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2 REQUIREMENTS AND PROTOCOL

1 Introduction
Jabber has traditionally supported a subset of the XML Namespaces specification 1. The
protocol has been restricted to using specific namespace prefixes.
This is convenient for client and server implementors, since they only need to check the
element name to determine both the name and the context of the element. However, these
restrictions mean that developers are unable to take advantage of some of the features that
namespaces provide.
Many developers have expressed an interest in having Jabber fully support namespaces -
a desire which is likely to increase as time goes on. This support consists of allowing any
namespace prefix to be used with any namespace, and also to allow namespace prefixes to be
pre-declared on the stream root.
This document outlines the semantics required for servers and clients to support namespaces
fully, and also discusses implementation techniques and methods for providing compatibility
with older ”fixed-prefix” implementations.

2 Requirements and Protocol
A typical XML stream is a pair of XML documents, one for each direction of communication
between the two peers. An simple example of these might look like this:

Listing 1: A typical XML stream
SEND: <stream:stream xmlns=’jabber:client ’

xmlns:stream=’http: // etherx.jabber.org/streams ’
to=’jabber.org’>

RECV: <stream:stream xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
id=’12345678 ’>

SEND: <iq type=’get’ to=’jabber.org’>
<query xmlns=’jabber:iq:version ’/>

</iq>
RECV: <iq type=’result ’ from=’jabber.org’>

<query xmlns=’jabber:iq:version ’>
<name>jsm</name>
<version >1.4.2 </version >
<os>Linux 2.4.19 </os>

</query >
</iq>

Note that there may also be additional namespaces specified in the stream header, to select
or inform of various server features:

1http://www.w3.org/TR/REC-xml-names
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Listing 2: A typical XML stream with stream options
SEND: <stream:stream xmlns=’jabber:client ’

xmlns:stream=’http: // etherx.jabber.org/streams ’
xmlns:sasl=’http: //www.iana.org/assignments/sasl -

mechanisms ’
to=’jabber.org’>

RECV: <stream:stream xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
xmlns:sasl=’http: //www.iana.org/assignments/sasl -

mechanisms ’
id=’12345678 ’>

<sasl:mechanisms >
<sasl:mechanism >PLAIN </sasl:mechanism >
<sasl:mechanism >DIGEST -MD5</sasl:mechanism >
<sasl:mechanism >EXTERNAL </sasl:mechanism >

</sasl:mechanisms >
SEND: <iq type=’get’ to=’jabber.org’>

<query xmlns=’jabber:iq:version ’/>
</iq>

RECV: <iq type=’result ’ from=’jabber.org’>
<query xmlns=’jabber:iq:version ’>

<name>jsm</name>
<version >1.4.2 </version >
<os>Linux 2.4.19 </os>

</query >
</iq>

Currently, the prefix for each namespace is fixed; it cannot vary at all, since implementations
use it for matching. The desire is to be able to use arbitrary prefixes:

Listing 3: XML stream with arbitrary namespace prefixes (1)
SEND: <stream xmlns:app=’jabber:client ’

xmlns=’http: // etherx.jabber.org/streams ’
to=’jabber.org’>

RECV: <stream xmlns:app=’jabber:client ’
xmlns=’http: // etherx.jabber.org/streams ’
id=’12345678 ’>

SEND: <app:iq type=’get’ to=’jabber.org’>
<query xmlns=’jabber:iq:version ’/>

</app:iq >
RECV: <app:iq type=’result ’ from=’jabber.org’>

<query xmlns=’jabber:iq:version ’>
<name>jsm</name>
<version >1.4.2 </version >
<os>Linux 2.4.19 </os>

</query >
</app:iq >
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Also, since there exist streams in both directions, it should be possible for prefixes to differ
between the two streams:

Listing 4: XML stream with arbitrary namespace prefixes
SEND: <stream xmlns:app=’jabber:client ’

xmlns=’http: // etherx.jabber.org/streams ’
to=’jabber.org’>

RECV: <stream:stream xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
id=’12345678 ’>

SEND: <app:iq type=’get’ to=’jabber.org’>
<query xmlns=’jabber:iq:version ’/>

</app:iq >
RECV: <iq type=’result ’ from=’jabber.org’>

<ver:query xmlns:ver=’jabber:iq:version ’>
<ver:name >jsm</ver:name >
<ver:version >1.4.2 </ver:version >
<ver:os >Linux 2.4.19 </ver:os >

</ver:query >
</iq>

Additionally, it should be possible to declare namespaces on the stream header so that they
don’t need to be declared later:

Listing 5: XML stream with namespaces declared in the stream header
SEND: <stream:stream xmlns=’jabber:client ’

xmlns:stream=’http: // etherx.jabber.org/streams ’
xmlns:ver=’jabber:iq:version ’
to=’jabber.org’>

RECV: <stream:stream xmlns=’jabber:client ’
xmlns:stream=’http: // etherx.jabber.org/streams ’
xmlns:ver=’jabber:iq:version ’
id=’12345678 ’>

SEND: <iq type=’get’ to=’jabber.org’>
<ver:query/>

</iq>
RECV: <iq type=’result ’ from=’jabber.org’>

<ver:query >
<ver:name >jsm</ver:name >
<ver:version >1.4.2 </ver:version >
<ver:os >Linux 2.4.19 </ver:os >

</ver:query >
</iq>

And of course, any combinations of these should be valid, as long as they conform to the XML
Namespaces specification.
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3 IMPLEMENTATION NOTES

3 Implementation Notes
In order to implement namespaces correctly, implementations will need to check both the
namespace of an element (or attribute), and its namespace, in order to match it. An imple-
mentation will need to maintain some sort of mapping between prefixes and namespaces,
though some parsers, such as recent versions of Expat, can do this for the implementor.
Implementations should, wherever possible, adhere to the IETFmaxim ”be liberal in what you
accept, and conservative inwhat you send”. Thismeans accepting any valid namespace prefix,
but using only the traditional prefixes (i.e. ”stream” for ”http://etherx.jabber.org/streams”,
”sasl” for ”http://www.iana.org/assignments/sasl-mechanisms”, and no prefix for the ap-
plication namespace). For servers, this has the added benefit of getting compatibility with
non-namespace-aware clients for free.
In server components that may have to forward packets received from one stream to an-
other stream, it may be necessary for the application namespace to be rewritten before the
packet is forwarded. Examples of this are client-to-server and server-to-server components,
which must convert ”jabber:client” and ”jabber:server” components, respectively, into
”jabber:component:accept” packets before they are forwarded to the router.
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