

Measure Guideline: Energy-Efficient Window Performance and Selection

John Carmody and Kerry Haglund *NorthernSTAR*

November 2012

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: reports@adonis.osti.gov

> Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: <u>orders@ntis.fedworld.gov</u> online ordering: <u>www.ntis.gov/ordering.htm</u>

Measure Guideline: Energy-Efficient Window Performance and Selection

Acknowledgments

Contents

List of Figures	
List of Tables	
Definitions	
Executive Summary	
Progression Summary	
1 Introduction	1
2 Measuring Window Performance	

3	Window Technologies	6
---	---------------------	---

4	Window Selection Process	16
---	--------------------------	----

List of Figures

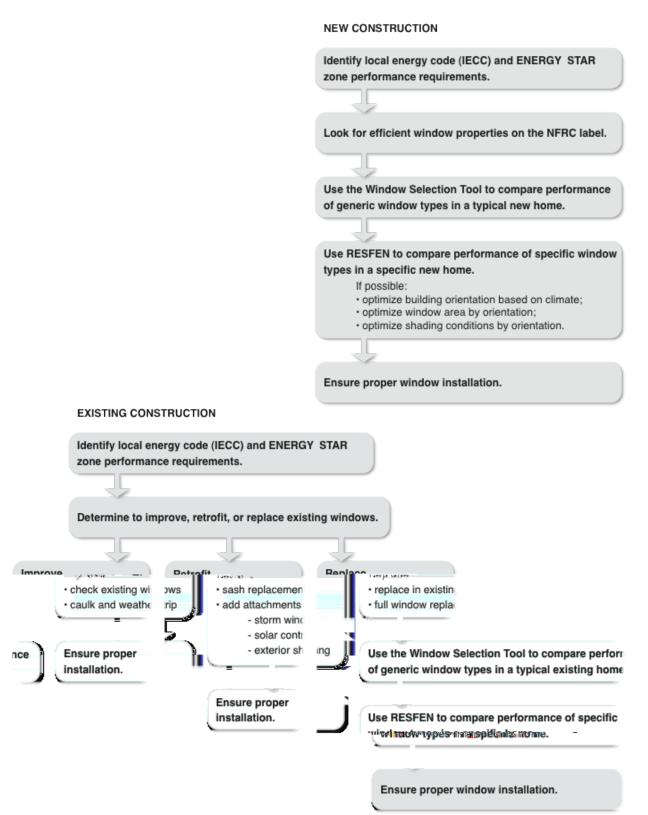
Figure 1. Heat flow through a window	
Figure 2. Window properties on the NFRC label	. 2
Figure 3. Heat loss through a window by conduction, convection, and radiation	. 3
Figure 4. Solar gain through a window	. 3
Figure 5. Visible light through a window	
Figure 6. Air leakage through window assembly	.4
Figure 7. Condensation on window surface	. 5
Figure 8. Advancements to improve energy efficiency	. 6
Figure 9. Spectral transmittance curves for glazings with low-e coatings	
Figure 10. Surface placement of low-e coatings	
Figure 11. Various metal and nonmetal spacer systems	11
Figure 12. Thermogram of double-glazed clear window with an aluminum spacer (left) and double	e-
glazed low-e window with an insulating spacer (right). Cold regions in purple and blue	
represent the large amounts of heat flowing through the spacer	
Figure 13. Aluminum frame	13
Figure 14. Aluminum frame with thermal break	
Figure 15. Wood frame	
Figure 16. Wood with clad frame	
Figure 17. Vinyl frame	
Figure 18. Insulated vinyl frame	
Figure 19. Hybrid frame	
Figure 20. Climate zone map referenced in IECC 2006 and later versions	
Figure 21. ENERGY STAR zone map	18
Figure 22. Results from the Window Selection Tool	
Figure 23. Manufacturers listed for a specific window in the Window Selection Tool	
Figure 24. Products by a manufacturer listed in the Windows Selection Tool	
Figure 25. RESFEN computer simulation data entry screen	
Figure 26. IECC climate zone map with cities used in simulations	23
Figure 27. Comparison of inside glass surface temperature for different glazing types	47
Figure 28. Probability of discomfort near a window in the winter	
Figure 29. Probability of discomfort near a window in the summer	
Figure 30. Peak summer cooling loads in Phoenix, Arizona	
Figure 31. Peak summer cooling loads in Minneapolis, Minnesota	
Figure 32. Annual energy cost by orientation in Boston, Massachusetts	
Figure 33. Annual energy cost by orientation in Sacramento, California	
Figure 34. Annual energy cost by orientation in Phoenix, Arizona	
Figure 35. Annual energy cost by window area in Boston, Massachusetts	
Figure 36. Annual energy cost by window area in Sacramento, California	56
Figure 37. Annual energy cost by window area in Phoenix, Arizona	
Figure 38. Annual energy cost by shading type in Boston, Massachusetts	
Figure 39. Annual energy cost by shading type in Sacramento, California	
Figure 40. Annual energy cost by shading type in Phoenix, Arizona	60

Unless otherwise noted, all figures were created by the NorthernSTAR team.

