XVIPP

XEP-0188: Cryptographic Design of Encrypted Sessions

lan Paterson
mailto:ian.paterson@clientside.co.uk
Xmpp: ian@zoofy.com

2007-05-30
Version 0.6
Status Type Short Name
Deferred Informational N/A

This document describes the cryptographic design that underpins the XMPP protocol extensions En-
crypted Session Negotiation, Offline Encrypted Sessions and Stanza Encryption.

mailto:ian.paterson@clientside.co.uk
xmpp:ian@zoofy.com

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

1

2

Introduction

Dramatis Personae

Cryptographic Origins

3.1 Introduction e
3.2 SIGMA Parameter Descriptions o
33 SIGMA-TOVErVIEW v v it e e e e e

3.4 SAS-Only OVErview v i i it e e e e e
3.5 SIGMA-RwithSASOverview,
3.6 SIGMA-IKeyExchange.
3.7 SIGMA-Rwith SASKeyExchange

Cryptographic Design

4.1 ESession Parameter Descriptions
4.2 Online ESession-I Negotiation v v i vt i i
4.3 Online ESession-R Negotiation

4.4 Offline ESession Negotiation,
Security Considerations

IANA Considerations

XMPP Registrar Considerations

Acknowledgments

o ON U W NN

11
11
12
13
16

19

19

19

19

/1 INTRODUCTION

1 Introduction

Note: The protocols developed according to the cryptographic design described in this document are
described in Encrypted Session Negotiation (XEP-0116) 1, Simplified Encrypted Session Negotiation (XEP-
0217) 2, Offline Encrypted Sessions (XEP-0187) ® and Stanza Encryption (XEP-0200) *. The information in
those documents should be sufficient for implementors. This purely informative document is primarily
for people interested in the design and analysis of those protocols.

As specified in RFC 3920 °, XMPP is an XML streaming protocol that enables the near-real-time
exchange of XML fragments between any two (or more) network endpoints. To date, the
main application built on top of the core XML streaming layer is instant messaging (IM)
and presence, the base extensions for which are specified in RFC 3921 6. There are three
first-level elements of XML streams (<message/>, <presence/>, and <iq/>); each of these "XML
stanza” types has different semantics, which can complicate the task of defining a generalized
approach to end-to-end encryption for XMPP. In addition, XML stanzas can be extended (via
properly-namespaced child elements) for a wide variety of functionality.

XMPP is a session-oriented communication technology: normally, a client authenticates with
a server and maintains a long-lived connection that defines the client’s XMPP session. Such
stream-level sessions may be secured via channel encryption using Transport Level Security
(RFC 2246 7), as specified in Section 5 of RFC 3920 8. However, there is no guarantee that
all hops will implement or enforce channel encryption (or that intermediate servers are
trustworthy), which makes end-to-end encryption desirable.

This document specifies a method for encrypted sessions ("ESessions”) that takes advantage of
the inherent possibilities and strengths of session encryption as opposed to object encryption.
The detailed requirements for encrypted sessions are defined in Requirements for Encrypted
Sessions (XEP-0210) °.

The conceptual model for the approach specified in this document was inspired by "off-the-
record” (OTR) communication, as implemented in the Gaim encryption plugin and described
in Off-the-Record Communication . The basic concept is that of an encrypted session which
acts as a secure tunnel between two endpoints. Once the tunnel is established, the content
of all one-to-one XML stanzas exchanged between the endpoints will be encrypted and then
transmitted within a "wrapper” protocol element.

Note: In order to gain a thorough understanding of this document, it is recommended that
the Off-the-Record Communication paper and RFC 6189 !! are read first.

'XEP-0116: Encrypted Session Negotiation <https://xmpp.org/extensions/xep-0116.html>,
*XEP-0217: Simplified Encrypted Session Negotiation <https://xmpp.org/extensions/xep-0217.html>.
3XEP-0187: Offline Encrypted Sessions <https://xmpp.org/extensions/xep-0187.html>,
“XEP-0200: Stanza Encryption <https://xmpp.org/extensions/xep-0200.html>.
°RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.
SRFC 3921: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc3921>.
"RFC 2246: The TLS Protocol Version 1.0 <http: //tools.ietf.org/html/rfc2246>.
SRFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.
*XEP-0210: Requirements for Encrypted Sessions <https://xmpp.org/extensions/xep-0210.html>.
00ff-the-Record Communication, or, Why Not to Use PGP <http: //www.cypherpunks.ca/otr/otr-codecon.pdf>
<http://www.cypherpunks.ca/otr/otr-wpes.pdf>,
"'RFC 6189: ZRTP: Media Path Key Agreement for Unicast Secure RTP <http://tools.ietf.org/html/rfc6189>,

https://xmpp.org/extensions/xep-0116.html
https://xmpp.org/extensions/xep-0217.html
https://xmpp.org/extensions/xep-0217.html
https://xmpp.org/extensions/xep-0187.html
https://xmpp.org/extensions/xep-0200.html
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc3920
https://xmpp.org/extensions/xep-0210.html
https://xmpp.org/extensions/xep-0210.html
http://www.cypherpunks.ca/otr/otr-codecon.pdf
http://tools.ietf.org/html/rfc6189
https://xmpp.org/extensions/xep-0116.html
https://xmpp.org/extensions/xep-0217.html
https://xmpp.org/extensions/xep-0187.html
https://xmpp.org/extensions/xep-0200.html
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc3920
https://xmpp.org/extensions/xep-0210.html
http://www.cypherpunks.ca/otr/otr-codecon.pdf
http://www.cypherpunks.ca/otr/otr-wpes.pdf
http://tools.ietf.org/html/rfc6189

/'3 CRYPTOGRAPHIC ORIGINS

2 Dramatis Personae

This document introduces two characters to help the reader follow the necessary exchanges:

1. ”Alice” is the name of the initiator of the ESession.
2. "Bob” is the name of the other participant in the ESession started by Alice.

While Alice and Bob are introduced as “end users”, they are simply meant to be examples of
XMPP entities. Any directly addressable XMPP entity may participate in an ESession.

3 Cryptographic Origins
3.1 Introduction

Authenticated key-exchange is the most challenging part of the design of any secure com-
munication protocol. The ESessions key exchange essentially translates the SIGMA 21®
key-exchange protocol into the syntax of XMPP. The SIGMA approach to Diffie-Hellman Key
Agreement (see RFC 2631 °) underpins several standard key-exchange protocols including
the Internet Key Exchange (IKE) protocol versions 1 and 2 (see RFC 2409 '® and RFC 4306 7).
Note: Although this section provides an overview of SIGMA, it is strongly recommended that
the SIGMA paper is read first in order to gain a thorough understanding of this document.
The 3-message SIGMA-I-based key exchange protects the identity of the initiator against active
attacks. This SHOULD NOT be used to establish client to client sessions since the responder’s
identity is not protected against active attacks. However, it SHOULD be used to establish
client to service (server) sessions, especially where the identity of the service is well known
to third parties.

The two 4-message SIGMA-R-based key exchanges with hash commitment defend the respon-
der’s identity against active attacks and facilitate detection of a Man in the Middle attack.
They SHOULD be used to establish client to client sessions.

Note: The block cipher function, cipher, uses CTR mode.

3.2 SIGMA Parameter Descriptions

2SIGMA: the ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and its Use in the IKE Protocols (Hugo
Krawczyk, June 12 2003) <http://www.ee.technion.ac.il/~{}hugo/sigma.ps>.

BLike RFC 2409 ', this protocol uses variant (ii), as described in Secion 5.4 of the SIGMA paper.

RFC 2631: Diffie-Hellman Key Agreement Method <http://tools.ietf.org/html/rfc2631>.

1SRFC 2409: The Internet Key Exchange (IKE) <http://tools.ietf.org/html/rfc2409>.

RFC 4306: Internet Key Exchange (IKEv2) Protocol <http://tools.ietf.org/html/rfc4306>.

http://web.archive.org/web/20040409013835/http://www.ee.technion.ac.il/~hugo/sigma.ps
http://tools.ietf.org/html/rfc2631
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc4306
http://web.archive.org/web/20040409013835/http://www.ee.technion.ac.il/~hugo/sigma.ps
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc2631
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc4306

/'3 CRYPTOGRAPHIC ORIGINS

Parameter Description

g Diffie-Hellman generator

X,y Alice and Bob’s private Diffie-Hellman keys

gx, gy Alice and Bob’s public Diffie-Hellman keys

Hgx Hash of Alice’s public Diffie-Hellman key

KSA, KSB The MAC keys (derived from K) that Alice and Bob use to calculate

pubKeyA, pubKeyB

macA, macB

signKeyA, signKeyB

signA, signB

macA and macB
The public keys that represent the identity of Alice and Bob, and are

used to verify their signatures
The MAC values that associate the shared secret with the identity of

Alice or Bob
The private keys that Alice and Bob use to sign

Alice’s and Bob’s signatures of the shared secret

KCA, KCB The cipher keys (derived from K) that Alice and Bob use to encrypt

IDA, IDB The encrypted parameters that identify Alice and Bob to each other

SAS Short Authentication String

Parameter Description

p Diffie-Hellman prime

e, d Alice and Bob’s public Diffie-Hellman keys (the same as gx, gy)

