. In this group, a
diagnosis of early infantile-onset Pompe disease was made
based on the presence of cardiac abnormalities. Nonclassical
infantile cases had no cardiac involvement, but did present
prior to 1 year of age with deficiencies in muscle tone. None
of the predicted late-onset cases have developed symptoms.
To evaluate the potential utility of the Cre/Crn ratio in

blood spots for Duchenne/Becker muscular dystrophy
(DMD), 36 blinded samples of clinically genotyped unaffected
cases, female carriers, and DMD patients were provided by
EGL Genetics (Atlanta, GA) (IRB 00090208).

Analytical methods
The activity of GAA, five other lysosomal enzymes, and the
concentrations of four lysophosphatidylcholines were mea-
sured by flow infusion tandem mass spectrometry.22 Unre-
lated to lysosomal disorders, other conditions are under
consideration for inclusion in the Recommended Uniform
Screening Panel. One of them is guanidinoacetate methyl-
transferase deficiency (OMIM 601240), which is detectable in
neonatal blood spots by measuring guanidinoacetic acid
(Guac).23–26 Rather than relying on a single compound,
testing a profile of Guac, Cre, and Crn is preferable as it
provides an opportunity to calculate ratios.27 To begin
covering guanidinoacetate methyltransferase deficiency as
part of a comprehensive supplemental newborn screening
panel, these markers have been incorporated in our standard
procedure for the analysis of amino acids, acylcarnitine, and
succinylacetone in dried blood spots by tandem mass
spectrometry.28 Briefly, stable isotope labeled internal stan-
dards d3-Crn, d2-Guac, and d3-Cre were purchased from
CDN Isotopes (Point-Claire, Quebec, Canada). Methanol
solutions of each internal standard were added to the amino
acid and acylcarnitine internal standard solution with no
other modifications of the existing method being necessary.
The triple quadrupole instrument was optimized for multiple
reaction monitoring of mass transitions m/z 114.1 to 44.1,
117.1 to 47.1, 188.2 to 90.0, 191.2 to 93.1, 174.2 to 101.1, and
176.2 to 103.1 for Crn, d3-Crn, Cr, d3-Cr, Guac, and d2-Guac,
respectively, as previously described.23 These experiments

Table 1 Percentiles of reference ranges (not adjusted for covariates)
Marker Count 1%ile 10%ile 50%ile 90%ile 99%ile

Acid α-glucosidase (GAA)a (nmol/ml/h) 55,161 5.61 7.62 12.14 19.33 28.40

Creatine (Cre) (nmol/ml) 1,896 241 321 425 567 729

Creatinine (Crn) (nmol/ml) 1,896 47.4 60.1 76.6 96.7 118

Cre/Crn ratio 1,896 3.5 4.2 5.1 6.1 7.1

(Cre/Crn)/GAA ratio 1,896 0.2 0.3 0.5 0.8 1.1
aSame values as reported in ref. 21.
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were then added to the panel of precursor ion, neutral loss,
and multiple reaction monitoring scans for acylcarnitine,
amino acid, and succinylacetone determination. Genotyping
was performed by Sanger sequence analysis of all coding
exons and 20 bp at each intron/exon boundary of the
GAA gene.

Postanalytical interpretation
A workflow designed to implement prospective screening for
lysosomal disorders has been described.21 Briefly, a 6-plex
lysosomal panel is analyzed and the results are matched
against covariate-adjusted reference intervals.27 This analysis
is accomplished using postanalytical interpretive tools created
by Collaborative Laboratory Integrated Reports (CLIR;
https://clir-mayo.edu), a multivariate pattern recognition
software originally developed for the interpretation of new-
born screening for metabolic disorders by analysis of amino
acids and acylcarnitines.29,30 If the score is greater than zero,
another tool, called the dual scatter plot, is used to establish a
differential diagnosis between Pompe disease and false-
positive cases.21 If the case is classified as either Pompe
disease (score coordinates in the lower right quadrant) or
indeterminate (score coordinates in the upper right quadrant
where true- and false-positive cases cosegregate) a repeat
analysis is performed including C20–C26 lysophosphatidyl-
cholines (10-plex). Cases with a score again > 0 are tested
with the 10-plex version of the dual scatter plot. A still
informative score constitutes an abnormal result that before
the recognition of the new marker described here would have
triggered a referral to initiate follow up.