List of Tables

Table 1. Properties of Generic Set of Windows	15
Table 2. Prescriptive Window Requirements in the 2009 IECC	
Table 3. Prescriptive Window Requirements in the 2012 IECC	
Table 4. Current ENERGY STAR Performance Requirements	19
Table 5. Proposed 2013 ENERGY STAR Performance Requirements	
Table 6. Properties of Windows Used in Climate Zones 1 and 2	
Table 7. Savings of New Windows in Miami, Florida	
Table 8. Savings of New Windows in Houston, Texas	
Table 9. Savings of New Windows in Phoenix, Arizona	25
Table 10. Properties of Windows Used in Climate Zones 3 and 4	26
Table 11. Savings of New Windows in Atlanta, Georgia	
Table 12. Savings of New Windows in Las Vegas, Nevada	
Table 13. Savings of New Windows in San Francisco, California	
Table 14. Savings of New Windows in Washington, D.C.	28
Table 15. Savings of New Windows in Albuquerque, New Mexico	
Table 16. Savings of New Windows in Seattle, Washington	
Table 17. Properties of Windows Used in Climate Zones 5–8	
Table 18. Savings of New Windows in Chicago, Illinois	30
Table 19. Savings of New Windows in Boston, Massachusetts	30
Table 20. Savings of New Windows in Denver, Colorado	
Table 21. Savings of New Windows in Minneapolis, Minnesota	31
Table 22. Savings of New Windows in Billings, Montana	
Table 23. Savings of New Windows in Bismarck, North Dakota	
Table 24. Savings of New Windows in Fairbanks, Alaska	32
Table 25. Properties of Windows Used in Climate Zones 1 and 2	33
Table 26. Savings of Replacement Windows in Miami, Florida	34
Table 27. Savings of Replacement Windows in Houston, Texas	34
Table 28. Savings of Replacement Windows in Phoenix, Arizona	34
Table 29. Properties of Windows Used in Climate Zones 3 and 4	35
Table 30. Savings of Replacement Windows in Atlanta, Georgia	
Table 31. Savings of Replacement Windows in Las Vegas, Nevada	36
Table 32. Savings of Replacement Windows in San Francisco, California	36
Table 33. Savings of Replacement Windows in Washington, D.C.	37
Table 34. Savings of Replacement Windows in Albuquerque, New Mexico	37
Table 35. Savings of Replacement Windows in Seattle, Washington	37
Table 36. Properties of Windows Used in Climate Zones 5-8	38
Table 37. Savings of Replacement Windows in Chicago, Illinois	
Table 38. Savings of Replacement Windows in Boston, Massachusetts	
Table 39. Savings of Replacement Windows in Denver, Colorado	39
Table 40. Savings of Replacement Windows in Minneapolis, Minnesota	40
Table 41. Savings of Replacement Windows in Billings, Montana	
Table 42. Savings of Replacement Windows in Bismarck, North Dakota	40
Table 43. Savings of Replacement Windows in Fairbanks, Alaska	
Table 44. Example of Window Costs	
Table 45. Simple Payback for New Windows	
Table 46. Simple Payback for Replacement Windows	
Table 47. Winter and Summer Comfort Index for Typical Windows	48

Unless otherwise noted, all figures were created by the NorthernSTAR team.


Definitions

Executive Summary

Progression Summary

1 Introduction

2 Measuring Window Performance

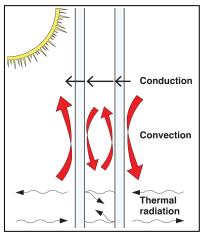


Figure 1. Heat flow through a window

- Insulating value
- Heat gain from solar radiation
- Infiltration

(Image courtesy of NFRC)

2.1 U-Factor

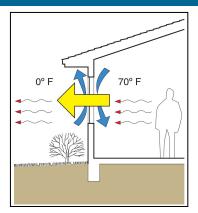


Figure 3. Heat loss through a window by conduction, convection, and radiation

2.2 Solar Heat Gain Coefficient

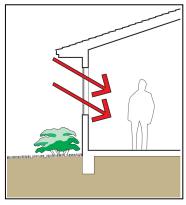


Figure 4. Solar gain through a window

2.3 Visible Transmittance

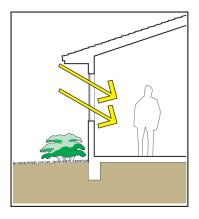


Figure 5. Visible light through a window

2.4 Air Leakage

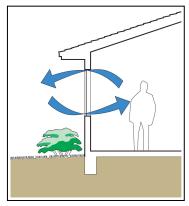


Figure 6. Air leakage through window assembly

2.5 Condensation Resistance

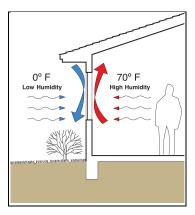


Figure 7. Condensation on window surface

3 Window Technologies

- •
- -
- •
- •
- 3.1 Glazing Types



Figure 8. Advancements to improve energy efficiency

3.1.1.1 Suspended Films

3.1.2 Low-Emittance Coatings

emissivity

spectrally selective coatings

3.1.2.1 High-Solar-Gain Low-Emittance Coatings

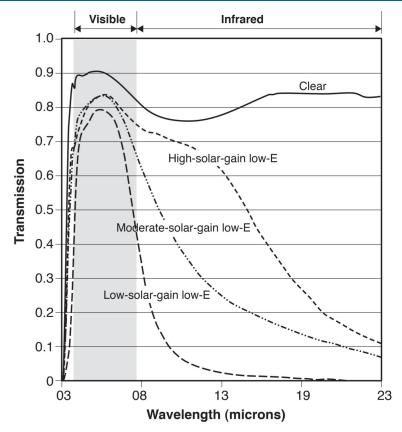
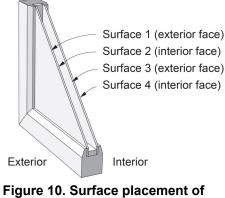



Figure 9. Spectral transmittance curves for glazings with low-e coatings

3.1.2.2 Moderate-Solar-Gain Low-Emittance Coatings

3.1.2.3 Low-Solar-Gain Low-Emittance Coatings

3.1.2.4 Coating Placement

low-e coatings

- 3.2 Low-Conductance Spacers and Gas Fills
- 3.2.1 Low-Conductance Gas Fills

ch

3.2.2 Warm Edge Spacers

- •
- •
- •
- •

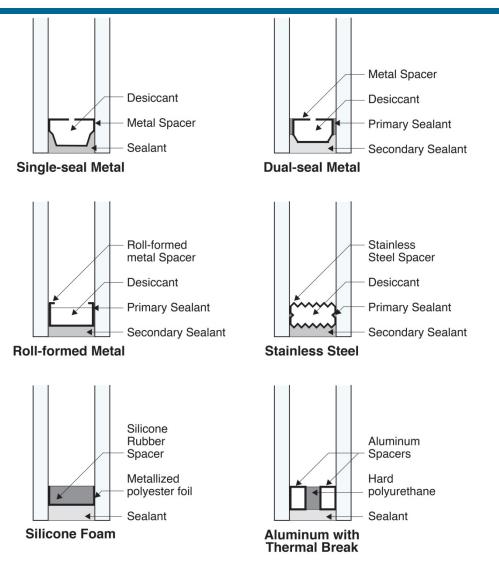


Figure 11. Various metal and nonmetal spacer systems

. .