He Hash of Alice’s public Diffie-Hellman key

K Shared secret (derived by Alice from gy and x, or by Bob from gx and y)

HASH Selected hash algorithm

NA, NB Alice and Bob’s session freshness nonces (ESession IDs)

CA,CB Block cipher initial counter value for blocks sent by Alice and Bob

n Block size of selected cipher algorithm in bits

KMA, KMB The MAC keys (derived from K) that Alice and Bob use to protect the in-
tegrity of encrypted data

MA, MB The MAC values that Alice and Bob use to confirm the integrity of en-
crypted data

SRS Shared retained secret (derived from K in previous session between the
clients)

RS1A..RSZA Retained secrets Alice shares with Bob (one for each client he uses)

RS1B...RSZB Retained secrets Bob shares with Alice (one for each client she uses)

RSH1A..RSHZA HMACs of retained secrets Alice shares with Bob

SRSH Bob’s HMAC of SRS

0SS Other shared secret of Alice and Bob (e.g. a shared password) defaults to

isPKA, isPKB V\?fl(él’;?lter or not Alice and Bob prefer to receive a public key (booleans)

/'3 CRYPTOGRAPHIC ORIGINS

3.3 SIGMA-I Overview

The diagram below demonstrates the barest cryptographic skeleton of the SIGMA-I key
exchange protocol. Here Bob allows Alice to protect her identity from active attacks, by
allowing her to authenticate him before she communicates her identity. Note: The cipher
keys (KCA and KCB) are different in each direction, making this exchange slightly more
conservative than SIGMA.

ALICE BOB

macB = HMAC (KSB,

{gx, 8y,
pubKeyB3})
signB = sign(
signKeyB,
macB)
IDB = cipher (KCB,
{pubKeyB,
signB})
gy, IDB
e
authenticate (IDB)
macA = HMAC(KSA, {gy, gx, pubKeyA})
signA = sign(signKeyA, macA)
IDA = cipher (KCA, {pubKeyA, signA})
IDA

authenticate (IDA)

3.4 SAS-Only Overview

The diagram below demonstrates the skeleton of the Diffie-Hellman key exchange that
employs out-of-band Short Authentication String (SAS) verification. If Alice and Bob’s public
keys are not yet trusted, or if their private keys have been compromised, then the hash
commitment sent in the first step enables Alice and Bob to verify their copies of each other’s
Diffie-Hellman (and public) keys and detect a Man in the Middle more easily.

If a Man in the Middle changes the public Diffie-Hellman keys that Alice and Bob receive, then
he could potentially use his knowledge of the SAS that Bob will eventually calculate when
choosing the key he will send to Alice in the second step. However, the fact that the value he
received in the first step is only a hash means the Man in the Middle must choose the key he
sends to Alice before he can predict the SAS that she will calculate with it. Therefore, even if
the SAS is very short, he is unable to use his resources to choose a key that will (have a better

/'3 CRYPTOGRAPHIC ORIGINS

than random chance to) result in a SAS that matches Bob’s. So only a truncated version of the
HASH of Alice and Bob’s keys needs to be verified out-of-band in the final step.

ALICE BOB
Hgx
____________ >
gy
< ____________
SAS = truncate (HASH(gx | gy))
gx
____________ N
assert Hgx = HASH
(gx)
SAS = truncate(
HASH(gx | gy)
)
SAS
<===========>

3.5 SIGMA-R with SAS Overview

The logic of the four-step SIGMA-R protocol is similar to the three-step SIGMA-I protocol. The
difference being that Bob protects his identity from active attacks by by delaying communi-
cating his identity to Alice until he has authenticated her. The diagram below demonstrates
the skeleton of the key exchange. Note that it also takes advantage of the extra step required
for SIGMA-R to incorporate a hash commitment, thus enabling optional out-of-band SAS
authentication.

ALICE BOB

macA = HMAC(KSA, {gy, gx, pubKeyA})
signA = sign(signKeyA, macA)
IDA = cipher (KCA, {pubKeyA, signA})
SAS = truncate(HASH(gx | gy))

assert Hgx = HASH
(gx)

/'3 CRYPTOGRAPHIC ORIGINS

SAS = truncate(
HASH(gx | gy)
)

authenticate (IDA)

macB = HMAC (KSB,
{gx, gy,
pubKeyB3})

signB = sign(
signKeyB,
macB)

IDB = cipher (KCB,
{pubKeyB,
signB3})

authenticate (IDB)

3.6 SIGMA-I Key Exchange

The diagram below describes exactly the same SIGMA-I key exchange protocol as the SIGMA-I
Overview above. It provides much more detail, without specifying any ESession-specific
details. The differences between it and the SIGMA-R with SAS Key Exchange are highlighted.