RESULTS
During the postanalytical validation of an expanded newborn
screening panel (Recommended Uniform Screening Panel
plus other candidate conditions, including three disorders of
creatine metabolism) a Pompe case was noted to have a Cre/
Crn ratio of 9.0, substantially higher than the 99%ile of the
reference population (7.1). A biological rationale for the
elevated ratio among Pompe patients can be postulated
following the observation of serum creatine and creatinine
levels at the higher and lower ends of normal reference ranges,
respectively, in adult-onset patients with Pompe disease.31

Therefore, we hypothesized that the Cre/Crn ratio could
be a marker of early muscle involvement already present
in the newborn period and potentially an opportunity for
introducing a multitier approach for Pompe disease newborn
screening. Although testing of additional cases failed to
confirm the initial finding (range 4.71–5.47, N = 4;
Figure 1a), an attempt was made to further integrate the
Cre/Crn ratio with the residual GAA activity (Figure 1b),
which resulted in a clear separation from the reference
population (Figure 1c). At this stage, however, it was still
unknown to what extent the potential marker would behave
in false-positive cases with similar and overlapping residual
GAA activity (Figure 1b).

The analysis of 39 blinded samples with the 10-plex assay
resulted in a distribution of cases as follows: 10 normal cases,
based on GAA activity; 16 likely Pompe disease; 8 likely false-
positives; and 5 indeterminate outcomes. These results were
disclosed to the New York program, which then shared the
genotypes and outcomes for these cases. All results matched,
particularly the five indeterminate cases, which were classified
as harboring variants of uncertain significance. With this
information, it was possible to establish disease ranges for
the Cre/Crn and (Cre/Crn)/GAA ratios in false-positive cases
(Figure 1a,c), and create a 12-plex dual scatter plot
(Figure 2a) that achieved complete separation between the
two groups of confirmed cases. Figure 2b shows the
combined scores and quadrant localization of the 24 concor-
dant cases, 8 false positives, and 16 true positives. Figure 2c
shows the scores of the remaining cases. The three cases that
were resolved as false positives harbor the same genotype,
homozygosity, for the p.V222M variant. This variant has been
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reported as likely benign or pseudodeficient,9 and these cases
were not included in a summary of Pompe disease in a recent
report of post–newborn screening evaluation of Pompe
disease in New York State.32 For these reasons, we are
considering these cases to be false positives properly recog-
nized by the CLIR tools. The genotypes of the final two cases
resolved by CLIR as Pompe disease were p.E721Rfs//p.
D91N_p.W746L (case 34) and homozygosity for p.P690L_p.
G576S_p.E689K (case 36), respectively. Both cases were listed
in the publication mentioned above;32 case 34 as “Pompe

disease/variant of unknown significance 2” and
case 36 as “Pompe disease/Pathogenic-10.” The latter case is
consistent with the CLIR classification and therefore
considered a correct outcome. On the other hand, variant
p.P690L is a recurrent variant of unknown significance found
in unrelated families.33 Pending further characterization of
this genotype, for the purpose of the current study, case 34
was considered to represent a false-positive outcome,
incorrectly classified by CLIR.