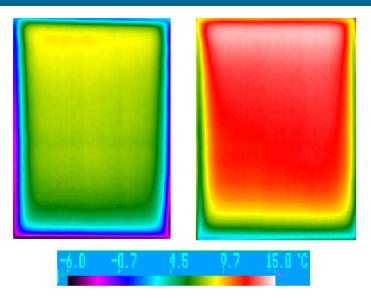


Figure 12. Thermogram of double-glazed clear window with an aluminum spacer (left) and double-glazed low-e window with an insulating spacer (right). Cold regions in purple and blue represent the large amounts of heat flowing through the spacer. (Image courtesy of LBNL)

3.3 Frame Types 3.3.1 Metal Frames

3.3.2 Thermally Broken Metal Frames

.

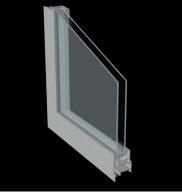


Figure 13. Aluminum frame

3.3.3 Nonmetal Frames 3.3.3.1 Wood



Figure 14. Aluminum frame with thermal break

. .

3.3.3.2 Wood Clad

Figure 15. Wood frame

Figure 16. Wood with clad frame

3.3.3.3 Vinyl

3.3.3.4 Hybrid

Figure 17. Vinyl frame 3.3.3.5 *Composite*

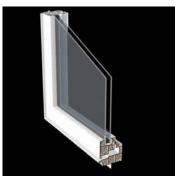


Figure 18. Insulated vinyl frame

Figure 19. Hybrid frame

3.3.3.6 Thermally Improved or Insulated Vinyl

3.3.3.7 Fiberglass or Engineered Thermoplastics

3.3.3.8 Thermally Improved Wood and Composite Frames

Table 1. Properties of Generic Set of Windows

.

(EWC 2012a)

ID	Glazing	Frame	U	SHGC	VT
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

4 Window Selection Process

Meet code

Look for the ENERGY STAR label

Look for performance properties on the NFRC label

Use the Window Selection Tool (EWC 2012b)

Use RESFEN (LBNL 2012)

Use BEopt (NREL 2012a)

4.1 Energy Codes

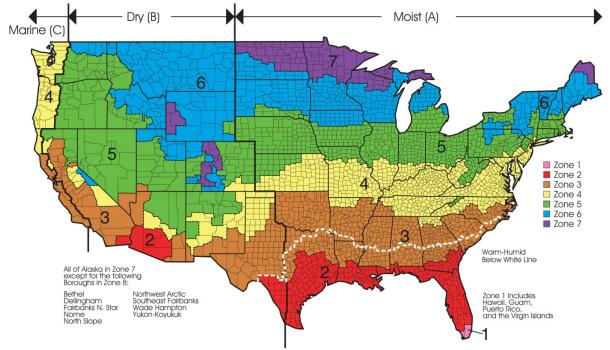
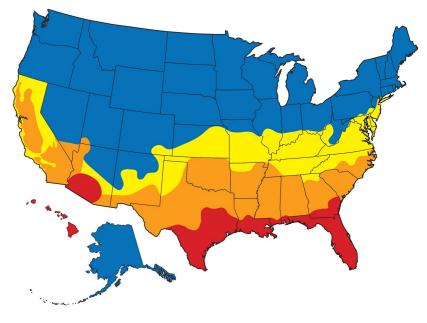


Figure 20. Climate zone map referenced in IECC 2006 and later versions

4.1.1 Windows in the 2009 International Energy Conservation Code

Climate Zone	Window U-Factor	Skylight U-Factor	Window and Skylight SHGC*
1			
2			
3			
4 except Marine			
5 and Marine 4			
6			
7 and 8			


Table 2. Prescriptive Window Requirements in the 2009 IECC


4.1.2 Windows in the 2012 International Energy Conservation Code

Climate Zone	Window U-Factor	Skylight U-Factor	Window and Skylight SHGC
	Willdow O-Factor	Skylight U-Factor	while waite skylight stroc
1			
2			
3			
4 except Marine			
5 and Marine 4			
6			
7 and 8			

Table 3. Prescriptive Window Requirements in the 2012 IECC

4.2 ENERGY STAR

Climate Zone	Window U-Factor	Window SHGC	Skylight U-Factor	Skylight SHGC
North	≤0.30		≤0.55	
		≥0.35		
		≥0.40		
North Central	≤0.32	≤0.4	≤0.55	\leq
South Central	≤0.35	≤0.30	≤0.57	≤0.30
South	≤0.60	≤0.27	≤0.70	≤0.30

Table 4. Current ENERGY STAR Performance Requirements

- •
- •
- _
- -
- •

s, as well as air leakage (≤0.30 cfm/ft

Table 5. Proposed 2013 ENERGY STAR Performance Requirements

Climate Zone	Window U-factor	Window SHGC	Skylight U-factor	Skylight SHGC
North Tradeoff	≤0.27	≥0.32	≤0.45	≤0.35
North Central	≤0.29	≤0.40	≤0.47	≤0.30
South Central	≤0.31	≤0.25	≤0.50	≤0.25
South	\leq	≤0.25	≤0.	≤0.25

