The BSD Packet Filter: A New
Architecture for User-level Packet Capture

Steven McCanne & Van Jacobson — Lawrence Berkeley Laboratory!

ABSTRACT

Many versions of Unix provide facilities for user-level packet capture, making possible
the use of general purpose workstations for network monitoring. Because network monitors
run as user-level processes, packets must be copied across the kernel/user-space protection
boundary. This copying can be minimized by deploying a kernel agent called a packet filter,
which discards unwanted packets as early as possible. The original Unix packet filter was
designed around a stack-based filter evaluator that performs sub-optimally on current RISC
CPUs. The BSD Packet Filter (BPF) uses a new, register-based filter evaluator that is up to
20 times faster than the original design. BPF also uses a straightforward buffering strategy
that makes its overall performance up to 100 times faster than Sun’s NIT running on the

same hardware.

Introduction

Unix has become synonymous with high quality
networking and today’s Unix users depend on having
reliable, responsive network access. Unfortunately,
this dependence means that network trouble can
make it impossible to get useful work done and
increasingly users and system administrators find
that a large part of their time is spent isolating and
fixing network problems. Problem solving requires
appropriate diagnostic and analysis tools and,
ideally, these tools should be available where the
problems are — on Unix workstations. To allow such
tools to be constructed, a kernel must contain some
facility that gives user-level programs access to raw,
unprocessed network traffic [7]. Most of today’s
workstation operating systems contain such a facil-
ity, e.g., NIT[10] in SunOS, the Ultrix Packet Filter
[2] in DEC’s Ultrix and Snoop in SGI's IRIX.

These kernel facilities derive from pioneering
work done at CMU and Stanford to adapt the Xerox
Alto ‘packet filter’ to a Unix kernel[8]. When com-
pleted in 1980, the CMU/Stanford Packet Filter,
CSPF, provided a much needed and widely used
facility. However on today’s machines its perfor-
mance, and the performance of its descendents, leave
much to be desired — a design that was entirely
appropriate for a 64KB PDP-11 is simply not a good
match to a 16MB Sparcstation 2. This paper
describes the BSD Packet Filter, BPF, a new kernel
architecture for packet capture. BPF offers substan-
tial performance improvement over existing packet
capture facilities — 10 to 150 times faster than Sun’s
NIT and 1.5 to 20 times faster than CSPF on the

IThis work was supported by the Director, Office of
Energy Research, Scientific Computing Staff, of the U.S.
Department of Energy under Contract No. DE-ACO03-
76SF00098.

same hardware and traffic mix. The performance
increase is the result of two architectural improve-
ments:
® BPF uses a re-designed, register-based ‘filter
machine’ that can be implemented efficiently
on today’s register based RISC CPU. CSPF
used a memory-stack-based filter machine that
worked well on the PDP-11 but is a poor
match to memory-bottlenecked modern CPUs.
® BPF uses a simple, non-shared buffer model
made possible by today’s larger address
spaces. The model is very efficient for the
‘usual cases’ of packet capture.?
In this paper, we present the design of BPF, outline
how it interfaces with the rest of the system, and
describe the new approach to the filtering mechan-
ism. Finally, we present performance measurements
of BPF, NIT, and CSPF which show why BPF per-
forms better than the other approaches.

The Network Tap

BPF has two main components: the network tap
and the packet filter. The network tap collects
copies of packets from the network device drivers
and delivers them to listening applications. The
filter decides if a packet should be accepted and, if
so, how much of it to copy to the listening applica-
tion.

Figure 1 illustrates BPF’s interface with the
rest of the system. When a packet arrives at a net-
work interface the link level device driver normally
sends it up the system protocol stack. But when
BPF is listening on this interface, the driver first

2As opposed to, for example, the AT&T STREAMS
buffer model used by NIT which has enough options to
be Turing complete but appears to be a poor match to
any practical problem.

