
Slidy - a web based
alternative to
Microsoft PowerPoint
Dave Raggett

W3C/Volantis

dsr@w3.org
© 2006 Dave Raggett

Abstract

HTML Slidy is an open source Web-based alternative to Microsoft PowerPoint
based upon XHTML, CSS and JavaScript, and which runs on a wide variety of
browsers. I will introduce Slidy, and describe the challenges faced in developing
an accessible cross platform browser-based editor for slide presentations.

Slidy is available at http://www.w3.org/Talks/Tools/Slidy/

Introduction
Slide presentations are a familiar part of life. In Victorian times, presenters were
able to project images of glass slides and opaque objects using a device called an
epidiascope. In the last century these were superseded by 35mm slides and the
overhead projector. As computers and inkjet printers become more affordable,
computer generated slides took over from hand drawn foils. This era came to an
end with the spread of the video projector which displays slides directly from the
computer. Today Microsoft PowerPoint is omnipresent. The first version was
released in 1987 for the Apple Macintosh and used to produce black and white
overhead transparencies. Microsoft bought the company that produced it
(Forethought) and adapted it for use on Windows, and PowerPoint has been part
of the Microsoft Office suite since 1990.

One of the problems with PowerPoint is the difficulty of making your slides
available to others. The files tend to be very large and many people are suspicious

mailto:dsr@w3.org
http://en.wikipedia.org/wiki/PowerPoint
http://www.w3.org/Talks/Tools/Slidy/

of binary email attachments. Another problem is that the format is proprietary to
Microsoft so that you are dependent on one company for the software needed to
produce and view the slides. This paper describes an alternative that is based
upon HTML and which, unlike PowerPoint, works across platforms, and on most
recent Web browsers such as Internet Explorer, Firefox, Opera and Safari. To
share your presentation with others, you just need to give them the URI, either in
email, or as a link on your website.

HTML Slidy
The Web has been used for presentations for some years. The W3C staff, for
instance, have used a tool called slidemaker that splits a single HTML file into a
number of files, with one file per slide, with graphical buttons for links to the
previous and next slides, and the table of contents. Each time you edit the
presentation, the tool has to be re-applied to update the slides. This encouraged
people to search for alternatives. Opera Software provided one solution through
the use of CSS to present HTML as a series of pages. Opera Show makes use of
the CSS @media feature to apply page breaking rules when the Opera browser is
in the projection mode (entered by pressing F11). Unfortunately Opera is one of
the very few browsers to implement support for CSS in this way.

Another approach is to make use of Web page scripts to simulate paged media.
This was pioneered by Tantek Çelik and soon followed by others. Eric Meyer
produced the excellent S5 tool, and I independently came up with HTML Slidy.
Both of these make use of JavaScript to hide and show HTML div elements that

enclose the markup for each slide. The appearance of slides is specified via CSS.

The Slidy script and style sheet are freely available for anyone to use and to adapt
under W3C's software licensing and document use policies. If people use their
own markup and style sheets, but link to the Slidy script on the W3C website,
then bug fixes and enhancements will be available to them automatically. This is
one of the major benefits of Web applications, applications that are accessed with
a Web browser over the net, as update and maintenance of such applications can
be done without distributing and installing software on potentially very large
numbers of clients. A second benefit is that by holding the user's data on the
Web, you don't lose anything if your computer breaks down, or is mislaid or
stolen. A third benefit is that Web applications are often free which compares
very favourably with software for the Windows platform.

In the next section of the paper, I will introduce the features supported by Slidy.
Subsequent sections will deal with recent work on developing a browser based

http://en.wikipedia.org/wiki/Web_application
http://www.w3.org/Talks/Tools/Slidy/slidy.js
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/Talks/Tools/Slidy/
http://www.meyerweb.com/eric/tools/s5/s5-intro.html
http://www.meyerweb.com/
http://tantek.com/
http://www.w3.org/TR/CSS21/media.html
http://www.opera.com/support/tutorials/operashow/
http://www.w3.org/Style/CSS/
http://dev.w3.org/cvsweb/slidemaker/
http://www.w3.org/
http://www.w3.org/MarkUp/

editor for creating and updating slide presentations, and the opportunities for
using Slidy together with streaming audio for distributed presentations and later
playback.

Features
A Slidy presentation is created as an HTML file, my personal preference is to use
XHTML Strict. The document head contains a link to the Slidy script, and to the
style sheet used to theme the slides. You can also use a meta element to specify a

copyright statement, which is shown on the Slidy toolbar at the bottom of the
window. The document body generally starts with the definition of any slide
backgrounds, and the cover or title slide.

Each slide should be marked up with a div element with the class “slide”. You

may include other class values using a space separated list on the class attribute.
This allows you to use CSS rules to give slide specific styles. The font size is
automatically adjusted by the Slidy script according to the width of the browser
window. This is done by setting the font-size property on the body element. As a

result, you shouldn't set the font-size on the body element in any accompanying
style sheets. Instead, you are free to set relative font sizes on other elements, e.g.

div.slide.packed { font-size: 80% }

which reduces the font size on slides with the class value of “packed”. People vary
in how much content they have on their slides. Some people have very little while
others cram their slides with lots of detailed material. Slidy allows you to specify
this via a meta element in the document head as an alterative to overriding the

linked style sheet with a local rule.

Sometimes, the style sheet isn't quite enough when it comes to styling the slide's
background. To support this, Slidy allows you to specify backgrounds with div

elements with the class “background”. Using markup allows you to work around
limitations in CSS, for instance, allowing you to stretch an image to just cover the
width and height of the slide. You can also compose the background from a
number of image and textual elements, using CSS to position them as desired. In
most cases a single background is sufficient, but occasionally you may want to
provide different backgrounds for different types of slides. Slidy enables you to do
this by matching slides and backgrounds with common class values.

You are free to choose what markup you need for each slide. It is good practice to
start the slide with a slide heading using an h1 element. Slidy uses these headings

to automatically construct a table of contents. This can be shown by clicking on
the “contents” link on the toolbar at the bottom of the window, or by pressing the

http://www.w3.org/TR/xhtml1/

“C” key. Users can navigate between slides in pretty much the same way as with
PowerPoint. To advance to the next slide, you can press the space bar, click with
the mouse, press the cursor right key or the page down key. To go back a slide,
you can press the cursor left key or the page up key. The home and end keys take
you to the first and last slides, respectively.

Slidy has evolved in response to end-user feedback, particularly amongst the
W3C staff. One example is the support for incrementally revealing slide content.
Users expressed a desire for this, but not for fancy build effects or slide
transitions. An element is revealed incrementally if it has the class value of
“incremental” or if its parent has. Users expressed a gripe with PowerPoint when
moving forward or backward through incremental content in that there was no
way to skip over incremental content to the next or previous slide. Slidy allows
you to do this with the page up and page down keys. Cursor left and right always
honour incremental
content.

You can incrementally
reveal overlapping images,
but for the moment at least,
you need to remember to
use GIF transparency for
this, as IE6 has buggy
support for translucency in
PNG images. This is due to
be fixed in IE7. To make
images scale with the
browser window, you can
use CSS to set percentage
widths. I have also found
that CSS positioning is
simpler and more reliable
across different browsers
than using border-less
tables. For resolution
independent scaling, use
SVG, but remember to
provide a bitmapped image
as a fallback. SVG support Figure 1: screen shot of slide describing how to

create outline lists that expand and contract.

http://www.w3.org/Graphics/SVG/

is built into Firefox 1.5 and Opera 8. On other browsers, you may be able to use
the Adobe SVG plugin.

Another piece of user feedback concerns itself with the difficulty of dealing with
structured markup in “what you see is what you get” (wysiwyg) document editors,
most of which focus on paragraphs. As a result some users said that they found it
hard to create the div element for each slide. My solution was to enhance the

script to add the div element automatically when missing. This assumes that

each such slide begins with an h1 element.

A recently added feature provides support for outline lists with expanding and
collapsing list items. You just need to add the class value “outline” to the ul or ol

element. Slidy will then hide block-level elements within the list items. You can
force Slidy to pre-expand a given list item by giving it the class value of “expand”.
This feature makes use of CSS to show expand/collapse icons, by setting images
as part of the li element's background, with padding-left used to offset the

element's content. The same technique can be used to style list bullets, with the
default bullets being suppressed through list-style: none.

A Browser-based Slidy Editor
While some users are comfortable with editing HTML, others would prefer not to
have to learn the details of markup and prefer to use HTML editing tools. One of
these is the open source Amaya browser/editor. As mentioned early, wysiwyg
editors can make it harder for people to create structured markup. Another issue
is the ease in which you can create and update files on your Web server. I
therefore decided to work towards releasing a browser-based editor for Slidy, that
would be usable in any modern Web browser, without the need for any plugins,
and with the goal of being at least as usable for most purposes as PowerPoint.

Basic use of HTML Forms
My starting point was to look at what capabilities are available on any Web
browser, and that leads to the basic use of HTML Forms. The idea is to allow you
to edit one slide at a time, with the heading in a one field and the slide content in
another. The form would include buttons to move forwards and backwards
between slides, and the means to open an existing presentation or to create a new
one.

http://www.w3.org/Amaya/

The main problem is that the standard HTML form fields do not support rich text
editing. You therefore need to make of plain text conventions that the server-side
script can translate into the desired HTML markup. One such set of conventions
is that for wiki markup. This identifies headings by surrounding the heading text
by equals signs, with the number of such signs indicating the level of the heading.
Hypertext links are represented by enclosing the URI and the caption in square
brackets. Paragraph breaks are indicated by blank lines.

Problems start to creep in when you use lists. Each list item starts with an
asterisk followed by a space
and the list item content.
Unfortunately the content
is restricted to a single line
as a line break marks the
end of the list item. Nested
items are indicated by
starting the line with one or
more spaces. This raises a
usability problem for
entering text with the
HTML textarea element.

When you type to the end
of the line, the text may
automatically wrap to the
next line, or without being
aware of it, you may press
the Enter key to move to
the next line. There is no
visual indication either way
of what happened. This
causes usability problems
for conventions relying on
single line breaks.

One solution is to rely on
leading white space to
indicate the level of nesting
and on blank lines to indicate paragraph breaks. If the text flows onto the next
line, that is treated as part of the current item. If you want to start a new
paragraph or list item, you need to insert a blank line.

Figure 2: screen shot of plain-text editor with
separate slide title and slide contents.

http://en.wikipedia.org/wiki/Wikipedia:How_to_edit_a_page

The corresponding server-side script can be written in a language such as Perl or
Python. It needs to be able to open HTML files, to parse them into a DOM tree,
and to be able to update them as appropriate and then write the file back. Parsing
HTML is easy if it is well formed, but all to often it is not, for example, when the
presentation has been edited using a plain text editor that knows nothing about
HTML. My HTML Tidy tool can be used to correct such problems.

So far, so good. we can use HTML forms together with simple conventions for
representing markup in plain text, and a matching server-side script. The snag is
that the very users that don't like editing HTML markup, are unlikely to want to
learn yet another markup language. They instead want some kind of “what you
see is what you get” editing. How could this be provided with HTML forms?

The Model-View-Controller Design
Pattern
Even though the HTML textarea element is limited to plain text, it should be
practical to use JavaScript to override the default behaviour to provide a rough
approximation to what you see is what you get. Think of this as what you see is
roughly what you get (wysirwyg). Here is an example of a nested list:

* The first point

 - A subsidiary point

* The second point

At first glance, this looks rather like the wiki style conventions described earlier
on. The difference is that when the text wraps to the next line it is automatically
indented to the current level. When the Enter key is pressed, the next list item is
started and the leading white space and bullet symbol inserted automatically. The
reverse needs to happen when the user presses the Backspace key at the start of a
list item or paragraph. To achieve this, the editor needs to override the default
treatment of each keystroke.

An important step in realizing this is to separate the presentation from the
markup being edited. This is where the model-view-controller design pattern is
valuable. The view is the textarea element, the model is the markup, and the

controller is some script that sits in the middle mediating between the model and
the view. This requires support for some basic operations:

● A means to intercept and override the default behaviour for keystrokes
including Tab, Backspace, Delete, Enter, Space, Cursor Left, Cursor Right,
Cursor Up, Cursor Down, and other navigation keys.

http://www.w3.org/People/Raggett/tidy/

● The means to determine the current position of the text editing caret, and
to be able to set it, for example, after the user has clicked on the text.

● A means to be able to insert and remove text strings from the view.

● A means to determine the text selection when the user has selected a range
of text, e.g. using a mouse drag select operation.

● A means to determine when to wrap text within the view. This requires a
determination of how many fixed pitch characters fit on a line.

The above sound straightforward but in fact are quite tricky given limitations in
the browser scripting interfaces and differences between browsers. An example is
the difficulty in determining the caret position on Internet Explorer, which fails
to provide a direct mechanism to achieve this. A workaround is to copy the text
buffer for the textarea element, then to insert a short string, to search for it, and
to then restore the buffer. This relies on the string not being already present in
the buffer, but that is something you can test for. Another workaround, but this
time for Firefox, was needed to measure the width of a character, and involved
using a dummy element with its visibility set to hidden.

DesignMode and ContentEditable
Microsoft introduced rich editing support into Internet Explorer some years ago,
but along with XMLHTTP, it has taken a while for people to learn how to exploit
these powerful features. DesignMode is a property you can set on an HTML
document to make it editable. This is usually done within an iframe element.

Editing controls can then be placed in the document containing the iframe

element. Design mode documents support an execCommand method that can be
used to implement a range of styling operations as well as support for cut, copy
and paste, undo/redo, and for inserting hypertext links and images etc.
DesignMode is also supported by Firefox 1.5 and Opera 9. ContentEditable is
currently only supported by Internet Explorer, and is like DesignMode, but can
be applied to individual HTML elements. This avoids the need for a iframe and
makes it easier to work with.

A number of people have demonstrated how to use these features to implement
simple HTML editors. Some examples include WidgEditor and FCKeditor, both
of which are open source and intended to be included as part of other Web
applications. There are also non-free commercially supported equivalents. The
prospects for a wysiwyg editor for Slidy seem very promising. What are some of
the pitfalls? Clearly, the solution needs to be accessible. This means that it should
be possible to drive the editor from the keyboard without the use of a mouse,
trackpad or other pointing device. In practice this constrains the use of images as
controls. It is very simple to
add an event handler to an
image for mouse clicks, but
by itself this doesn't allow
the control to be activated
by the keyboard. A solution
is to enclose the image in a
button element, as this
then means that it will
become part of the tabbing
sequence. Another idea is
to use keystroke event
handlers to implement
short cuts for activating the
controls. A combination of
the two approaches gives
new users an obvious
solution whilst offering
experienced users a short
cut.

Another pitfall is the
quality of the markup that
is generated when using
designMode and
contentEditable. As an
example, Firefox inserts a
pair of
 elements
instead of inserting a paragraph <p> element. It is very hard to place a paragraph
within a list item, and you tend to get a separate paragraph with a style attribute
that indents the paragraph. One solution is to work around this when it comes
time to exporting the edited markup. This involves applying a number of clean up

Figure 3: screen shot of design mode editor with
template for a cover slide.

http://www.fckeditor.net/
ttp://www.themaninblue.com/experiment/widgEditor/

rules. The markup can also be messed up when the user performs a copy and
paste operation that doesn't respect the nesting of the document structure.

Another solution is to apply the model-view-controller design pattern and to
completely override the browser's built-in behaviour. This is harder to
implement. but offers much greater control. I have been exploring both
approaches.

Template based editing
What should a Slidy editor look like? An obvious starting point is to look at the
user interface for PowerPoint. This essentially allows you to edit presentations
one slide at a time. When it comes to creating a new slide you are invited to pick
from a smaller number of
template slides. Like Slidy,
you can also pick the
backgrounds through the
slide theme and customize
them as needed. I therefore
decided to copy this
approach. For the
designMode editor, the
templates are defined as
separate XHTML files
along with their own style
sheets. On the title slide,
users are invited to supply
a title and a description. On
the template for a regular
bullet list, there are fields
for the slide's title and
another for the list.

On a raw designMode
implementation, it is very
easy to accidentally delete
the heading or the list or
other fields in the template.
That creates usability
problems. Internet
Explorer's contentEditable

Figure 4: screen shot of design mode editor with
template for slide with title and bullet list

provides a solution as you can only edit the contents of elements for which the
contentEditable attribute has been set to true. It is unfortunate that no other
browsers at present support this feature. I hope to workaround this by careful
handling of the Backspace and Delete keystrokes, as well as the cut operation. To
support this, I use the contentEditable attribute in the markup for template
slides. This is not yet a part of the W3C standards for XHTML, but this is under
consideration. It may be the case, that rather than using an attribute, people may
feel more comfortable about specifying this as a new CSS property, but we shall
have to wait and see.

Another consideration is the frequency with which changes are synchronized with
the Website. Some possibilities include, when you save the presentation as a
whole, each time you move from one slide to another, or dynamically as you type.
The latter could be supported through AJAX, using HTTP keep-alive for reduced
latency. This is something the end-user feedback will be needed to decide on.

PowerPoint also provides integrated support for importing and editing graphics.
For the moment, the Slidy editor is limited to inserting graphics that have already
been uploaded to a Website. For the future, I hope to explore the use of
JavaScript and SVG as a means to implement browser-based editing of graphics.
It may be possible to constrain this in such a way as to exploit VML on Internet
Explorer given its similar functionality to SVG Tiny, and one possibility is to
exploit AJAX to access server-side translation services that map between the two.

Other opportunities for extending the Slidy editor include work on filters for
importing PowerPoint presentations. This could leverage the work done on
import filters for Open Office, an open source alternative to Microsoft Office.
Such filters would need to run server-side due to their complexity, but would
enable you to upload a PowerPoint file to a Website and to get back a URI for the
corresponding Slidy presentation. The filter would need to unpack the images,
and to generate the style sheet and markup files.