•

4.3 Window Selection Tool

Efficient Windows Collaborative							
Home Guidance Resource WINDOW SELECTION TOOL		y Codes Publications	Membership	Contact Us BENEFITS	Search		
Minneapolis , Minnesot	a						
Energy Cost Manual Cass: 80.997/kWh Betericity: 90.097/kWh Dulath- Minnespois Minnesota Factsheet State Code Information	Window Se Select Glass: Select Frame: ENERGY STAR®: Construction Type: Product Type:	[All glass types] [All frame types] Yes 🗹	hts 🔘	•			
Window Types	Properties	Annual Energy	v lise	Manufacturer Information	ENERGY STAR® Qualified		
Window 28 Triple-glazed, High-solar-gai Low-E Glass, Argon (Krypton Non-metal Frame, Thermally Improved		\$300 \$500	\$900 \$1200	Products	yes		
Window 29 Triple-chazed, Low-Solar-Gail Low-E Glass, Argon/Krypton Non-metal Frame, Thermally Improved	n U = ≤0.20 Gas SHGC = ≤0.25 VT = ≤0.40 \$0	\$300 \$600	\$900 \$1200	Products	yes		
Window 23 Triple-glazed, High-solar-gai Low-E Glass, Argon/Krypton Non-metal Frame	U = 0.21-0.25 SHGC = 0.26-0.40 VT = 0.41-0.50 \$0	\$300 \$600	\$900 \$1200	Products	yes		
Window 24 Triple-glazed, Low-Solar-Gair Low-E Glass, Argon/Krypton Non-metal Frame	U = 0.21-0.25 SHGC = ≤0.25 VT = ≤0.40 \$0	\$300 \$600	\$900 \$1200	Products	yes		
Window 25 Double-glazed, High-solar-gg Low-E Glass, Argon/Krypton Non-metal Frame, Thermally Improved	u = 0.26-0.30 SHGC = 0.41-0.60 VT = 0.51-0.60 \$0	\$300 \$600	\$900 \$1200	Products	yes		
Window 26 Double-glazed, Moderate-sol Sain Low-E Glass, Argon/Kry Gas Non-metal Frame, Thermally Improved	ar- U = 0.26-0.30 pton SHGC = 0.26-0.40 VT = 0.51-0.60	\$300 \$600	\$900 \$1200	Products	yes		
Window 27 Double-glazed, Low-solar-ga Low-E Glass, Argon/Krypton Non-metal Frame, Thermally Improved	In U = 0.26-0.30 Gas SHGC = ≤0.25 VT = 0.41-0.50 \$0	\$300 \$500	\$900 \$1200	Products	yes		
Window 20 Double-glazed, High-solar-ga Low-E Glass, Argon/Krypton Non-metal Frame	un U = 0.31-0.40 SHGC = 0.41-0.60 Gas VT = 0.51-0.60 \$0	\$300 \$500	\$900 \$1200	Products	maybe		
Window 21 Double-glazad, Moderate-sol basil tow-E Glass, Argon/Kry Gas Non-metal Frame	ar- U = 0.31-0.40 SHGC = 0.26-0.40 VT = 0.51-0.60 \$0	\$300 \$500 Annual Heating A	\$900 \$1200	Products	maybe		
Nos: The annual energy performance figures above here area generated with repression sprovided by Lavercoo Bertaley National Labovery (classification). Labovery CSBac2003). Neurol Bace Construction 2250 sp / existing construction: 2350 sg (b) house with 15% window-to-floor area. The windows are equally distributed on all four sides and include typical balance (liciterior studes, overheads, test, and test). Undator and Station are for the total window including frame. The costs shown here are annual costs for space heating and space costing only in these figures. The mechanical services are back to the space heating and space costing only in these figures. The mechanical services area for the heating area of 2010-2020 in real 2020 dollars. Projections are back on take-specific hariting as retall price data by the Energy Information Administration (EA) for the heating area based on tit R projections of haritonal natural gas price for the heating area of 2010-2020. Iteration as files are back on take-specific hariting as price from the CollO-2020; Electricity prices used are projections of the average electricity price for the based on tit R projections of haritonal natural gas price from the CollO-2020; Electricity prices used are projections of the average electricity price for the Administration (EA) for the loceling seasons of 2006-08 and are adjusted based on EIA projections of national autoral gas price from the data Administration (EA) for the loceling seasons of 2006-08 and are adjusted based on EIA projections of national electricity price trands for 2010-2020. (www.elia.dos.gov).							
Copyright & 1998-2011 Regents of the University of Minnesota, Twin Cites Camayo, College of Design, Center for Sustainable Building Research This site was developed jointly by the Center for Sustainable Building Research. Alliance to Save Energy, and Lawrence Berkeley National Laboratory.							
Lenter for Sustainable building Kesearch, Alliance to save energy, allu Lawrence Berkeley National Laboratory. Disclaimer							

Figure 22. Results from the Window Selection Tool

Minneapolis, Minnesota

Window 28 U = ≤0.20 Triple-glazed, High-solar-gain Low Argon/Krypton Gas Non-metal Frame, Thermally Impr

. E Class	0 - 30.20
w-E Glass,	SHGC = 0.26-0.40
roved	VT = 0.41 - 0.50

Products Available»
Products Available»

Manufacturers have agreed that products listed here meet the energy performance requirements of the Efficient Windows Collaborative and have been tested and certified according to **NFRC** standards.

The Efficient Windows Collaborative does not provide any guarantees of service or useability for products or services purchased from these merchants.

Figure 23. Manufacturers listed for a specific window in the Window Selection Tool

str-gain Low-E SHGC = 0.26-0.40 Sas VT = 0.41-0.50	2	«Back to I	Manufactu	<u>ırers List</u>		
Product Line	<u>U-</u> factor	<u>SHGC</u>	<u>VT</u>	AL		
timate Double Hung Picture - tri-pane, low-E 179, argon/krypton	0.20	0.43	0.52			
Magnum Tilt-Turn - tri-pane, low-E 179, krypton/argon	0.20	0.38	0.46			
Wood Ultimate Awning - tri-pane, low-E 179, krypton/argon						
	Imaily Improved VT = 0.41-0.50 Product Line Product Line timate Double Hung Picture - tri-pane, low-E 179, argon/krypton Magnum Tilt-Turn - tri-pane, low-E 179, krypton/argon	Product Line U- factor timate Double Hung Picture - tri-pane, low-E 179, argon/krypton 0.20 Magnum Tilt-Turn - tri-pane, low-E 179, krypton/argon 0.20 Jltimate Awning - tri-pane, low-E 179, krypton/argon 0.20	Product Line U- factor SHGC timate Double Hung Picture - tri-pane, low-E 179, argon/krypton 0.20 0.43 4agnum Tilt-Turn - tri-pane, low-E 179, krypton/argon 0.20 0.38	Product Line U-factor SHGC VT timate Double Hung Picture - tri-pane, low-E 179, argon/krypton 0.20 0.43 0.52 4agnum Tilt-Turn - tri-pane, low-E 179, krypton/argon 0.20 0.38 0.46		

The Efficient Windows Collaborative does not provide any guarantees of service or useability for products or services purchased from these merchants.