DISCUSSION
This report describes preliminary but promising evidence of a
biochemical second-tier test to improve the specificity of
newborn screening for Pompe disease. Additional validation
studies are necessary and are undergoing in several ways: (i)
continuing prospective screening of lysosomal disorders;21 (ii)
routine clinical offering of the 12-plex assay as a standalone
orderable second-tier test; (iii) future potential demand for
the new expanded panel; and (iv) sharing of specimens and
results of newly confirmed cases as part of an ongoing
collaborative effort centered around the CLIR database. If
confirmed, a biochemical second-tier test for Pompe disease
not only is more cost effective than molecular genetic analysis
but also allows a faster turnaround time of results. To achieve
best outcomes,13 early-onset Pompe disease should be
considered a time-critical condition for which newborn
screening results should be made available to care providers
by the 5th day of life, a goal not readily achievable when using
molecular genetic analysis as a second-tier test. Another
benefit of a reliable biochemical second-tier test is the
avoidance of anxiety and costs associated with the frequent
discovery of genotypes of uncertain significance, which
eventually turn out to be unaffected individuals with
pseudodeficient GAA activities.8,34,35

It is also possible to begin exploring whether the Cre/Crn
ratio alone, the (Cre/Crn)/GAA ratio, or additional permuta-
tions of ratios could be relevant to the expansion of the
biochemical phenotype of other conditions with prominent
skeletal and cardiac myopathy and consequent elevation of
creatinine phosphokinase, for example, very long chain fatty
acid oxidation disorders36 and particularly DMD and related
disorders.37 For proof of concept, preliminary testing of blood
spotted on filter paper from residual clinical samples of
genotyped DMD patients showed consistent elevations of the
Cre/Crn ratio (Figure 3; age 3–11 years, N = 10, range 6.42–
8.99; age 25–39 years, N = 10, range 4.71–10.44; controls of
age 21–60 years, N = 11, range 2.55–4.96; see Table 1 for
neonatal reference percentiles). As a next step we are seeking
neonatal/infantile blood spot specimens of DMD patients to
evaluate whether one or more permutations of ratios
integrating creatine and creatinine could be used as a
second-tier test or even as an alternative primary test for
newborn screening of DMD and related disorders.
The traditional concept of a second-tier test is to increase

specificity of the primary screening without requiring addi-
tional patient contact and specimen collection.38 In the case of
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Figure 2 Collaborative Laboratory Integrated Reports dual scatter
plot (12-plex) applied to the differential diagnosis between Pompe
disease and false-positive cases. Each plot is divided in four quadrants.
Lower right: consistent with Pompe disease (light blue circles). Upper
right: indeterminate (both conditions are possible). Upper left: consistent
with false-positive cases (purple circles). Lower left: neither condition. (a)
Distribution of scores of cases confirmed by genotyping. (b) Distribution
of scores of blinded cases (red diamonds) with concordance of resolution.
(c) Distribution of scores of blinded cases resolved by the New York
program as genotype of unknown significance (arrow indicates case 34).
See Table 2 for details. FP, false positives.
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Pompe disease, this evaluation is achieved by calculating a
ratio between the already measured enzyme activity (GAA),
other lysosomal and peroxisomal markers, and two unrelated
markers added to the primary screening panel to target
unrelated conditions, namely the disorder of creatine
metabolism. As all the markers are measured as part of an
expanded test, in essence the second-tier test for Pompe
disease differs from those previously developed because of
the potential to become “built in” and therefore could be
performed in every sample and become part of the primary
screening. Similar to the concept of protein moonlighting, a
phenomenon by which an enzyme can perform more than
one function,39 this observation provides credence to the
possibility of also uncovering potentially many more moon-
lighting biochemical markers, and new impetus to the
systematic review of markers and calculated ratios in all
target conditions, not limited to those biologically linked to a
given condition. Using the CLIR software it has become
readily possible to rapidly screen the whole spectrum of
calculated ratios across all types of markers, and to seek
evidence of clinical utility especially when targeting the
differential diagnosis between true- and false-positive cases.
This effort to discover secondary biomarkers, in parallel to the
calculation of covariate-adjusted reference percentiles, could
pave the way to a global implementation of precision newborn
screening,21 defined as the sustainable achievement of
performance metrics substantially better than historical
standards.40
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