Content-Length: 339529 | pFad | https://www.nature.com/articles/s41558-023-01769-3

=86400 Harnessing AI and computing to advance climate modelling and prediction | Nature Climate Change
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Harnessing AI and computing to advance climate modelling and prediction

There are contrasting views on how to produce the accurate predictions that are needed to guide climate change adaptation. Here, we argue for harnessing artificial intelligence, building on domain-specific knowledge and generating ensembles of moderately high-resolution (10–50 km) climate simulations as anchors for detailed hazard models.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Improving climate models and predictions by learning from observational and simulated data.

NASA (top image and satellites); K. Pressel, D. Menemenlis, C. Hill and G. Manucharyan (Clouds, ocean turbulence and sea ice images)

References

  1. Fiedler, T. et al. Nat. Clim. Change 11, 87–94 (2021).

    Article  Google Scholar 

  2. Bevacqua, E. et al. Nat. Commun. 14, 2145 (2023).

    Article  CAS  Google Scholar 

  3. Bauer, P., Stevens, B. & Hazeleger, W. Nat. Clim. Change 11, 80–83 (2021).

    Article  Google Scholar 

  4. Slingo, J. et al. Nat. Clim. Change 12, 499–503 (2022).

    Article  Google Scholar 

  5. Schneider, T. et al. Geophys. Res. Lett. 44, 12396–12417 (2017).

    Google Scholar 

  6. Schneider, T., Kaul, C. M. & Pressel, K. G. Nat. Geosci. 12, 163–167 (2019).

    Article  CAS  Google Scholar 

  7. Stevens, B. et al. Prog. Earth Planet. Sci. 6, 61 (2019).

    Article  Google Scholar 

  8. Wedi, N. P. et al. J. Adv. Model. Earth Sys. 12, e2020MS00219 (2020).

    Google Scholar 

  9. Feng, Z. et al. Geophys. Res. Lett. 50, e2022GL102603 (2023).

    Article  Google Scholar 

  10. Kovachki, N. B. & Stuart, A. M. Inverse Probl. 35, 095005 (2019).

    Article  Google Scholar 

  11. Cleary, E. et al. J. Comp. Phys. 424, 109716 (2021).

    Article  Google Scholar 

  12. Couvreux, F. et al. J. Adv. Model. Earth Sys. 13, e2020MS002217 (2021).

    Article  Google Scholar 

  13. Knutson, T. R. et al. Nat. Geosci. 3, 157–163 (2010).

    Article  CAS  Google Scholar 

  14. Oldenburg, D. et al. J. Geophys. Res. Oceans 127, e2021JC018102 (2022).

    Article  Google Scholar 

  15. Bates, P. D. et al. Water Resour. Res. 57, e2020WR02867 (2021).

    Article  Google Scholar 

  16. Feng, K. et al. Nat. Commun. 13, 4421 (2022).

    Article  CAS  Google Scholar 

  17. Shuman, J. K. et al. PNAS Nexus 1, 115 (2022).

    Article  Google Scholar 

  18. Lorenz, E. N. in The Physical Basis of Climate and Climate Modelling Vol. 16 (eds Bolin, B. et al.) 132–136 (World Meteorological Organization, 1975).

  19. Lehner, F. et al. Earth Syst. Dyn. 11, 491–508 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

T.S., R.F. and A.S. acknowledge support from E. and W. Schmidt (by recommendation of Schmidt Futures) and the National Science Foundation (grant AGS-1835860). K.E. acknowledges support from the National Science Foundation (grant AGS-1906768). T.M. acknowledges support from VolkswagenStiftung (grant Az:97721). L.R.L. is supported by the Office of Science, US Department of Energy Biological and Environmental Research, as part of the Earth system model development and regional and global model analysis program areas. The Pacific Northwest National Laboratory is operated for the Department of Energy by the Battelle Memorial Institute under contract no. DE-AC05-76RLO1830. N.L. acknowledges support from the National Science Foundation (grant no. 2103754, as part of the Megalopolitan Coastal Transformation Hub). The National Center for Atmospheric Research is sponsored by the National Science Foundation. We thank M. Hell for preparing Fig. 1, and K. Pressel, D. Menemenlis, C. Hill and G. Manucharyan for providing the high-resolution visualizations of clouds, ocean flows and Arctic sea ice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Schneider.

Ethics declarations

Competing interests

T.S. has an additional affiliation as a visiting researcher at Google LLC. All other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, T., Behera, S., Boccaletti, G. et al. Harnessing AI and computing to advance climate modelling and prediction. Nat. Clim. Chang. 13, 887–889 (2023). https://doi.org/10.1038/s41558-023-01769-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01769-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://www.nature.com/articles/s41558-023-01769-3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy