
XEP-0026: Internationalization (I18N)

Max Horn
mailto:max@quendi.de

xmpp:black_fingolfin@jabber.org

2003-11-05
Version 0.2

Status Type Short Name
Retracted Standards Track N/A

NOTE WELL: this document was retracted on 2003-11-05 since the topic is addressed definitively in
XMPP Core. Please refer to XMPP Core for further information.

mailto:max@quendi.de
xmpp:black_fingolfin@jabber.org

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Implementation 1
2.1 Encoding the locale . 2
2.2 Client support . 2
2.3 Server support . 3
2.4 Service support . 3

2 IMPLEMENTATION

1 Introduction
Jabber is meant to allow people everywhere in the world to communicate with each other.
However, people converse in many different languages, not just English. Many humans in fact
don’t even understand English. Hence, Jabber should not be tied to a particular language, but
rather allow usage of any language, be it English, Chinese, Inuit, or anything else.
One important step towards this goal is that Jabber is based upon Unicode, allowing for many
different languages. But that alone is not enough. Jabber promotes a server-based system
for many of its components and services, like the JUD, or transports. Many of these have to
interact with users in some way. Currently, they do so in only one fixed language (usually
English). Even if the server admin is willing to translate the messages, forms, etc. involved,
there can only be one localization active for a given server/component.
Hence, Jabber must support a way for clients to inform the server about their preferred
language. In addition, the server and other components have to understand and honor this
information. Only this way can we ensure that Jabber is able to work in a multi-national,
multi-lingual environment.
Some examples on how this information could and should be used, include

• Forms (e.g. for registration or searching, refer also to Data Forms (XEP-0004) 1) can be
localized, so that instructions and field labels are in the native language of the person
who has to fill them out

• Even if the form can’t be sent in the proper language (e.g. simply because it hasn’t yet
been translated), the component still should tag its reply with the language being used

• Incoming messages in a different language could be automatically translated (server-
side or client-side)

• Redirection of messages based on their language (think of a help desk which services
world wide requests)

• Transports to services which are not unicode based could use the language information
as a hint at the best encoding (least lossage) for converted messages

2 Implementation
The basic idea behind this proposal was to use existing standards where possible, and to make
it fully backward compatible. Furthermore it was a goal to allow clients to support it now,
even without any server support, while at the same time permitting improved functionality
once servers start to implement this spec.

1XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.

1

https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html

2 IMPLEMENTATION

2.1 Encoding the locale
To encode the locale on any given XML packet, we use the xml:lang attribute, as defined in
the XML specification. This in turn uses values as specified in RFC 1766 to encode languages
and regions. This way, you can even distinguish between British and Australian English.

Listing 1: Example message with locale set to German
<message to=’friedrich@jabber.org’ xml:lang=’de -DE’>

<body>Ich bin ein Berliner!</body>
</message >

An xml:lang tag can be put onto any XML element; for the purposes of this document,
however, we will limit its usage to the four central Jabber elements: <stream/>, <message/>,
<iq/> and <presence/>.

2.2 Client support
A client claiming to support this document has to initiate server connection slightly differ-
ently by putting an xml:lang attribute in the initial <stream:stream> element.

Listing 2: Jabber session initiated with Canadian French as default
<?xml version=”1.0” encoding=”UTF -8” ?>
<stream:stream to=’jabber.org’ xmlns=’jabber:client ’

xmlns:stream=’http: // etherx.jabber.org/streams ’ xml:lang=’fr
-CA’>

Servers not supporting this document will just ignore the additional attribute. Compliant
server can be distinguished by the fact that their reply <stream:stream> element also contains
an xml:lang attribute, indicating the main language of the server. A compliant client has to
detectwhether the server is compliant or not, and base its future behavior on this information.

Listing 3: Reply by an English-language Jabber server
<stream:stream from=’jabber.org’ id=’12345 ’ xmlns=’jabber:client ’

xmlns:stream=’http: // etherx.jabber.org/streams ’ xml:lang=’en
’>

If the client thus determines that the server is compliant, then it doesn’t have to do anything
beyond this point. All its outgoing messages will automatically be flagged by the server with
an xml:lang attribute if necessary. Thus writing a minimal compliant client is trivial.
If it is determined that the server does not support this document, and the client still wants
to offer locale support, it may start flagging all its outgoing message/iq/presence elements
with the xml:lang attribute, to ensure that other components/clients which do conform to
this document can handle the localization despite the local server not doing so.

2

http://www.w3.org/TR/REC-xml#sec-lang-tag
http://www.ietf.org/rfc/rfc1766.txt

2 IMPLEMENTATION

Finally, if for whatever reasons the client wants to flag particular messages with a different
locale (e.g. if the user is bilingual), it can do so at any time by putting an appropriate xml:lang
element in the outgoing data. This will override the previously set default locale for this
message only.

2.3 Server support
A compliant server must detect the xml:lang attribute in incoming <stream:stream> elements.
The server then has to store this information for later use, i.e. it has to remember the default
language for each active session.
Additionally, a compliant server must attach an xml:lang attribute to the reply
<stream:stream> element sent in response to a newly initiated connection. This attribute
should reflect the default language of that server, and is used to indicate to clients that the
server implements this document.
The server should not only allow user clients to specify a default language this way, but also
server-side components, like the JUD should be allowed to do this.
Whenever a message leave the server, it has to tag the message automatically with the
xml:lang attribute of the corresponding seesion, if any was specified, unless the message is
already tagged this way. In that case, the already existing xml:lang attribute takes precedence,
thus allowing for greater flexibility.
If a client send a message to another local client which uses the same xml:lang value, then
no change is applied. But if the recipient uses a different xml:lang, and if the message has no
xml:lang attribute attached yet, the xml:lang of the server has to be attached before delievey
of the message.

2.4 Service support
Jabber based services that wish to comply to this document have to make sure that all
information they send to clients is tagged with an xml:lang attribute corresponding to the
language used in the outgoing data, if appropriate, even if the component supports no other
localizations. An example for this is a search form based on Data Forms (XEP-0004) 2.

Listing 4: Search form in English
<iq from=’users.jabber.org’ type=’result ’ id=’4’ xml:lang=’en’>

<query xmlns=’jabber:iq:search ’>
<instructions >

Fill in a field to search for any matching Jabber users.
</instructions >
<nick/>
<first/>
<last/>

2XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.

3

https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html

2 IMPLEMENTATION

<email/>

<x xmlns=’jabber:x:data ’>
<instructions >

To search for a user fill out at least one
of the fields below and submit the form.

</instructions >
<field type=’text -single ’ label=’First␣(Given)’ var=’first ’/>
<field type=’text -single ’ label=’Last␣(Family)’ var=’last’/>
<field type=’text -single ’ label=’Nick␣(Alias)’ var=’nick’/>
<field type=’text -single ’ label=’Email ’ var=’email ’/>

</x>
</query >

</iq>

This way, a client could for example offer to translate the form since it now knows the
language the form was written in. Previously it could just guess the language was English,
which never was guaranteed.
To be able to tailor replies to the user’s preferred language, the component has to know this
information. This is simply inferred from any xml:lang attribute on incoming requests. If
none is present, the default locale is assumed. If the client’s default locale diverges from
that of the component, it is the server’s responsibility to tag the query with an appropriate
xml:lang attribute (refer to the ”Server support” section). If on the other hand the server
is not compliant, then any interested client will manually tag its queries with an xml:lang
attribute. Thus it is sufficient to check for this attribute.

Listing 5: Request for a German-language search form
<iq to=’users.jabber.org’ type=’get’ id=’5’ xml:lang=’de’>

<query xmlns=’jabber:iq:search ’/>
</iq>

A more sophisticated component supporting multiple localizations of its forms/messages
could now honor the requested language and send this search form instead of the English one
shown previously:

Listing 6: Search form in German
<iq from=’users.jabber.org’ type=’result ’ id=’5’ xml:lang=’de’>

<query xmlns=’jabber:iq:search ’>
<instructions >

Füllen Sie ein Feld aus um nach einem beliebigen
passenden Jabber -Benutzer zu suchen.

</instructions >
<nick/>
<first/>
<last/>
<email/>

4

2 IMPLEMENTATION

<x xmlns=’jabber:x:data ’>
<instructions >

Um nach einem Benutzer zu suchen , füllen Sie mindestens
eines

der folgenden Felder aus und schicken dann das Formular ab.
</instructions >
<field type=’text -single ’ label=’Vorname ’ var=’first ’/>
<field type=’text -single ’ label=’Nachname ’ var=’last’/>
<field type=’text -single ’ label=’Spitzname ’ var=’nick’/>
<field type=’text -single ’ label=’Email ’ var=’email ’/>

</x>
</query >

</iq>

If the component doesn’t have the requested localization available, it replies with the default
localization (but of course with the matching xml:lang attribute tagged to it, and not the one
of the request).

5

	Introduction
	Implementation
	Encoding the locale
	Client support
	Server support
	Service support

