Region + study	symbo	l present year	future yr		emis scen	a O3 metric	delta O3	NOTES
USA, average over entire region								
Avise et al. ACP 2009	E	1990-1999	2045-205	64	A2	July MDA8	+3	Table 3
Wu et al. JGR air quality 2008	G	2000 (3 yrs)	2050 (3 y	rs)	A1B	JJA MDA8	-1 to -15	Text p 6 [para 19]
Wu et al. 2008	Н	2000		2050	A1B	annual mean	-7 to +5	Figure 1b + text p6 (para 24)
Tagaris et al. 2007	1	2000-2001	2049-205	51	A1B	summer mda8	-10	Figure 7
Lam et al., ACP 2011	Z	1999-2001	2049-205	51	A1B	MDA8	-4 to -7	Table 7
Royal Society (10 model mean)	В	2000		2050	B2+CLE	JJA mean	-1 to -15	Figure 5.4 + Section 5.2.1 p.44
Racherla and Adams ES&T 2008	2	2 1990s (10 yrs)	2050s (10) yrs)	A2	MDA8 JJA	+9.1	Figure 3 domain avg
Racherla and Adams ES&T 2008	2	2 1990s (10 yrs)	2050s (10) yrs)	B1	MDA8 JJA	-8.6	Figure 3 domain avg
C Europe								
Wu et al. 2008	Н	2000		2050	A1B	annual mean	1 to +10	Figure 1b
Royal Society (10 model mean)	В	2000		2050	B2+CLE	JJA mean	-1 to -8	Figure 5.4
EASIA								
Wu et al. 2008	Н	2000		2050	A1B	annual mean	1 to +30	Figure 1b
Royal Society (10 model mean)	В	2000		2050	B2+CLE	JJA mean	-1 to +3	Figure 5.4
S Asia								
Wu et al. 2008	Н	2000		2050	A1B	annual mean	+10 to +30	Figure 1b
Royal Society (10 model mean)	В	2000		2050	B2+CLE	JJA mean	0 to 2	Figure 5.4
Global + HTAP regions	-	-						
Wild et al. 2012	С	2000		2030	All	annual mean		Table 3 and Figure 8