XVIPP

XEP-0200: Stanza Encryption

lan Paterson
mailto:ian.paterson@clientside.co.uk
Xmpp: ian@zoofy.com

2007-05-30
Version 0.2

Status Type Short Name
Deferred Standards Track TO BE ASSIGNED

This document specifies an XMPP protocol extension for session-based stanza encryption.

mailto:ian.paterson@clientside.co.uk
xmpp:ian@zoofy.com

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

1 Introduction

2 Requirements

3 Dramatis Personae

4 Assumptions

5 Encryptable Content

6 Encrypting a Stanza

7 Sending an Encrypted Stanza
8 Decrypting a Stanza

9 Re-Key Exchange
9.1 Introduction
9.2 Re-Keylnitiation
9.3 Re-KeyAcceptance. o o i i i i e

10 Publishing Old MAC Values

11 Security Considerations
11.1 Random Numberst
11.2 Storage o v v e e e e e e e
11.3 Replay Attacks o
114 MaximumKeyLife
11.5 Extra Responsabilities of Implementors

12 IANA Considerations

13 XMPP Registrar Considerations
13.1 Protocol Namespaces v v v v v v v v vt et e e

14 XML Schemas

O O \©

11

12
12
12
12
12
12

13

13
13

13

\J 2 REQUIREMENTS

1 Introduction

End-to-end encryption is a desirable feature for any communication technology. Ideally, such
a technology would design encryption in from the beginning and would forbid unencrypted
communications. Realistically, most communication technologies have not been designed
in that manner, and Jabber/XMPP technologies are no exception. In particular, the original
Jabber technologies developed in 1999 did not include end-to-end encryption by default.
PGP-based encryption of message bodies and signing of presence information was added as
an extension to the core protocols in the year 2000; this extension is documented in Current
Jabber OpenPGP Usage (XEP-0027) !. When the core protocols were formalized within the
Internet Standards Process by the IETF’s XMPP Working Group in 2003 (see RFC 3920 ? and
RFC 3921 3), a different extension was defined using S/MIME-based signing and encryption
of CPIM-formatted messages (see RFC 3862 *) and PIDF-formatted presence information (see
RFC 3863 °); this extension is specified in RFC 3923 ©,

For reasons described in Requirements for Encrypted Sessions (XEP-0210) 7, the foregoing
proposals (and others not mentioned) have not been widely implemented and deployed. This
is unfortunate, since an open communication protocol needs to enable end-to-end encryption
in order to be seriously considered for deployment by a broad range of users.

This document describes a different session-based approach to the end-to-end encryption
of the full content of XMPP stanzas sent between two entities. The protocol assumes that
the encrypted session parameters (initial keys, counters and algorithms etc.) have already
been agreed, typically through a negotiation protocol such as Encrypted Session Negotiation
(XEP-0116) 8, Simplified Encrypted Session Negotiation (XEP-0217) ° or Offline Encrypted
Sessions (XEP-0187) 1°. The session approach when combined with short-lived keys offers
many important advantages over the existing "Object Encryption” proposals, including
Perfect Forward Secrecy and Identity Protection.

2 Requirements

The requirements and the consequent cryptographic design that underpin this protocol and
its associated protocols are described in Requirements for Encrypted Sessions (XEP-0210)

'XEP-0027: Current Jabber OpenPGP Usage <https://xmpp.org/extensions/xep-0027.html>,

2RFC 3920: Extensible Messaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc3920>.

RFC 3921: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc3921>.

“RFC 3862: Common Presence and Instant Messaging (CPIM): Message Format <http://tools.ietf.org/html/
rfc3862>.

SRFC 3863: Presence Information Data Format (PIDF) <http://tools.ietf.org/html/rfc3863>.

SRFC 3923: End-to-End Signing and Object Encryption for the Extensible Messaging and Presence Protocol (XMPP)
<http://tools.ietf.org/html/rfc3923>,

7XEP-0210: Requirements for Encrypted Sessions <https://xmpp.org/extensions/xep-0210.html>.

8XEP-0116: Encrypted Session Negotiation <https://xmpp.org/extensions/xep-0116.html>.

9XEP-0217: Simplified Encrypted Session Negotiation <https://xmpp.org/extensions/xep-0217.html>.