1993 Winter USENIX - January 25-29, 1993 — San Diego, CA 259

calls BPF. BPF feeds the packet to each participat-
ing process’ filter. This user-defined filter decides
whether a packet is to be accepted and how many
bytes of each packet should be saved. For each
filter that accepts the packet, BPF copies the
requested amount of data to the buffer associated
with that filter. The device driver then regains con-
trol. If the packet was not addressed to the local
host, the driver returns from the interrupt. Other-
wise, normal protocol processing proceeds.

ra

monitor / \ monitor rpd
K[/ \x/ \\x/ user

link-level link-level link-level
driver driver driver
[i i

Figure 1: BPF Overview

Since a process might want to look at every
packet on a network and the time between packets
can be only a few microseconds, it is not possible to
do a read system call per packet and BPF must col-
lect the data from several packets and return it as a
unit when the monitoring application does a read.
To maintain packet boundaries, BPF encapsulates the
captured data from each packet with a header that
includes a time stamp, length, and offsets for data
alignment.

Packet Filtering

Because network monitors often want only a
small subset of network traffic, a dramatic perfor-
mance gain is realized by filtering out unwanted
packets in interrupt context. To minimize memory
traffic, the major bottleneck in most modern works-
tations, the packet should be filtered ‘in place’ (e.g.,
where the network interface DMA engine put it)
rather than copied to some other kernel buffer before
filtering. Thus, if the packet is not accepted, only
those bytes that were needed by the filtering process
are referenced by the host.

In contrast, SunOS’s STREAMS NIT [10]
copies the packets before filtering and as a result
suffers a performance degradation. The STREAMS
packet filter module (nit_pf(4M)) sits on top of the
packet capture module (nit_if(4M)). Each packet
received is copied to an mbuf, and passed off to
NIT, which then allocates a STREAMS message

buffer and copies in the packet. The message buffer
is then sent upstream to the packet filter, which may
decide to discard the packet. Thus, a copy of each
packet is always made, and many CPU cycles will
be wasted copying unwanted packets.

Tap Performance Measurements

Before discussing the details of the packet
filter, we present some measurements which compare
the relative costs of the BPF and SunOS STREAMS
buffering models. This performance is independent
of the packet filtering machinery.

We configured both BPF and NIT into the same
SunOS 4.1.1 kernel, and took our measurements on a
Sparcstation 2. The measurements reflect the over-
head incurred during the interrupt processing — i.e.,
how long it takes each system to stash the packet
into a buffer. For BPF we simply measured the
before and after times of the tap call, bpf tap(),
using the Sparcstation’s microsecond clock. For
NIT we measured the time of the tap call snit_intr()
plus the additional overhead of copying promiscuous
packets to mbufs. (Promiscuous packets are those
packets which were not addressed to the local host,
and are present only because the packet filter is run-
ning.) In other words, we included the performance
hit that NIT takes for not filtering packets in place.
To obtain accurate timings, interrupts were locked
out during the instrumented code segments.

The data sets were taken as a histogram of pro-
cessing time versus packet length. We plotted the
mean processing per packet versus packet size, for
two configurations: an ‘‘accept all”’ filter, and a
“‘reject all’’ filter. In the first case, the STREAMS
NIT buffering module (nit_buf(4M)) was pushed on
the NIT stream with its chunksize parameter set to
the 16K bytes. Similarly, BPF was configured to
use 16K buffers. The packet filtering module which
usually sits between the NIT interface and NIT
buffering modules was omitted to effect ‘‘accept
all’’ semantics. In both cases, no truncation limits
were specified. This data is shown in Figure 2.
Both BPF and NIT show a linear growth with cap-
tured packet size reflecting the cost of packet-to-
filter buffer copies. However the different slopes of
the BPF and NIT lines show that BPF does its
copies at memory speed (148ns/byte) while NIT runs
45% slower (216ns/byte).? The y-intercept gives the

3This difference is due to the fact that NIT is not as
careful about alignment as BPF. The network driver
wants the IP header aligned on a longword boundary, but
an Ethernet header is 14 bytes so the start of the packet is
shortword aligned. Since NIT copies the packet to a
longword aligned boundary, an inefficient, misaligned
beopy results. This oversight will be felt twice — once in
this measurement, and again at the user-level, when for
instance, a network monitor like tcpdump or etherfind
must copy the network-layer portion of the packet to a
longword aligned boundary.