Figure 24. Products by a manufacturer listed in the Windows Selection Tool

4.4 RESFEN

List View	House Data	Window Da	a			Area	U-factor	SHGC	Air Leakage	Solar Gain				
	17 · e/w wood double h: ▼		Window Type			ft2	Btu/h-ft2-F		cfm/ft2	Reduction				
	Name	North	321: W/V 2 PY Lo	w-E 💌	>>	50.	0.37	0.53	0.3	None	•			
	e/w wood double hsg lowE	East	321: W/V 2 PY Lo	w-E 💌	>>	100.	0.37	0.53	0.3	None	•			
	Location	South	321: W/V 2 PY Lo	w-E 🔻	>> [50.	0.37	0.53	0.3	None	• • •			
	GA Atlanta 🗾	West	321: W/V 2 PY Lo	w-E 🔻	>>	100.	0.37	0.53	0.3	None	•			
	House Type		User defined	•	>>	0.	0.	0.	0.	None	-			
	2-Story Existing Frame				-									
	HVAC System Type East, South and West windows are the same type as North Gas Furnace / AC													
		Total Window Area 300. ft2 15.0% of floor area												
	Floor Area 2000. ft2													
	Envelope Package	Whole House												
	Exist01 (AL1)													
	Foundation Type			Heatir	g		Cooling	1	otal (source)					
	Slab-On_Grade <	Annu	al Energy Totals	31	1 MB	u F	3827	Wh	70.2	MBhu				
	Set to Defaults		renargy renard [
		Annua	Energy per ft2	15	5 kBt	1/ft2	1.91	Wh/ft2	35.1	kBtu/ft2				
	Electric Cost		Peak	60	1 kBt	whr [4.46	w						
	User defined													
	0.101 \$/kWh		Cost \$	290.9	9	\$	386.49	\$	677.48					
	Gas Cost													
	User defined 💌													
	0.937 \$/Therm													
	Description	-				_	_				_			
	A													

Figure 25. RESFEN computer simulation data entry screen (Image courtesy of LBNL)

5 Cost and Performance

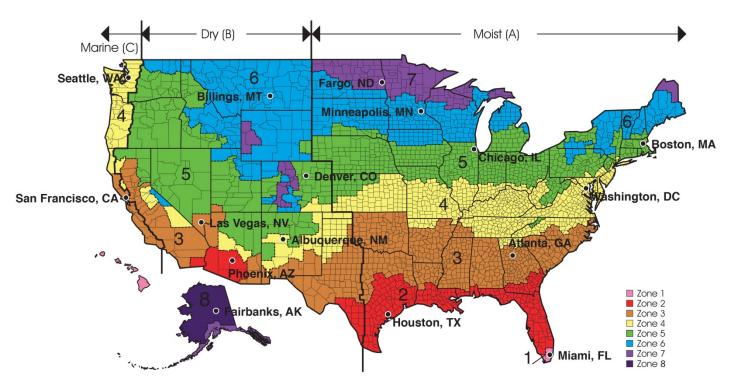


Figure 26. IECC climate zone map with cities used in simulations

5.1 Energy and Cost Savings for New Windows

5.1.1 Savings for New Windows in Climate Zones 1 and 2

ID	Glazing	Frame	U	SHGC	VT
6					
11					
16					
17					
20					

Table 6. Properties of Windows Used in Climate Zones 1 and 2

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
6											
11											
16											
17											
20											

Table 8. Savings of New Windows in Houston, Texas

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
6											
11											
16											
17											
20											

Table 9. Savings of New Windows in Phoenix, Arizona

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
6											
11											
16											
17											
20											

5.1.2 Savings for New Windows in Climate Zones 3 and 4

ID	Glazing	Frame	U	SHGC	VT
11					
15					
16					
17					
19					

Table 10. Properties of Windows Used in Climate Zones 3 and 4

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings			
11														
15														
16														
17														
19														

Table 11. Savings of New Windows in Atlanta, Georgia

Table 12. Savings of New Windows in Las Vegas, Nevada

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
11											
15											
16											
17											
19											

Table 13. Savings of New Windows in San Francisco, California

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
11											
15											
16											
17											
19											

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings			
11														
15														
16														
17														
19														

Table 14. Savings of New Windows in Washington, D.C.

Table 15. Savings of New Windows in Albuquerque, New Mexico

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
11											
15											
16											
17											
19											

Table 16. Savings of New Windows in Seattle, Washington

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
11											
15											
16											
17											
19											

5.1.3 Savings for New Windows in Climate Zones 5–8

ID	Glazing	Frame	U	SHGC	VT
15					
16					
17					
18					
19					

Table 17. Properties of Windows Used in Climate Zones 5–8

Table 18. Savings of New Windows in Chicago, Illinois

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)		Annual Savings
16										
15										
17										
18										
19										

Table 19. Savings of New Windows in Boston, Massachusetts

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
16											
15											
17											
18											
19											

Table 20. Savings of New Windows in Denver, Colorado

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
16											
15											
17											
18											
19											

Table 21. Savings of New Windows in Minneapolis, Minnesota

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
16											
15											
17											
18											
19											