1°XEP-0187: Offline Encrypted Sessions <https://xmpp.org/extensions/xep-0187.html>.

https://xmpp.org/extensions/xep-0027.html
https://xmpp.org/extensions/xep-0027.html
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3862
http://tools.ietf.org/html/rfc3863
http://tools.ietf.org/html/rfc3923
https://xmpp.org/extensions/xep-0210.html
https://xmpp.org/extensions/xep-0116.html
https://xmpp.org/extensions/xep-0116.html
https://xmpp.org/extensions/xep-0217.html
https://xmpp.org/extensions/xep-0187.html
https://xmpp.org/extensions/xep-0187.html
https://xmpp.org/extensions/xep-0210.html
https://xmpp.org/extensions/xep-0027.html
http://tools.ietf.org/html/rfc3920
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3862
http://tools.ietf.org/html/rfc3862
http://tools.ietf.org/html/rfc3863
http://tools.ietf.org/html/rfc3923
https://xmpp.org/extensions/xep-0210.html
https://xmpp.org/extensions/xep-0116.html
https://xmpp.org/extensions/xep-0217.html
https://xmpp.org/extensions/xep-0187.html

\J 4 ASSUMPTIONS

1 and Cryptographic Design of Encrypted Sessions. The specific objectives of this protocol
include:

« Encryption of the full stanza content (except that which is required for stanza routing)

« Minimise the Perfect Forward Secrecy window by enabling light-weight renegotiation
of the short-term keys without requiring a full session renegotiation.

« Minimise bandwidth overhead

+ No dependence on XML canonicalization

3 Dramatis Personae

This document introduces two characters to help the reader follow the necessary exchanges:

1. ”Alice” is the name of the entity sending the encrypted stanza or initiating a re-key.
Within the scope of this document, we stipulate that her fully-qualified JID is: <al-
ice@example.org/pda>.

2. "Bob” is the name of the entity receiving the encrypted stanza or accept-
ing a re-key. Within the scope of this document, his fully-qualified JID is:
<bob@example.com/laptop>.

While Alice and Bob are introduced as “end users”, they are simply meant to be examples of
XMPP entities. Any directly addressable XMPP entity may send or receive encrypted stanzas
within an encrypted session or initiate a re-key.

Here we assume that Alice and Bob have already established an encrypted session. Either
Alice or Bob MAY send encrypted stanzas within the encrypted session or initiate a re-key.
The following sections describe the process where Alice sends Bob an encrypted stanza and
initiates a re-key.

4 Assumptions

The following sections assume that the parameters in the tables below have already been
agreed. For more details refer to an encrypted session negotiation protocol such as Encrypted
Session Negotiation.

"'XEP-0210: Requirements for Encrypted Sessions <https://xmpp.org/extensions/xep-0210.html>.

https://xmpp.org/extensions/xep-0210.html

/5 ENCRYPTABLE CONTENT

Parameter Description

CA,CB The initial block cipher counter value for blocks sent by Alice
and Bob

KCA, KCB The initial secret cipher keys that Alice and Bob use to encrypt

KMA, KMB The initial secret MAC keys that Alice and Bob use to protect
the integrity of encrypted data

HASH Agreed hash algorithm

CIPHER, DECIPHER Agreed CTR-mode block cipher algorithm

COMPRESS, DECOMPRESS ~ Agreed compression algorithm

Parameter Description

g Diffie-Hellman generator

p Diffie-Hellman prime

e, d Alice and Bob’s initial public Diffie-Hellman keys
X,y *Alice and Bob’s initial private Diffie-Hellman keys

* x and y MUST be known only to Alice and Bob respectively, all other parameters MUST be
known by both parties

All parameters except the algorithms are multi-precision integers, so implementations will
need a Big Integer Math library to perform the necessary modular arithmetic. Note: A simple
HMAC function and a cryptographic-strength pseudo-random number generator are also
required, but no other cryptographic code is necessary.

5 Encryptable Content

Alice MAY use this protocol to encrypt only that part of the content of one-to-one <message/>,
<presence/> and <iq/> stanzas that would normally be ignored by the intermediate servers.
She MUST NOT encrypt:

« Stanza wrapper element tags (only stanza content)

+ <error/> elements '?

2RFC 6120 requires that stanzas of type ’error’ contain an <error/> child element.