260 1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

Historically there have been WO approacnes 10
the filter abstraction: a boolean expression tree
(used by CSPF) and a directed acyclic control flow
graph or CFG (first used by NNStat[1] and used by
BPF). For example, Figure 4 illustrates the two
models with a filter that recognizes either IP or ARP
packets on an Ethernet. In the tree model each node
represents a boolean operation while the leaves
represent test predicates on packet fields. The edges
represent operator-operand relationships. In the CFG
model each node represents a packet field predicate
while the edges represent control transfers. The
righthand branch is traversed if the predicate is true,
the lefthand branch if false. There are two terminat-
ing leaves which represent true and false for the
entire filter.

These two models of filtering are computation-
ally equivalent. le., any filter that can be expressed
in one can be expressed in the other. However, in
implementation they are very different: The tree
model maps naturally into code for a stack machine
while the CFG model maps naturally into code for a
register machine. Since most modern machines are
register based, we will argue that the CFG approach
lends itself to a more efficient implementation.

The CSPF (Tree) Model

The CSPF filter engine is based on an operand
stack. Instructions either push constants or packet
data on the stack, or perform a binary boolean or bit-
wise operation on the top two elements. A filter
program is a sequentially executed list of instruc-
tions. After evaluating a program, if the top of stack
has a non-zero value or the stack is empty then the
packet is accepted, otherwise it is rejected.

lnere are TWO Impiementanon Ssnorcomings ot
the expression tree approach:”

® The operand stack must be simulated. On
most modern machines this means generating
add and subtract operations to maintain a
simulated stack pointer and actually doing
loads and stores to memory to simulate the
stack. Since memory tends to be the major
bottleneck in modern architectures, a filter
model that can use values in machine registers
and avoid this memory traffic will be more
efficient.

® The tree model often does unnecessary or
redundant computations. For example, the
tree in Figure 4 will compute the value of
‘ether.type == ARP’ even if the test for IP is
true. While this problem can be somewhat
mitigated by adding ‘short circuit’ operators to
the filter machine, some inefficiency is intrin-
sic: Because of the hierarchical design of net-
work protocols, packet headers must be

7Note that it is not our intention to denigrate CSPF or its
enormous contribution to the community - we simply
wish to investigate the implementation implications of its
filter model when run on modern hardware. The CSPF
filtering mechanism was intended to support efficient
protocol demultiplexing for user-level network code. The
initial implementation achieved huge gains by performing
user-specified demultiplexing inside the kernel rather than
in a user-process. After this, the incremental gain from a
more efficient filter design was negligible and, as a result,
the designers of CSPF invested less effort in the filter
machinery and, indeed, have pointed out that the ‘‘filter
language is not a result of careful analysis but rather
embodies several accidents of history’’[8].

500

400
g
@
2
3
g 300 —+
3
g
g

200 —
-3 136
o -
S (__—‘ NIT Incremental Overhead: 210 ns/byte
§ BPF Incremental Overhead: 0.00 na/byte

100 { o

0 o ®
o -
0 200 400 600 800 1000 1200 1400 1600

Packet Size (bytes)
Figure 3: NIT versus BPF: “‘reject all”’

262 1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

Tree Representation

/N

ether.type=IP . ether.typesARP |

N

CFG Representation

SN

. ether.typesIP

no

/_\ yes

. ether.type=ARP

Figure 4: Filter Function Representations

parsed to reach successive layers of encapsu-
lation. Since each leaf of the expression tree
represents a packet field, independent of other
leaves, redundant parses may be carried out to
evaluate the entire tree. In the CFG represen-
tation, it is always possible to reorder the
graph in such a w%y that at most one parse is
done for any layer.

Another problem with CSPF, recognized by the
designers, is its inability to parse variable length
packet headers, e.g., TCP headers encapsulated in a

8This graph reordering is, however, a non-trivial
problem. Our BPF compiler (part of tcpdump[4])
contains a fairly sophisticated optimizer to reorder and
minimize CFG filters. This optimizer is the subject of a
future paper.

variable length IP header. Because the CSPF
instruction set didn’t include an indirection operator,
only packet data at fixed offsets is accessible. Also,
the CSPF model is restricted to a single sixteen bit
data type which results in a doubling of the number
of operations to manipulate 32 bit data such as Inter-
net addresses or TCP sequence numbers. Finally,
the design does not permit access to the last byte of
an odd-length packet.