Slidy, AJAX and Streaming Audio
When people give presentations, what they say is just as important as what is
shown on the slides. Unfortunately there is currently no easy way to capture the
audio for later playback together with the slides. I intend to provide a cure for
this using a browser plugin that supports audio streaming. Here is how it works.

The plugin provides a means to capture audio from the microphone pickup and
to stream it to the server via the real-time streaming protocol (RTP). To reduce
bandwidth and storage requirements, the audio can be encoded in an open

http://www.openoffice.org/
http://www.w3.org/TR/SVGMobile/
http://www.w3.org/TR/NOTE-VML

source codec such as iLBC or Speex. To start with, the Web page script uses AJAX
to make an HTTP request to the Web server for a port for the RTP connection.
This request also provides the URI for presentation and allocates files to log the
slide transitions, and to store the audio samples sent via RTP.

The Web page script then passes the RTP port to the plugin and starts the capture
mode in which audio is streamed to the server. The user is then able to start
talking. When he or she moves to the next slide, the time at which this occurred is
logged to the server via XMLHttpRequest. At the end of the presentation, the
server is told to close the files and the streaming is terminated.

To replay the presentation at a later date, the plugin is used in playback mode.
The process starts with the Web page script downloading the slide transition log
file. This starts with the name of the audio file used for capture. This name is then
passed to the Web server along with a request for a RTP port for the playback
stream. The Web page then commands the plugin to start playback. The times
and details of slide transitions are obtained from the log file. The Web page script
then switches slides at the same point in the audio stream as happened in the
original presentation. The user can then sit back and pay attention as the
presentation unfolds.

But that's not all! The user may decide to skip backward or forward within the
presentation. Slidy is then able to re-synchronize the audio stream by sending
HTTP commands to the server to seek to the appropriate time from the start of
the presentation, as given by the log file. Note that the approach is designed to
work even if the user accesses the Internet through a Network Address
Translation (NAT) device as is commonplace for home users.

Using Slidy for Distributed
Presentations
A similar set up can be used to provide remote access to live presentations. In this
case, the Web server provides a means for participants to connect to the
presentation. This involves them in opening the link to the presentation, causing
their bowser to download the slides. The Web page script then requests the RTP
port for the audio playback and commands the audio plugin to initiate streaming
from that port. At the same time, the script opens an HTTP connection to the
server to listen for slide changes. This could take advantage of HTTP keep-alive to
reduce the latency between the presenter moving to the next slide, and having
this take effect on the participant's browsers. The presenter's set up is very

http://www.speex.org/
http://www.ilbcfreeware.org/

similar to that used for recording a presentation. The difference is that this time,
the server copies the audio stream out to all of the participants, along with the
slide transitions.

To allow the presenter to hear back from the participants, the audio is streamed
in both directions. If only one participant is speaking at any given time, then the
server can copy the audio directly without the need for decoding (for iLBC each
audio frame is encoded independently). If several participants speak at the same
time, the server can either pick one, or can pick the “top” few, in which case, the
audio needs to be decoded, mixed together and re-encoded. It should be
straightforward to provide people with an indication when they are speaking at
the same time as others.

With audio capture and playback occurring simultaneously, there is a possibility
of feedback and echoes. A simple way to avoid that is for everyone to use a
headset of some kind. Another idea is to use a push to talk mechanism that cuts
audio playback while the button is activated. A further possibility is for the plugin
to support acoustic echo cancellation. An open source solution for this is available
from Andre Adrian's web site, and another is integrated as part of Speex since
version 1.1.9.

There is tremendous promise for using Slidy and AJAX as components of Web-
based solutions for remote meetings. Other components will provide support for
shared minute taking, for text-based chat between participants, and for meeting
management as exemplified by W3C's Zakimbot. I am also looking forward to
trying out ideas with integrating server-based speech recognition and synthesis
services. If you are in a position to help with any of this, please contact me.

Acknowledgements
I would like to thank the many people who have contributed to Slidy, including
my daughter who came up with the name. I am grateful to Canon and more
recently Volantis for their financial support in my role as W3C Fellow whilst
doing this work.

http://www.volantis.com/
http://www.canon.com/
http://www.w3.org/2001/12/zakim-irc-bot
http://www.speex.org/
http://home.arcor.de/andreadrian/
http://www.ilbcfreeware.org/

	Abstract
	Introduction
	HTML Slidy
	Features
	A Browser-based Slidy Editor
	Basic use of HTML Forms
	The Model-View-Controller Design Pattern
	DesignMode and ContentEditable

	Template based editing
	Slidy, AJAX and Streaming Audio
	Using Slidy for Distributed Presentations
	Acknowledgements