ALICE BOB

NA = random()
X = random()
e = gx mod p

e, NA
____________ >
NB = random()
CA = random()
CB = CA XOR 2n-1

y = random()

d = gy mod p

assert 1 < e < p-1

K = HASH(ey mod p)

KCA = HMAC(HASH, K, ”
Initiator_Cipher_Key”
)

KCB = HMAC(HASH, K, ”
Responder_Cipher_Key”
)

KMA = HMAC(HASH, K, ”
Initiator_MAC_Key”)

/'3 CRYPTOGRAPHIC ORIGINS

KMB = HMAC (HASH, K, ”
Responder MAC_Key”)

KSA = HMAC (HASH, K, ”
Initiator_SIGMA_Key”)

KSB = HMAC(HASH, K, ”
Responder _ SIGMA_Key”)

macB = HMAC(HASH, KSB, {
NA, NB, d, pubKeyB,
CAY)

signB = sign(signKeyB,
macB)

IDB = cipher (KCB, CB, {
pubKeyB, signB})

MB = HMAC (HASH, KMB, CB,
IDB)

CB = CA XOR 2n-1

assert 1 < d < p-1

K = HASH(dx mod p)

KCA = HMAC(HASH, K, ”Initiator_Cipher_Key”)
KCB = HMAC(HASH, K, ”Responder_Cipher_Key”)
KMA = HMAC(HASH, K, ”Initiator_MAC_Key”)

KMB = HMAC(HASH, K, ”Responder_MAC_Key”)

KSA = HMAC(HASH, K, ”Initiator_SIGMA_Key”)
KSB = HMAC(HASH, K, ”Responder_SIGMA_Key”)
assert MB = HMAC(HASH, KMB, CB, IDB)
{pubKeyB, signB} = decipher (KCB, CB, IDB)
macB = HMAC(HASH, KSB, {NA, NB, d, pubKeyB, CA})
verify(signB, pubKeyB, macB)

macA = HMAC(HASH, KSA, {NB, NA, e, pubKeyA})
signA = sign(signKeyA, macA)

IDA = cipher (KCA, CA, {pubKeyA, signA})

MA = HMAC (HASH, KMA, CA, IDA)

assert MA = HMAC(HASH,
KMA, CA, 1IDA)

{pubKeyA, signA} =
decipher (KCA, CA, IDA
)

macA = HMAC(HASH, KSA, {
NB, NA, e, pubKeyA})

verify(signA, pubKeyA,
macA)

/'3 CRYPTOGRAPHIC ORIGINS

3.7 SIGMA-R with SAS Key Exchange

The Short Authentication String technique enables protection against a Man in the Middle
without the need to generate, distribute or authenticate any public keys. As long as a hash
commitment is used at the start of the key exchange then only a short human-friendly string
needs to be verified out-of-band (e.g. by recognizable voice communication).

Furthermore, if retained secrets associated with a client/user combination are employed
consistently during key exchanges, then the Man in the Middle would need to be present for
every session, including the first, and the out-of-band verification would only need to be
performed once to verify the absence of a Man in the Middle for all sessions between the
parties (past, present and future). '8

Public keys are optional in the diagram below. It describes the same SIGMA-R with SAS key
exchange protocol as the SIGMA-R Overview. It provides much more detail including the use
of retained secrets and other secrets. The use of public keys is negotiated in the first two
messages. Note: These optional security enhancements are especially important when the
protocol is being used without public keys.

The diagram does not specify any ESession-specific details. The differences between it and
the SIGMA-I Key Exchange are highlighted.

ALICE BOB

NA = random()
X = random()
e = gx mod p
He = SHA256 (e)

He, 1sPKA
____________ >

isPKB, NA
NB = random()
CA = random()
CB = CA XOR 2n-1
y = random()
d = gy mod p

d, CA, NB

isPKA, 1isPKB

CB = CA XOR 2n-1
assert 1 < d < p-1
K = HASH(dx mod p)
KCA = HMAC(HASH, K, ”Initiator_Cipher_Key”)
KMA HMAC (HASH, K, ”Initiator_MAC_Key”)
KSA = HMAC(HASH, K, ”Initiator_SIGMA_Key”)
RSH1A...RSHZA = HMAC(HASH, NA, RS1A...RSZA)
if isPKB equals false then:

macA = HMAC(HASH, KSA, {NB, NA, e, RSH1A...RSHZA})

3This combination of techniques underpins the ZRTP key agreement protocol.