While the CSPF model has shortcomings, it
offers a novel generalization of packet filtering: The
idea of putting a pseudo-machine language inter-
preter in the kernel provides a nice abstraction for
describing and implementing the filtering mechan-
ism. And, since CSPF treats a packet as a simple
array of bytes, the filtering model is completely pro-
tocol independent. (The application that specifies
the filter is responsible for encoding the filter
appropriately for the underlying network media and
protocols.)

The BPF model, described in the next section,
is an attempt to maintain the strengths of CSPF
while addressing its limitations and the performance
shortcomings of the stack-based filter machine.

The BPF Model
CFGs vs. Trees

BPF uses the CFG filter model since it has a
significant performance advantage over the expres-
sion tree model. While the tree model may need to
redundantly parse a packet many times, the CFG
model allows parse information to be ‘built into’ the
flow graph. lLe., packet parse state is ‘remembered’
in the graph since you know what paths you must
have traversed to reach to a particular node and once
a subexpression is evaluated it need not be recom-
puted since the control flow graph can always be
(re-)organized so the value is only used at nodes that
follow the original computation.

For example, Figure 6 shows a CFG filter func-
tion that accepts all packets with an Internet address
foo. We consider a scenario where the network
layer protocols are IP, ARP, and Reverse ARP, all of
which contain source and destination Internet
addresses. The filter should catch all cases.

O

/

\
©

/

/\

\

.

pc

N

Lo ey pranenter

Figure 5: Tree Filter Function for ‘‘host foo”’

1993 Winter USENIX - January 25-29, 1993 — San Diego, CA 263

Accoraingly, the Iink layer type nheld 1s tested first.
In the case of IP packets, the IP host address fields
are queried, while in the case of ARP packets, the
ARP address fields are used. Note that once we
learn that the packet is IP, we do not need to check
that it might be ARP or RARP. In the expression
tree model, shown in figure 5, seven comparison
predicates and six boolean operations are required to
traverse the entire tree. The longest path through the
CFG has five comparison operations, and the average
number of comparisons is three.

ether.type=IP

)

Figure 6: CFG Filter Function for ‘‘host foo’’

Design of filter pseudo-machine

The use of a control flow graph rather than an
expression tree as the theoretical underpinnings of
the filter pseudo-machine is a necessary step towards
an efficient implementation but it is not sufficient.
Even after leveraging off the experience and
pseudo-machine models of CSPF and NNStat[1], the
BPF model underwent several generations (and
several years) of design and test. We believe the
current model offers sufficient generality with no
sacrifice in performance. Its evolution was guided
by the following design constraints:

1. It must be protocol independent. The kernel
should not have to be modified to add new
protocol support.

2. It must be general. The instruction set should
be rich enough to handle unforeseen uses.

3. Packet data references should be minimized.

4. Decoding an instruction should consist of a
single C switch statement.

5. The abstract machine registers should reside
in physical registers.

Like CSPF, constraint 1 is adhered to simply by not
mentioning any protocols in the model. Packets are
viewed simply as byte arrays.

Constraint 2 means that we must provide a
fairly general computational model, with control
flow, sufficient ALU operations, and conventional
addressing modes.

Constraint 3 requires that we only ever touch a
given packet word once. It is common for a filter to
compare a given packet field against a set of values,
then compare another field against another set of
values, and so on. For example, a filter might match
packets addressed to a set of machines, or a set of
TCP ports. Ideally, we would like to cache the
packet field in a register and compare it across the
set of values. If the field is encapsulated in a vari-
able length header, we must parse the outer headers
to reach the data. Furthermore, on alignment res-
tricted machines, accessing multi-byte data can
involve an expensive byte-by-byte load. Also, for
packets in mbufs, a field access may involve travers-
ing an mbuf chain. After we have done this work
once, we should not do it again.

jeq #0x805

jeq #0x8035

1d [28])
jeq #foo

1d [30)
jeq #foo

1d [38]

Figure 7: BPF Program for “‘host foo’’.

Constraint 4 means that we will have an
efficient instruction decoding step but it precludes an
orthogonal addressing mode design unless we are
willing to accommodate a combinatorial explosion of
switch cases. For example, while three address
instructions make sense for a real processor (where
much work is done in parallel) the sequential execu-
tion model of an interpreter means that each address
descriptor would have to be decoded serially. A sin-
gle address instruction format minimizes the decode,
while maintaining sufficient generality.