Table 22. Savings of New Windows in Billings, Montana

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
16											
15											
17											
18											
19											

Table 23. Savings of New Windows in Bismarck, North Dakota

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
16											
15											
17											
18											
19											

Table 24. Savings of New Windows in Fairbanks, Alaska

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
16											
15											
17											
18											
19											

5.2 Energy and Cost Savings for Replacement Windows

5.2.1 Savings for Replacement Windows in Climate Zones 1 and 2

 ≤ 0.20) performs best

ID	Glazing	Frame	U	SHGC	VT
1					
7					
11					
17					
20					

Table 25. Properties of Windows Used in Climate Zones 1 and 2

Table 26. Savings of Replacement Windows in Miami, Florida

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
7											
11											
17											
20											

Table 27. Savings of Replacement Windows in Houston, Texas

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
7											
11											
17											
20											

Table 28. Savings of Replacement Windows in Phoenix, Arizona

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
7											
11											
17											
20											

5.2.2 Savings for Replacement Windows in Climate Zones 3 and 4

ID	Glazing	Frame	U	SHGC	VT
1					
11					
16					
17					
19					

Table 29. Properties of Windows Used in Climate Zones 3 and 4

Table 30. Savings of Replacement Windows in Atlanta, Georgia

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
11											
16											
17											
19											

Table 31. Savings of Replacement Windows in Las Vegas, Nevada

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
11											
16											
17											
19											

Table 32. Savings of Replacement Windows in San Francisco, California

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
11											
16											
17											
19											

			Tak		ings of Kep			ington, D.C.			
ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
11											
16											
17											
19											

Table 33. Savings of Replacement Windows in Washington, D.C.

Table 34. Savings of Replacement Windows in Albuquerque, New Mexico

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
11											
16											
17											
19											

Table 35. Savings of Replacement Windows in Seattle, Washington

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
1											
11											
16											
17											
19											

5.2.3 Savings for Replacement Windows in Climate Zones 5–8

ID	Glazing	Frame	U	SHGC	VT
13					
15					
16					
18					
19					

Table 36. Properties of Windows Used in Climate Zones 5-8

			I di.	ne 37. Savi	ngs of Rep			ago, minois			
ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
13											
15											
16											
18											
19											

Table 37. Savings of Replacement Windows in Chicago, Illinois

Table 38. Savings of Replacement Windows in Boston, Massachusetts

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
13											
15											
16											
18											
19											

Table 39. Savings of Replacement Windows in Denver, Colorado

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
13											
15											
16											
18											
19											

				o. Cavings	orreplace				Jota		
ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
13											
15											
16											
18											
19											

Table 40. Savings of Replacement Windows in Minneapolis, Minnesota

Table 41. Savings of Replacement Windows in Billings, Montana

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
13											
15											
16											
18											
19											

Table 42. Savings of Replacement Windows in Bismarck, North Dakota

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
13											
15											
16											
18											
19											

ID	U	SHGC	VT	2009 IECC	2012 IECC	2010 ENERGY STAR	2014 ENERGY STAR	Heat (MBtu)	Cool (kWh)	Total Cost	Annual Savings
13											
15											
16											
18											
19											

Table 43. Savings of Replacement Windows in Fairbanks, Alaska

5.3 Window Costs (New and Replacement)

Table 44. Example of Window Costs

Glazing Type	Frame Type	Average Costs New (ft ²)	Average Costs Replacement (ft ²)
Double, clear			
Double, low-e			
Triple, low-e			

Table 45. Simple Payback for New Windows

Annual Energy	Simple Payback (Years) for Incremental Window Cost (ft ²)										
Savings	\$5	\$10	\$15	\$20	\$25						
\$50											
\$100											
\$150											
\$200											
\$250											
\$300											
\$350											
\$400											
\$450											
\$500											
\$550											
\$600											

Annual Energy Savings	Simple Payback (Years) for Incremental Window Cost (ft ²)							
	\$20	\$25	\$30	\$35	\$40			
\$50								
\$100								
\$150								
\$200								
\$250								
\$300								
\$350								
\$400								
\$450								
\$500								
\$550								
\$600								

Table 46. Simple Payback for Replacement Windows

5.4 Life Cycle Cost Analysis

5.4.1 Life Cycle Cost Summary

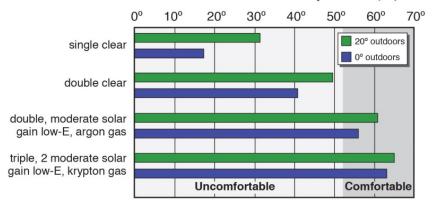
•

•

•

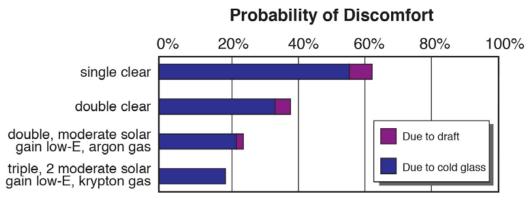
•

5.5 Other Benefits


5.5.1 Comfort

5.5.1.1 Sources of Discomfort From Windows

radiant asymmetry


5.5.1.2 Quantifying Discomfort

Inside Glass Surface Temperature (°F)

(Image courtesy of LBNL)

(Image courtesy of LBNL)

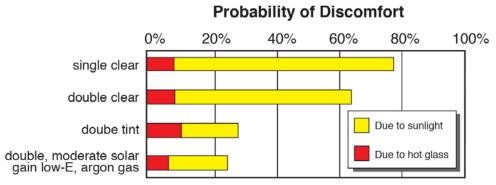


Figure 29. Probability of discomfort near a window in the summer (Image courtesy of LBNL)

5.5.1.3 Comparing Windows Based on Thermal Comfort

Table 47. Winter and Summer Comfort Index for Typical Windows

(Huizenga et al. 2006)

Glazing	U	SHGC	VT	Winter Comfort Index Minimum Exterior Temperature (°F)	Summer Comfort Index Diffuse	Summer Comfort Index Direct
Single Clear						
Single Bronze						
Double Clear						
Double Medium Gain Low-e						
Double High Gain Low-e						
Triple Clear						
Triple Medium Gain Low-e						
Triple High Gain Low-e						