/'3 CRYPTOGRAPHIC ORIGINS

IDA = cipher (KCA, CA, macA)
else:
macA = HMAC(HASH, KSA, {NB, NA, e, pubKeyA, RSH1A...RSHZA})
signA = sign(signKeyA, macA)
IDA = cipher (KCA, CA, {pubKeyA, signA})
MA = HMAC(HASH, KMA, CA, IDA)
SAS = truncate(HASH(MA | d | ”Short_Authentication_String”))

e, RSH1A...RSHZA

assert He = SHA256(e)

SAS = truncate (HASH(MA |
d | ”Short.
Authentication_String

77))

assert 1 < e < p-1

K = HASH(ey mod p)

KCA = HMAC(HASH, K, ”
Initiator_Cipher_Key”
)

KMA = HMAC(HASH, K, ”
Initiator_MAC_Key”)

KSA = HMAC(HASH, K, ”
Initiator_SIGMA_Key”)

assert MA = HMAC (HASH,
KMA, CA, 1IDA)
if isPKB equals false
then:
macA = decipher (KCA,
CA, IDA)
assert macA = HMAC(
HASH, KSA, {NB,
NA, e, RSH1A...
RSHZAY)
else:
{pubKeyA, signA} =
decipher (KCA, CA,
IDA)
macA = HMAC (HASH, KSA
, {NB, NA, e,
pubKeyA, RSH1A...
RSHZAD)
verify(signA, pubKeyA

/'3 CRYPTOGRAPHIC ORIGINS

SRS = choose(RSTA...RSZA,

K = HASH(K | SRS
KCA = HMAC (HASH,

0SS)

KMA
KMB

HMAC (HASH ,
HMAC (HASH ,

|

K, ”Initiator_Cipher_Key”)
KCB = HMAC(HASH, K, ”Responder_Cipher_Key”)

K, ”Initiator_MAC_Key”)

K, ”Responder_MAC_Key”)

10

, macA)
SRS = choose(RS1B...RSZB,
RSHTA...RSHZA, NA)
K = HASH(K | SRS | 0SS)
KCA = HMAC(HASH, K, ”
Initiator_Cipher_Key”
)
KCB = HMAC (HASH, K, ”
Responder_Cipher_Key”
)
KMA = HMAC(HASH, K, ”
Initiator_MAC_Key”)
KMB = HMAC (HASH, K, ”
Responder _MAC_Key”)
KSB = HMAC (HASH, K, ”
Responder _ SIGMA_Key”)
SRSH = HMAC(HASH, SRS, ”
Shared_Retained.
Secret”)
retain (HMAC(HASH, K, ”New
_Retained_Secret”))
if isPKA equals false
then:
macB = HMAC(HASH, KSB
, {NA, NB, d, CA

1))
IDB = cipher (KCB, CB,
macB)
else:
macB = HMAC (HASH, KSB
, {NA, NB, d,

pubKeyB, CA3})

signB = sign(signKeyB
, macB)

IDB = cipher (KCB, CB,
{pubKeyB, signB
}9)

MB = HMAC(HASH, KMB, CB,
IDB)

/4 CRYPTOGRAPHIC DESIGN

KSB = HMAC(HASH, K, ”Responder_SIGMA_Key”)
retain (HMAC(HASH, K, ”New_Retained_Secret”))
assert MB = HMAC(HASH, KMB, CB, IDB)
if isPKA equals false then:
macB = decipher (KCB, CB, IDB)
assert macB = HMAC(HASH, KSB, {NA, NB, d, CA})
else:
{pubKeyB, signB} = decipher (KCB, CB, IDB)
macB = HMAC(HASH, KSB, {NA, NB, d, pubKeyB, CA})
verify(signB, pubKeyB, macB)

4 Cryptographic Design

This section provides an overview of the full ESession key-exchange protocol from a cryp-
tographic point of view. This protocol is based on the full fledge protocol, as described in
Appendix B of the SIGMA paper. It also uses variant (ii), as described in Secion 5.4 of the same

paper.

4.1 ESession Parameter Descriptions

The table below describes the parameters that are not found in the Parameter Descriptions
tables above.