Finally, Constraint 5 is a straightforward perfor-
mance consideration. Along with constraint 4, it
enforces the notion that the pseudo-machine register
set should be small.

These constraints prompted the adoption of an
accumulator machine model. Under this model,
each node in the flowgraph computes its correspond-
ing predicate by computing a value into the accumu-
lator and branching based on that value. Figure 7
shows the filter function of Figure 6 using the BPF
instruction set.

264 1993 Winter USENIX — January 25-29, 1993 - San Diego, CA

The BPF Pseudo-Machine

The BPF machine abstraction consists of an
accumulator, an index register (x), a scratch memory
store, and an implicit program counter. The opera-
tions on these elements can be categorized into the
following groups:

1. LOAD INSTRUCTIONS copy a value into the
accumulator or index register. The source can
be an immediate value, packet data at a fixed
offset, packet data at a variable offset, the
packet length, or the scratch memory store.

2. STORE INSTRUCTIONS copy either the accumu-
lator or index register into the scratch memory
store.

3. ALU INSTRUCTIONS perform arithmetic or
logic on the accumulator using the index
register or a constant as an operand.

4. BRANCH INSTRUCTIONS alter the flow of con-
trol, based on comparison test between a con-
stant or x register and the accumulator.

S. RETURN INSTRUCTIONS terminate the filter and
indicated what portion of the packet to save.
The packet is discarded entirely if the filter
returns 0.

6. MISCELLANEOUS INSTRUCTIONS comprise
everything else — currently, register transfer
instructions.

The fixed-length instruction format is defined
by as follows:

opcode:16 | ju:8 | jf:8
k:32

The opcode field indicates the instruction type
and addressing modes. The jt and jf fields are used
by the conditional jump instructions and are the
offsets from the next instruction to the true and false
targets. The k field is a generic field used for vari-
ous purposes. Table 1 shows the entire BPF instruc-
tion set. We have adopted this ‘‘assembler syntax’’
as a means of illustrating BPF filters and for debug-
ging output. The actual encodings are defined with
C macros, the details of which we omit here (see [6]
for full details). The column labeled addr modes
lists the addressing modes allowed for each instruc-
tion listed in the opcode column. The semantics of
the addressing modes are listed in Table 2.

The load instructions simply copy the indicated
value into the accumulator (1d, 1dh, 1db) or index
register (1dx). The index register cannot use the
packet addressing modes. Instead, a packet value
must be loaded into the accumulator and transferred
to the index register, via tax. This is not a com-
mon occurrence, as the index register is used pri-
marily to parse the variable length IP header, which
can be loaded directly via the 4*([k]&O0xf)

opcodes addr modes
1db [k} [x+k]
1dh [k] [x+k]
1d #k | #len | M[k] | [k] | [x+k]
1dx #k | #len | M[k] 4*([k]
st M{k]
stx Mik]
jmp L
jeq #k, Lt, Lf
jgt #k, Lt, Lf
jge #k, Lt, Lf
jset #k, Lt, Lf
add #k b4
sub #k x
mul #k X
div #k b'4
and #k b <
or #k b'4
1sh #k b'4
rsh #k X
ret #k a
tax
txa
Table 1: BPF Instruction Set

1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

265

aadressing mode. All values are 3Z bil WOrds,
except packet data can be loaded into the accumula-
tor as unsigned bytes (1db) or unsigned halfwords
(1dh). Similarly, the scratch memory store is
addressed as an array of 32 bit words. The instruc-
tion fields are all in host byte order, and the load
instructions convert packet data from network order
to host order. Any reference to data beyond the end
of the packet terminates the filter with a return value
of zero (i.e., the packet is discarded).

#k the literal value stored in k

#len the length of the packet

M[k] the word at offset k& in the
scratch memory store

[k] the byte, halfword, or word
at byte offset k& in the
packet

[x+k] the byte, halfword, or word
at offset x+k in the packet

L an offset from the current

instruction to L

the offset to Lt if the
predicate is true, otherwise
the offset to Lf

X the index register
4*([k]1&0xf) | four times the value of the
low four bits of the byte at
offset k in the packet

#k, Lt, LE

Table 2: BPF Addressing Modes

The ALU operations (add, sub, etc.) perform
the indicated operation using the accumulator and
operand, and store the result back into the accumula-
tor. Division by zero terminates the filter.