•

•

5.5.2 Reduced Peak Demand and Heating, Ventilation, and Air Conditioning Costs

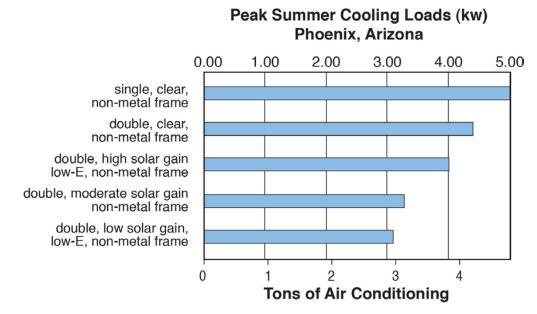


Figure 30. Peak summer cooling loads in Phoenix, Arizona

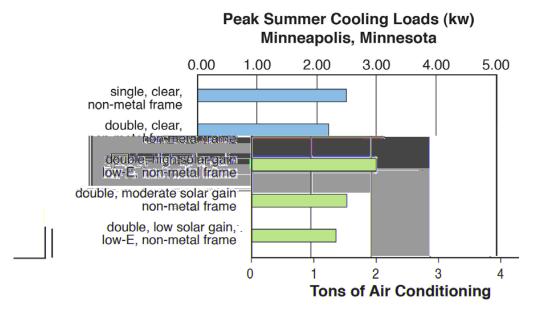


Figure 31. Peak summer cooling loads in Minneapolis, Minnesota

5.5.2.1 Rightsizing Heating, Ventilation, and Air Conditioning Systems

- Health and comfort
- Mold prevention
- First cost savings
- Energy savings
- 5.5.2.2 Heating, Ventilation, and Air Conditioning Sizing Tools

