
LISA 2014

Dinah McNutt
Release Engineer, Google, Inc.
November 12, 2014

Distributing Software in a
Massively Parallel Environment

Problem: Reliably and consistently distributing
software in a Laaaaaaaaaaaarge Network

● Bottlenecks
○ Network
○ Disk
○ CPU
○ Memory

● Latency
● Machines Off-line
● Partitioned Networks
● Concurrent Writers

Google Confidential and Proprietary

Solution: Google's Package Manager

● Midas Package Manager (aka MPM)
● Package metadata are stored in Google's Bigtable Database
● Package data are stored in Google's Colossus File System and

are replicated
● Transport mechanism uses custom peer to peer mechanism

(based on torrent)

Google Confidential and Proprietary

Nope, this talk does not apply to Android

MPM Package Characteristics

● Contents (e.g. files)
● Unique version ID (a secure hash)
● Signatures

○ packages may be signed for verification and auditing purposes
● Labels

○ canary
○ live
○ release_candidate_2013_06_24_00
○ production=2013_06_24_00

● Pre-packaging commands
● Optional pre- and post-installation commands

Google Confidential and Proprietary

Case Study: Project Xyzzy

● Configuration files need to be distributed to thousands of
machines

● Files are packaged into an MPM
● Jobs on remote systems fetch a new version of the package

every 10 minutes
● Post-fetch script within the package installs the configuration

files

Sounds easy, right? Let's look under the covers...

Google Confidential and Proprietary

Assumptions and Constraints

● There will always be off-line machines
● Bottlenecks need to be minimized
● Jobs must be able to specify which version of a package to use
● Jobs on same machine may use different versions of the same

package
● Must be able to guarantee files have not been tampered with
● Must be able to rollback to a previous version

Google Confidential and Proprietary

Package Creation

● Package definition file
○ list of files are included in package
○ file ownership and permissions
○ post-install and pre-deinstall commands
○ generated from build system

● Generated by build system
○ run build command
○ optionally apply label(s) and/or signatures to package

■ can be done now and/or later

Google Confidential and Proprietary

Package Creation, cont.

● Package creation is idempotent
○ new package is not created if contents have not changed
○ transparent to user
○ requested labels get applied to the existing package

Google Confidential and Proprietary

MPM Metadata

● Immutable
○ Who, when, how package was built
○ List of files, checksums, and file attributes
○ Some labels

■ production=2013_06_24_00
○ Version ID

● Mutable
○ Labels
○ Cleanup policy

Google Confidential and Proprietary

Durability of Packages

Garbage collection performed automatically based on durability:

● Test
○ Reduced retention (3 days) and replication policies

● Ephemeral
○ Short-lived (7 days)
○ Useful for configuration files that are being packaged and pushed

frequently
○ Saves on storage resources - packages are not kept longer than

needed
● Durable

○ Default retention policy is 3 months since last used

Google Confidential and Proprietary

Package Distribution

● Uses Pull method
● Pros:

○ Avoid network congestion - packages are only fetched when needed
○ Job owners can decide when to accept new versions of packages

● Cons:
○ Job owners can decide when to accept new versions of packages
○ Need extra logic in job to check for new version of packages OR the

ability to re-start jobs easily
○ Can be difficult to tell who is going to be using a specific version

Google Confidential and Proprietary

Metadata Distribution and Replication

● Metadata is stored in Bigtable (which is replicated)
● Root servers read and cache data from local Bigtable
● MPM client queries local root server
● Failover logic is in client

○ When MPM client requests fail, a request will automatically be sent to
another root server (based on geographical location)

Google Confidential and Proprietary

Package Data Distribution and Replication

● Package data is copied to centrally-managed replication servers
○ Stored in Colossus file system
○ Scattered geographically
○ 2-tiered architecture

■ frequently-used packages cached nearby
● Fetches are done using torrent-like protocol

○ Package data stored on local disk
○ Resilient to outages

● Very scalable
○ Millions of fetches daily
○ Petabytes of data daily

Google Confidential and Proprietary

Security - Access Control Lists

● Package name space is hierarchical
○ storage/client
○ storage/client/config
○ storage/server
○ ACLs created on “storage” can be inherited by “storage/client” and

“storage/server”
● 3 levels of access

○ owner - create and delete packages, modify labels, manage ACLs
○ builder - create packages and add/modify labels
○ label - controls who can add/modify specific labels

■ production.*
■ canary
■ my_immutable_label=dont_mess_with_me

Google Confidential and Proprietary

Security - Encryption

● Individual files can be encrypted within a package
● ACLs define who can decrypt files
● Encryption and decryption performed locally (and automatically)

○ no MPM servers can read decrypted data

Google Confidential and Proprietary

Security - Signatures

● Packages are signed at build time or later
● Secure key escrow service generates signature using:

○ package name
○ metadata (including file checksums)

● Signatures verified using the package name and expected signer
○ signed metadata re-verified against package contents

Google Confidential and Proprietary

Re-visiting Project Xyzzy

● Package is created using MPM build command
○ If config files have not changed, a new package is not created
○ Package is ephemeral, no labels applied

● Metadata is written to Bigtable via API and automatically replicated
● Package is copied to Colossus and replicated

○ There may be a delay during replication
○ Information about the package is available immediately
○ Fetches may be performed from alternate Colossus server if replication

is not complete (transparent to user)
● For project Xyzzy, a cron-like job will fetch the new version of package:

○ If package has not changed, nothing happens
○ If package data is already cached locally, it is not re-fetched

Google Confidential and Proprietary

Cool Things I like
about MPM

Google Confidential and Proprietary

mpmdiff

● Can compare any two packages (don't have to have the same name)
● Can selectively report on most package attributes

○ file owner and/or mode
○ file size
○ post-install and pre-deinstall scripts
○ file checksums

Google Confidential and Proprietary

Labels

● Can fetch packages using labels
● Can use labels to indicate where a package is in the release process (dev,

canary, production)
● Packages can be promoted by moving labels from one package to another

(labels are unique for a specific package)
● Some labels are immutable and cannot be moved

○ production_build=RC2013_01_12
● Some labels are special and cannot be specified by users

○ latest
● Labels can be used to assist in rollbacks

○ apply “rollback” or “last_known_good” label to current MPM when
promoting the new one

○ SREs can quickly install the rollback MPM if there are problems

Google Confidential and Proprietary

filegroups

● Files within an MPM can be stored in filegroups
● Filegroups can be fetched individually
● A file may exist in more than one filegroup
● Common practice is to store both stripped and unstripped binaries in same

MPM but in different filegroups
○ This ensures that the unstripped binary matches the stripped version

when troubleshooting problems

Google Confidential and Proprietary

Web Interface

● Can browse all MPMs
● Displays Metadata

○ Version ID
○ Data and time package was built
○ Builder
○ Size
○ Labels
○ Date of last fetch
○ Durability
○ Expiration
○ ACLs

● Graphs showing package size (by filegroup) over time

Google Confidential and Proprietary

Questions?

Dinah McNutt
Release Engineer

Thank You