Parameter Description

options Includes a set of possible values for each and every ESession parameter (see the
ESession Request sub-section in Encrypted Session Negotiation), including sets
of possible values for p, g, HASH, CIPHER, SIGN

chosen Includes a chosen value for each ESession parameter

CIPHER Selected CTR-mode block cipher algorithm

DECIPHER Selected CTR-mode block decipher algorithm (corresponds to CIPHER)

SIGN Selected signature algorithm

VERIFY The selected signature verification algorithm (corresponds to SIGN)

SASGEN The selected SAS generation algorithm

x1..XZ Alice’s private Diffie-Hellman keys - each value corresponds to one of Z differ-
ent DH groups
el..eZ The choice of public Diffie-Hellman keys that Alice offers Bob - each value cor-

responds to one of Z different DH groups (and a different value of x)
Hel..HeZ The list of hash commitments that Alice sends to Bob (hashes of el...eZ)

signKeysA All the private keys that Alice is able to use to create signatures
signsB The set of signatures of formB (one for each of Bob’s private keys)
pubKeysA All of Alice’s public keys that Bob has access to

11

/4 CRYPTOGRAPHIC DESIGN

* Offline negotiation only

4.2 Online ESession-I Negotiation

Alice uses this protocol when Bob is Online. In addition to the key exchange described in the
SIGMA-I Key Exchange protocol above, she offers Bob a choice of Diffie-Hellman groups with
her corresponding values of e, various algorithms and other parameters. The differences
between this protocol and Online ESession-R Negotiation are highlighted.

ALICE BOB

NA = random()
for g,p options
X = random()
e = gx mod p
formA {el...eZ, options, NA}

chosen = {p,g,HASH,CIPHER,
SIGN...} = choose(options

)
e = choose(el...eZ, p)
NB = random()
CA = random()
CB = CA XOR 2n-1

y = random()

d = gy mod p

formB = {CA, chosen, d, NA,
NB}

assert 1 < e < p-1

K = HASH(ey mod p)

KCA = HMAC (HASH, K, ”
Initiator_Cipher_Key”)

KCB = HMAC(HASH, K, ”
Responder_Cipher_Key”)

KMA = HMAC(HASH, K, ”
Initiator_MAC_Key”)

KMB = HMAC(HASH, K, ”
Responder _MAC_Key”)

KSA = HMAC(HASH, K, ”
Initiator _SIGMA_Key”)

KSB = HMAC(HASH, K, ”
Responder _SIGMA_Key”)

macB = HMAC (HASH, KSB, {NA,
NB, d, pubKeyB, formB})

12

/4 CRYPTOGRAPHIC DESIGN

signB = SIGN(signKeyB, macB)
IDB = CIPHER(KCB, CB, {
pubKeyB, signB})
MB = HMAC(HASH, KMB, CB, IDB)
formB
< _________
IDB, MB
assert chosen options
x = choose(x1...xZ, p)
e = gx mod p
CB = CA XOR 2n-1
assert 1 < d < p-1
K = HASH(dx mod p)
KCA = HMAC(HASH, K, ”Initiator_Cipher_Key”)
KCB = HMAC(HASH, K, ”Responder_Cipher_Key”)
KMA = HMAC(HASH, K, ”Initiator_MAC_Key”)
KMB = HMAC(HASH, K, ”Responder_MAC_Key”)
KSA = HMAC(HASH, K, ”Initiator_SIGMA_Key”)
KSB = HMAC(HASH, K, ”Responder_SIGMA_Key”)
assert MB = HMAC(HASH, KMB, CB, IDB)
{pubKeyB, signB} = DECIPHER(KCB, CB, IDB)
macB = HMAC(HASH, KSB, {NA, NB, d, pubKeyB, formB})
VERIFY (signB, pubKeyB, macB)
macA = HMAC(HASH, KSA, {NB, NA, e, pubKeyA, formA})
signA = SIGN(signKeyA, macA)
IDA = CIPHER(KCA, CA, {pubKeyA, signA})
MA = HMAC (HASH, KMA, CA, IDA)
IDA
————————— >
MA, NB
assert MA = HMAC(HASH, KMA,
CA, IDA)
{pubKeyA, signA} = DECIPHER(
KCA, CA, IDA)
macA = HMAC(HASH, KSA, {NB,
NA, e, pubKeyA, formA})
VERIFY (signA, pubKeyA, macA)

4.3 Online ESession-R Negotiation

This protocol is similar to the Online ESession-I Negotiation above, except that Bob’s identity
is protected from active attacks (by by delaying communicating his identity to Alice until he
has authenticated her). The optional use of SAS, retained secrets and other secrets means
the protocol may be used without any public keys. The differences between this protocol and
Online ESession-I Negotiation are highlighted.