Fundamentals

•

•

Handbook of

6 Impact of Design on Performance

6.1 Orientation

6.1.1 Orientation in the Northern Zone (Heating Dominated)

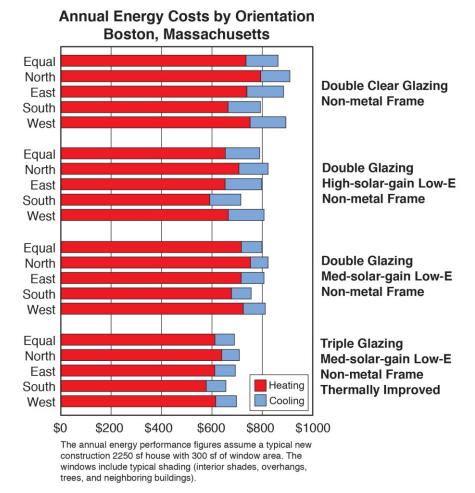


Figure 32. Annual energy cost by orientation in Boston, Massachusetts

6.1.2 Orientation in the Central Zones (Heating and Cooling)

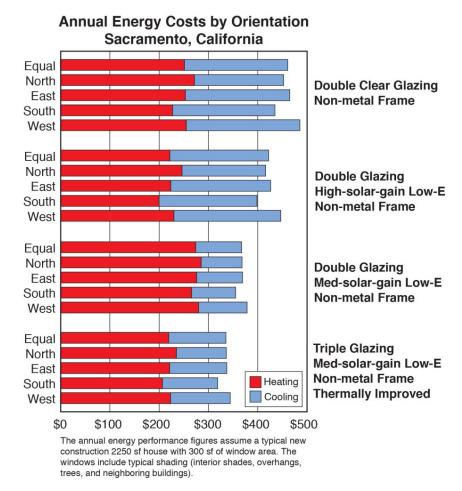


Figure 33. Annual energy cost by orientation in Sacramento, California

6.1.3 Orientation in the Southern Zone (Cooling Dominated)

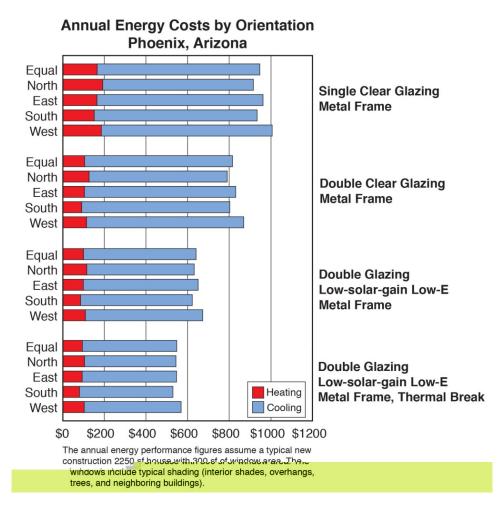


Figure 34. Annual energy cost by orientation in Phoenix, Arizona

6.2 Window Area6.2.1 Window Area in the Northern Zone (Heating Dominated)

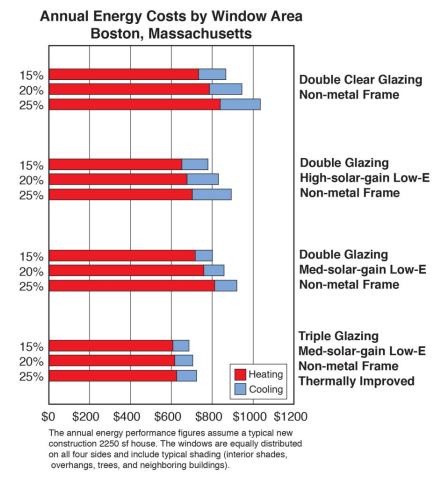


Figure 35. Annual energy cost by window area in Boston, Massachusetts

6.2.2 Window Area in the Central Zones (Heating and Cooling)

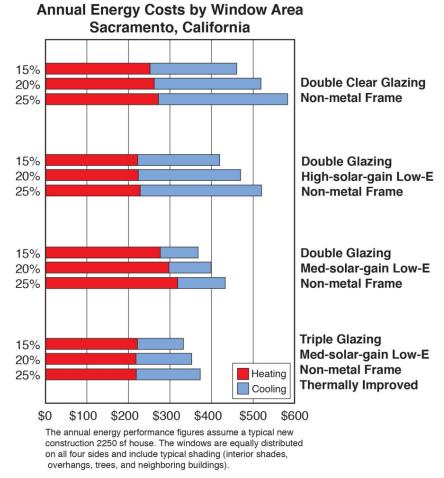


Figure 36. Annual energy cost by window area in Sacramento, California

6.2.3 Window Area in the Southern Zone (Cooling Dominated)

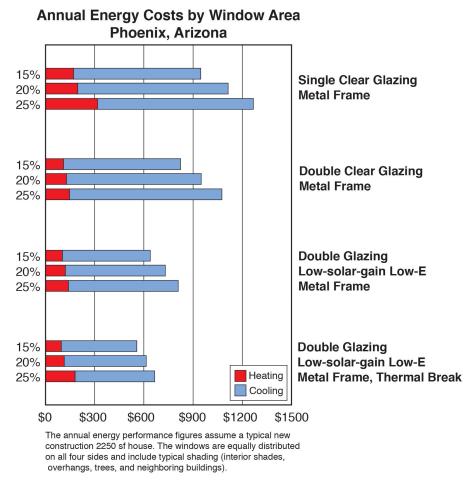


Figure 37. Annual energy cost by window area in Phoenix, Arizona

6.3 Shading6.3.1 Shading in the Northern Zone (Heating Dominated)

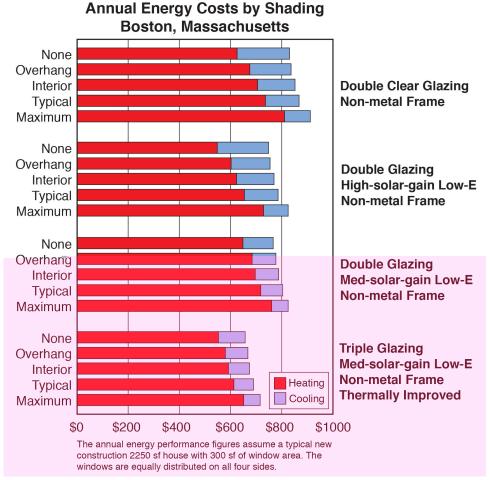


Figure 38. Annual energy cost by shading type in Boston, Massachusetts

6.3.2 Shading in the Central Zones (Heating and Cooling)

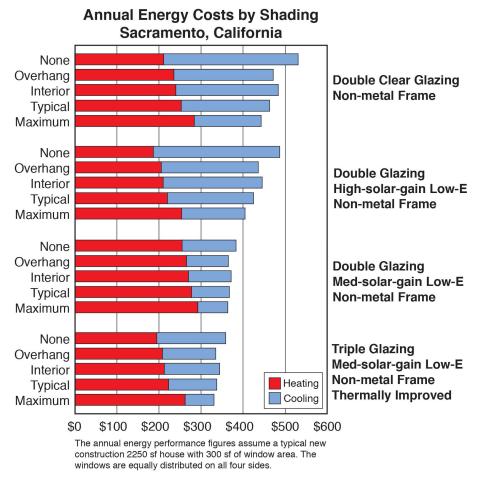


Figure 39. Annual energy cost by shading type in Sacramento, California

6.3.3 Shading in the Southern Zone (Cooling Dominated)

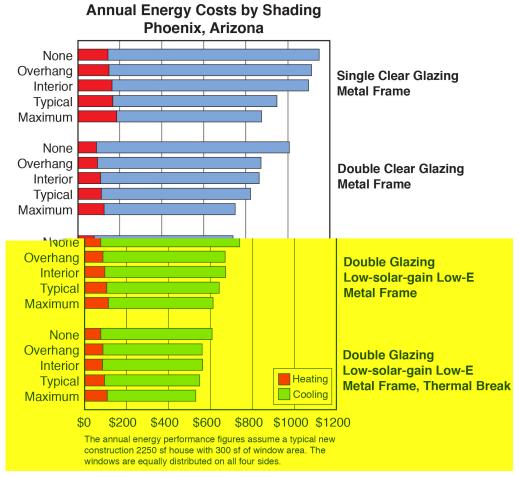


Figure 40. Annual energy cost by shading type in Phoenix, Arizona

7 Installation	Important Resources			
	ASTM E 2112, "Standard Practice for Installation of Exterior Windows, Doors and Skylights." www.astm.org/Standards/E2112.htm			
	Water Management Guide, by Joseph Lstiburek, is a guide that shows how to minimize water intrusion into home. This guide has many installation diagrams.			
	InstallationMasters includes a directory of certified installers in the United States. www.installationmastersusa.com			
	EPA brochure on lead-hazard for renovation, repair, and painting. <u>www.epa.gov/lead/pubs/renovaterightbrochure.pdf</u>			
7.4 Concret Installation Guidelines	EPA website for lead in paint, dust, and soil. www.epa.gov/lead			

7.1 General Installation Guidelines

- •
- •
- •

- •
- •
- •

•

•

Water Management Guide

7.2 Watertight Installation

- 7.2.1 Storage or Mass Wall System
- 7.2.2 Perfect Barrier System

7.2.3 Drained Wall System

7.3 Replacement Windows and Sashes

- •
- -
- •

References

Manual J Residential Load Calculation

Handbook—Fundamentals

Standard 55-2010: Thermal Environmental Conditions for Human

Occupancy

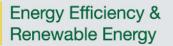
Measure Guideline: Window Repair, Rehabilitation, and Replacement.

Technologies and Energy Performance

performance Commercial Buildings

Residential Windows: A Guide to New

Window Systems for High-


Human Thermal Comfort

Window Performance for

Home Energy Magazine

buildingamerica.gov

DOE/GO-102012-3656 • November 2012

Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post-consumer waste.