The jump instructions compare the value in the
accumulator with a constant (jset performs a ‘bit-
wise and’’ — useful for conditional bit tests). If the
result is true (or non-zero), the true branch is taken,
otherwise the false branch is taken. Arbitrary com-
parisons, which are less common, can be done by
subtracting and comparing to 0. Note that there are
no jlt, jle or jne opcodes since these can be
built from the codes above by reversing the
branches. Since jump offsets are encoded in eight
bits, the longest jump is 256 instructions. Jumps
longer than this are conceivable, so a jump always
opcode is provided (jmp) that uses the 32 bit
operand field for the offset.

The return instructions terminate the program
and indicate how many bytes of the packet to accept.
If that amount is 0, the packet will be rejected
entirely. The actual amount accepted will be the
minimum of the length of the packet and the amount
indicated by the filter.

Examples
We now present some examples to illustrate
how packet filters can be expressed using the BPF
instruction set. (In all the examples that follow, we
assume Ethernet format for the link level headers.)

This filter accepts all IP packets:

1dh [12]

jeq #ETHERTYPE_IP , L1, L2
Ll: ret #TRUE
L2: ret #0

The first instruction loads the Ethernet type
field. We compare this to type IP. If the com-
parison fails, zero is returned and the packet is
rejected. If it is successful, TRUE is returned and
the packet is accepted. (TRUE is some non-zero
value that represents the number of bytes to save.)

This next filter accepts all IP packets which did
not originate from two particular IP networks,
128.3.112 or 128.3.254. If the Ethernet type is IP,
the IP source address is loaded and the high 24 bits
are masked off. This value is compared with the
two network addresses:

111 1dh [12]

jeq #ETHERTYPE IP, L1, L4
Ll: 1d [26]

and #Oxffffffoo0

jeq #0x80037000, L4, L2
L2: jeq #0x8003fe00, L4, L3
L3: ret #TRUE
L4: ret #0

Parsing Packet Headers

The previous examples assume that the data of
interest lie at fixed offsets in the packet. This is not
the case, for example, with TCP packets, which are
encapsulated in a variable length IP header. The
start of TCP header must be computed from the
length given in the IP header.

The IP header length is given by the low four
bits of the first byte in the IP section (byte 14 on an
Ethernet). This value is a word offset, and must be
scaled by four to get the corresponding byte offset.
The instructions below will load this offset into the
accumulator:

1db [14}
and #0xf
1lsh #2

Once the IP header length is computed, data in
the TCP section can be accessed using indirect
loads. Note that the effective offset has three com-
ponents:

@ the IP header length,
@ the link level header length, and
® the data offset relative to the TCP header.

For example, an Ethernet header is 14 bytes
and the destination port in a TCP packet is at byte

266 1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

two. ‘lhus, adding 16 to the IF header length gives
the offset to the TCP destination port. The previous
code segment is shown below, augmented to test the
TCP destination port against some value N:

1ldb ({14)

and #0xf

1sh #2

tax

ldh [x+16)

jeq #N, L1, L2
Ll: ret #TRUE
L2: ret #0

Because the IP header length calculation is a
common operation, the 4*([k]&0xf) addressing
mode was introduced. Substituting in the 1ldx
instruction simplifies the filter into:

1dx 4*([14] Oxf)
ldh [x+16]
jeq #N, L1, L2
Ll: ret #TRUE
L2: ret #0
However, the above filter is valid only if the

data we are looking at is really a TCP/IP header.
Hence, the filter must also check that link layer type
is IP, and that the IP protocol type is TCP. Also,
the IP layer might fragment a TCP packet, in which

case the 1'CP header 1s present only In the nhrst frag-
ment. Hence, any packets with a non-zero fragment
offset should be rejected. The final filter is shown
below:

ldh [12)

jeq #ETHERPROTO IP, L1, LS
Ll: 1ldb [23]

jeq #IPPROTO TCP, L2, L5
L2: 1dh [20]

jset #Ox1fff, L5, L3
L3: 1ldx 4*([14] Oxf)

1dh [x+16]

jeq #N, L4, L5
L4: ret #TRUE
L5: ret #0

Filter Performance Measurements

We profiled the BPF and CSPF filtering models
outside the kernel using iprof [9], an instruction
count profiler. To fully compare the two models, an
indirection operator was added to CSPF so it could
parse IP headers. The change was minor and did not
adversely affect the original filtering performance.
Tests were run on large packet trace files gathered
from a busy UC Berkeley campus network. Figure 8
shows the results for four fairly typical filters.