13

/4 CRYPTOGRAPHIC DESIGN

ALICE BOB

NA = random()
for g,p options
X = random()
e = gx mod p
He = SHA256 (e)
formA = {Hel...HeZ, options, NA}

formA
____________ >
chosen = {p,g,HASH,CIPHER,
SIGN, SASGEN , isPKA , isPKB
.} = choose(options)
He = choose(Hel...HeZ, p)
NB = random()
CA = random()
CB = CA XOR 2n-1
y = random()
d = gy mod p
formB = {CA, chosen, d, NA,
NB}
formB
e
assert chosen options
X = choose(x1...xZ, p)
e = choose(el...eZ, p)

CB = CA XOR 2n-1
assert 1 < d < p-1
K = HASH(dx mod p)

KCA = HMAC(HASH, K, ”Initiator_Cipher_Key”)
KMA = HMAC(HASH, K, ”Initiator_MAC_Key”)
KSA = HMAC(HASH, K, ”Initiator_SIGMA_Key”)

RSH1A...RSHZA = HMAC(HASH, NA, RS1A...RSZA)

formA2 = {RSH1A...RSHZA, e, NB}

if isPKB equals false then:
macA = HMAC(HASH, KSA, {NB, NA, e, formA, formA2})
IDA = CIPHER(KCA, CA, macA)

else:
macA = HMAC(HASH, KSA, {NB, NA, e, pubKeyA, formA, formA2})
signA = SIGN(signKeyA, macA)
IDA = CIPHER(KCA, CA, {pubKeyA, signA})

MA = HMAC(HASH, KMA, CA, IDA)

SAS = SASGEN(MA, formB)

formA2

14

/4 CRYPTOGRAPHIC DESIGN

15

assert He = SHA256(e)
SAS = SASGEN(MA, formB)

assert 1 < e < p-1

K = HASH(ey mod p)

KCA = HMAC(HASH, K, ”
Initiator_Cipher_Key”)

KMA = HMAC(HASH, K, ”
Initiator_MAC_Key”)

KSA = HMAC(HASH, K, ”
Initiator _SIGMA_Key”)
assert MA = HMAC (HASH, KMA,

CA, IDA)
if isPKB equals false
then:
macA = DECIPHER(KCA, CA
, IDA)
assert macA = HMAC (HASH
, KSA, {NB, NA, e,
formA, formA2})
else:
{pubKeyA, signA} =
DECIPHER (KCA, CA,
IDA)
macA = HMAC(HASH, KSA,
{NB, NA, e, pubKeyA
, formA, formA2})
VERIFY (signA, pubKeyA,
macA)
SRS = choose(RS1B...RSZB,
RSH1A...RSHZA, NA)
K = HASH(K | SRS | 0SS)
KCA = HMAC(HASH, K, ”
Initiator_Cipher_Key”)
KCB = HMAC(HASH, K, ”
Responder_Cipher_Key”)
KMA = HMAC(HASH, K, ”
Initiator _MAC_Key”)
KMB = HMAC (HASH, K, ”
Responder _MAC_Key”)
KSB = HMAC(HASH, K, ”
Responder .SIGMA_Key”)
if SRS equals false then:
SRS = random()
SRSH = HMAC (HASH, SRS, ”
Shared_Retained_Secret”

)

/4 CRYPTOGRAPHIC DESIGN

retain (HMAC(HASH, K, ”New.
Retained_Secret”))
formB2 = {NA, SRSH}
if isPKA equals false
then:
macB = HMAC (HASH, KSB,
{NA, NB, d, formB,
formB23})
IDB = CIPHER(KCB, CB,
macB)
else:
macB = HMAC (HASH, KSB,
{NA, NB, d, pubKeyB
, formB, formB2})
signB = SIGN(signKeyB,
macB)
IDB = CIPHER(KCB, CB, {
pubKeyB, signB3})
MB = HMAC(HASH, KMB, CB,
IDB)

formB2

SRS = choose(RS1A...RSZA, SRSH)
K = HASH(K | SRS | 0SS)
KCA = HMAC(HASH, K, ”Initiator_Cipher_Key”)
KCB = HMAC(HASH, K, ”Responder_Cipher_Key”)
KMA = HMAC(HASH, K, ”Initiator_MAC_Key”)
KMB = HMAC(HASH, K, ”Responder_MAC_Key”)
KSB = HMAC(HASH, K, ”Responder_SIGMA_Key”)
retain (HMAC(HASH, K, ”New_Retained_Secret”))
assert MB = HMAC(HASH, KMB, CB, IDB)
if isPKA equals false then:
macB = DECIPHER(KCB, CB, IDB)
assert macB = HMAC(HASH, KSB, {NA, NB, d, formB, formB2})
else:
{pubKeyB, signB} = DECIPHER(KCB, CB, IDB)
macB = HMAC(HASH, KSB, {NA, NB, d, pubKeyB, formB, formB2})
VERIFY (signB, pubKeyB, macB)

4.4 Offline ESession Negotiation

Bob uses this protocol to send stanzas to Alice when she is Offline. Note: Since the full SIGMA
protocol cannot be used if Alice is offline, her identity is not protected at all.