It tests whether one 16 bit
The two

Filter 1 is trivial.
word in the packet is a given value.

Mean Number of CPU Instructions Per Packet

2500
2330
2000
1500 —
71
1000 S
549
500
129
0- .
Fifter 1 Filter 2 Filter 3 Filter 4

Filter 1 IP packets

Filter 2 IP packets with src or dst ‘‘horse”’

Filter 3 TCP packets with src or dst port of finger, domain, login, or shell

Filter 4 IP, ARP or RARP packets between hosts ‘‘horse”” and ‘‘gauguin’’

Figure 8: BPF/CSPF Filter Performance

1993 Winter USENIX ~ January 25-29, 1993 — San Diego, CA

267

models are tairly comparable, with BPF taster by
about 50%.

Filter 2 looks for a particular IP host (source or
destination) and shows more of a disparity — a per-
formance gap of 240%. The larger difference here is
due mostly to the fact that CSPF operates only on 16
bit words and needs two comparison operations to
determine the equality of a 32 bit Internet address.

Filter 3 is an example of packet parsing
(required to locate the TCP destination port field)
and illustrates a yet greater performance gap. The
BPF filter parses the packet once, loading the port
field into the accumulator then simply does a com-
parison cascade of the interesting ports. The CSPF
filter must re-do the parse and relocate the TCP
header for each port to be tested.

Finally, filter 5 demonstrates the effect of the
unnecessary computations done by CSPF for a filter
similar to the one described in Figures 5 and 6.

Applications

BPF is now about two years old and has been
put to work in several applications. The most
widely used is fcpdump [4], a network monitoring
and data acquisition tool. Tcpdump performs three
primary tasks: filter translation, packet acquisition,
and packet display. Of interest here is the filter
translation mechanism. A filter is specified with a
user-friendly, high level description language.
Tcpdump has a built in compiler (and optimizer)
which translates the high level filters into BPF pro-
grams. Of course, this translation process is tran-
sparent to the user.

Arpwatch [5] is a passive monitoring program
that tracks Ethernet to IP address mappings. It
notifies the system administrator, via email, when
new mappings are established or abnormal behavior
is noted. A common administrative nuisance is the
use of a single IP address by more than one physical
host, which arpwatch dutifully detects and reports.

A very different application of BPF has been
its incorporation into a variant of the Icon Program-
ming Language [3]. Two new data types, a packet
and a packet generator have been built into the Icon
interpreter. Packets appear as first class record
objects, allowing convenient ‘‘dot operator’’ access
to packet headers. A packet generator can be instan-
tiated directly off the network, or from a previously
collected file of trace data. Icon is an interpreted,
dynamically typed language with high level string
scanning primitives and rich data structures. With
the BPF extensions, it is well suited for the rapid
prototyping of networking analysis tools.

Netload and histo are two network visualization
tools which produce real time network statistics on
an X display. Netload graphs utilization data in real
time, using tcpdump style filter specifications. Histo

produces a dynamic interarrival-time histogram of
timestamped multimedia network packets.

The Reverse ARP daemon uses the BPF inter-
face to read and write Reverse ARP requests and
replies directly to the local network. (We developed
this program to allow us to entirely replace NIT by
BPF in our SunOS 4 systems. Each of the Sun
NIT-based applications (etherfind, traffic, and rarpd)
now has a BPF analog.)

Finally, recent versions of NNStat[1] and
nfswatch can be configured to run over BPF (in
addition to running over NIT).

Conclusion

BPF has proven to be an efficient, extensible,
and portable interface for network monitoring. Our
comparison studies have shown that it outperforms
NIT in its buffer management and CSPF in its filter-
ing mechanism. Its programmable pseudo-machine
model has demonstrated excellent generality and
extensibility (all knowledge of particular protocols is
factored out of the kernel). Finally, the system is
portable and runs on most BSD and BSD-derivative
systems? and can interact with various data link
layersZ?.

Availability

BPF is available via anonymous ftp from host
ftp.ee.lbl.gov as part of the tcpdump distribu-
tion, currently in the file tcpdump-
2.2.1.tar.z. Eventually we plan to factor BPF
out into its own distribution so look for bpf-
* . tar.Zz in the future. Arpwatch and netload are
also available from this site.

Acknowledgements

This paper would never have been published
without the encouragement of Jeffrey Mogul. Jeff
ported tcpdump to Ultrix and added little-endian sup-
port, uncovering dozens of our byte-ordering bugs.
He also inspired the jset instruction by forcing us
to consider the arduous task of parsing DECNET
packet headers. Mike Karels suggested that the filter
should decide not only whether to accept a packet,
but also how much of it to keep. Craig Leres was
the first major user of BPF/tcpdump and is responsi-
ble for finding and fixing many bugs in both. Chris
Torek helped with the packet processing perfor-
mance measurements and provided insight on vari-
ous BSD peculiarities. Finally, we are grateful to
the many users and extenders of BPF/tcpdump
across the Internet for their suggestions, bug fixes,
source code, and the many questions that have, over

9SunOS 3.5, HP-300 and HP-700 BSD, SunOS 4.x,
4.3BSD Tahoe/Reno, and 4.4BSD.

wEthemet, FDDI, SLIP, and PPP are -currently
supported.

268 1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

the years, greatly broadened our view of the net-
working world and BPF’s place in it.

Finally, we would like to thank Vern Paxson,
Craig Leres, Jeff Mogul, Sugih Jamin, and the
referees for their helpful comments on drafts of this
paper.

Bibliography

(1] Braden, R. T. A pseudo-machine for packet
monitoring and statistics. In Proceedings of
SIGCOMM 88 (Stanford, CA, Aug. 1988),
ACM.

[2] Digital Equipment Corporation. packetfilter(4),
Ultrix V4.1 Manual.

[3] Griswold, R. E., and Griswold, M. T. The Icon
Programming Language. Prentice Hall, Inc.,
Englewood Cliffs, NJ, 1983.

[4] Jacobson, V., Leres, C., and McCanne, S. The
Tcpdump Manual Page. Lawrence Berkeley
Laboratory, Berkeley, CA, June 1989.

[5] Leres, C. The Arpwatch Manual Page.
Lawrence Berkeley Laboratory, Berkeley, CA,
Sept. 1992.

[6] McCanne, S. The BPF Manual Page.
Lawrence Berkeley Laboratory, Berkeley, CA,
May 1991.

[7] Mogul, J. C. Efficient use of workstations for
passive monitoring of local area networks. In
Proceedings of SIGCOMM ’90 (Philadelphia,
PA, Sept. 1990), ACM.

[8] Mogul, J. C., Rashid, R. F., and Accetta, M. J.
The packet filter: An efficient mechanism for
user-level network code. In Proceedings of
11th Symposium on Operating Systems Princi-
ples (Austin, TX, Nov. 1987), ACM, pp. 39--
S1.

[9] Rice, S. P. iprof source code, May 1991.
Brown University.

[10] Sun Microsystems Inc. NIT(4P); SunOS 4.1.1
Reference Manual. Mountain View, CA, Oct.
1990. Part Number: 800-5480-10.

Author Information

Steven McCanne has been with the Lawrence
Berkeley Laboratory since 1988, working on network
analysis tools and remote conferencing applications.
He holds a B.S. degree in Electrical Engineering and
Computer Science from U.C. Berkeley, and is
currently a Ph.D. student in Computer Science at
U.C.B. His e-mail address is mccanne@ee.lbl.gov.

Van Jacobson’s e-mail address is
van@ee.lbl.gov .
Reach both authors at: Lawrence Berkeley

Laboratory, One Cyclotron Road, Berkeley, CA
94720.

1993 Winter USENIX -~ January 25-29, 1993 - San Diego, CA

269

270 1993 Winter USENIX - January 25-29, 1993 — San Diego, CA