The diagram is split into three phases. First Alice publishes her ESession options before going
offline. Later Bob completes the key exchange (and sends her encrypted stanzas that are not

16

/4 CRYPTOGRAPHIC DESIGN

shown below) these are all stored by Alice’s server. Finally when Alice comes online again she
verifies and calculates the decryption key.

The differences between this offline protocol and the Online ESession-I Negotiation protocol
above are highlighted in the diagram below.

ALICE ALICE’S_SERVER Lo cccccccaoo BOB

NA_=_random()

for_g,p. _options

ceooXo=_orandom()

ceoo€o=ogxomodop

formA_=_{el...eZ,_options, _NA}

signsA_=_multi_sign(signKeysA,_formA)

retain(NA, _x1...xZ,_expireTime)

HHHHHHHHHHHHHHHHHHH formA

uuuuuuuuuuuuuuuuuuuuuuuuu >

uuuuuuuuuuuuuuuuuuu signsA

UUUUUUUUUUUUUUUUUUUUUUUUU retain(formA, _signsA)

uuuuuuuuuuuuuuuuuuuuuuuuu retrieve(formA, _signsA)

uuu formA

HHH >

uuu signsA

uuu verify_one(signsA
, .pubKeysA , _formA)

HHH chosen_=_{p, g,
HASH, CIPHER,SIGN...}_.=_choose(options)

uuu e_=_choose(el...
ezZ,.p)

uuu CA_=_random()

uuu y_=_random()

HHH d_o=_gy_mod_p

uuu CB_=_CA_XOR_2n-1

uuu NB_=_random()

uuu formB_=_{CA, .
chosen,._d, _NA, _NB}

HHH assert_1_<_e_<_p
-1

uuu K_=_HASH(ey_mod_p
)

uuu KCA_=_HMAC (HASH, _
K,_.”Initiator_Cipher_Key”)

HHH KCB_=_HMAC (HASH, _

17

/4 CRYPTOGRAPHIC DESIGN

K,_”"Responder_Cipher_Key”)
KMA_=_HMAC (HASH , _.

KMB _=_HMAC (HASH , _

HHH KSA_=_HMAC (HASH, _

KSB._=_HMAC (HASH , _

macB_=_HMAC (HASH,

signB_=_SIGN(

IDB._=_CIPHER (KCB,

HHH MB_=_HMAC (HASH, _

retrieve(NA,_x1...xZ,_expireTime)
assert_now_<_expireTime

assert_chosen_. _options
X_=.choose(x1...xZ,._.p)

e_=_gx._mod_p

CB_=_CA_XOR_2n-1

assert_1.<.d_<_p-1

K_=_HASH(dx_mod_p)

KCA_=_HMAC (HASH, _K,_”Initiator_Cipher_Key”)
KCB_=_HMAC (HASH, _K, .”Responder_Cipher_Key”)

18

/8 ACKNOWLEDGMENTS

KMA_=_HMAC (HASH, _K, _”Initiator_MAC_Key”)

KMB_=_HMAC (HASH, _K, _”Responder _MAC_Key”)

KSA_=_HMAC (HASH, _K, _”Initiator _SIGMA_Key”)
KSB_=_HMAC (HASH, _K, .”Responder _SIGMA_Key”)

assert MB_=_HMAC(HASH, _KMB,_CB,_IDB)
{pubKeyB,_signB}_=_DECIPHER (KCB,._.CB,_IDB)
macB._=_HMAC (HASH, _KSB, _{NA, _NB, .d, _pubKeyB, _formB})
VERIFY (signB, _pubKeyB,._.macB)

Note: KMB is necessary only to allow Bob to terminate the ESession if he comes online before
Alice terminates it. The calculation of KCB and KSB is not strictly necessary.

5 Security Considerations

The security considerations are described in Encrypted Session Negotiation and Offline
Encrypted Sessions.

6 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
19

7 XMPP Registrar Considerations

This document requires no interaction with the XMPP Registrar .

8 Acknowledgments

The author would like to thank: Ian Goldberg for the time he spent reviewing an early version
of this protocol and for his invaluable suggestions and comments; and Hugo Krawczyk for his
general advice and encouragment. The author of this document is entirely responsable for
any errors it contains.

“The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

“The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

19

http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

	Introduction
	Dramatis Personae
	Cryptographic Origins
	Introduction
	SIGMA Parameter Descriptions
	SIGMA-I Overview
	SAS-Only Overview
	SIGMA-R with SAS Overview
	SIGMA-I Key Exchange
	SIGMA-R with SAS Key Exchange

	Cryptographic Design
	ESession Parameter Descriptions
	Online ESession-I Negotiation
	Online ESession-R Negotiation
	Offline ESession Negotiation

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Acknowledgments