/5 ENCRYPTABLE CONTENT

+ <defined-condition xmlns="urn:ietf:params:xml:ns:xmpp-stanzas’/> child elements of
<error/> elements. 13

« <thread/> elements ™
+ <amp/> elements (see Advanced Message Processing (XEP-0079) '°)

A stanza MUST NOT contain more than one <c xmlns="http://www.xmpp.org/extensions/xep-
0200.html#ns’/> element, and it MUST be an immediate child of the stanza wrapper element.
There is only one exception to those two rules, if the stanza is type ’error’ then its <er-
ror/> child element MAY also contain a <c xmlns="http://www.xmpp.org/extensions/xep-
0200.html#ns’/> element.

Listing 1: Plain Message Stanza

<message from=’alice@example.org/pda’
to=’bob@example.com/laptop’
type=’chat’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<body>Hello, Bob!</body>
<amp xmlns=’http://jabber.org/protocol/amp’>
<rule action=’error’ condition="match-resource’ value=’exact’/>
</amp>
<active xmlns="http://jabber.org/protocol/chatstates’/>
</message>

Listing 2: Message Content to be Encrypted

<body>Hello, Bob!</body>
<active xmlns=’http://jabber.org/protocol/chatstates’/>

Listing 3: Plain Presence Stanza

<presence from=’alice@example.org/pda’
to="bob@example.com/laptop’>
<show>dnd</show>
<status>Working</status>
<c xmlns="http://jabber.org/protocol/caps’
node="http://exodus. jabberstudio.org/caps’
ver=’0.9"’

BRFC 6120 requires that <error/> elements contain a <defined-condition/> child element.

" Applications typically use <thread/> elements internally to route stanzas to the process handling a session. The
content of thread elements MUST be opaque with no semantic meaning and only exact comparisons MAY be
made against it.

BXEP-0079: Advanced Message Processing <https://xmpp.org/extensions/xep-0079.html>,

https://xmpp.org/extensions/xep-0079.html
https://xmpp.org/extensions/xep-0079.html

/5 ENCRYPTABLE CONTENT

ext="jingle_ftrans_xhtml’/>

<geoloc xmlns=’http://jabber.org/protocol/geoloc’>
<alt>1609</alt>
<description>Jabber, Inc.</description>
<error>10</error>
<lat>39.75477</lat>
<lon>-104.99768</1lon>
<timestamp>2004-02-19T21:12Z</timestamp>

</geoloc>

</presence>

Listing 4: Presence with Encrypted Content

<presence from=’alice@example.org/pda’
to="bob@example.com/laptop’>
<c xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
<data> x* Base64 encoded m_final ** </data>
<mac> ** Base64 encoded a_mac **x </mac>
</c>
</presence>

Listing 5: Plain IQ Error Stanza

<ig from=’alice@example.org/pda’
to=’bob@example.com/laptop’
id="publish1”’
type=’error’>
<pubsub xmlns=’http://jabber.org/protocol/pubsub’>
<publish node=’princely_musings’>
<item id=’ae890ac52d0df67ed7cfdf51b644e901’>

</item>

</publish>

</pubsub>

<error type=’modify’>
<not-acceptable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
<payload-too-big xmlns=’http://jabber.org/protocol/pubsub#errors’/

>
</error>
</iqg>

Listing 6: Encrypted IQ Error Stanza

<ig from=’alice@example.org/pda’
to="bob@example.com/laptop’
id="publish1”’
type=’error’>
<c xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
<data> ** Base64 encoded m_final *x </data>
<mac> ** Base64 encoded a_mac **x </mac>

/6 ENCRYPTING A STANZA

</c>
<error type=’modify’>
<not-acceptable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
<c xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
<data> ** Base64 encoded m_final *x </data>
<mac> ** Base64 encoded a_mac ** </mac>
</c>
</error>
</ig>

6 Encrypting a Stanza

Alice MUST perform the following steps to encrypt the XML content. Note: if there is no XML
content to be encrypted (e.g. if this is an empty Re-Key Exchange stanza), then CA MUST be
incremented by 1 (see below), and only the last two steps (normalization and MAC calculation)
should be performed.

1. Serialize the XML content she wishes to send into an array of UTF-8 bytes, m. 1©

2. Compress m using the negotiated algorithm. If a compression algorithm other than
‘none’ was agreed, the compression context is typically initialized after key exchange
and passed from one stanza to the next, with only a partial flush at the end of each
stanza, 7

m_compressed = COMPRESS(m)

3. Encrypt the data with the agreed algorithm in counter mode, using the encryption key
KCA. Note: CA MUST be incremented by 1 for each encrypted block or partial block (i.e.
CA =(CA + 1) mod 2", where n is the number of bits per cipher block for the agreed block
cipher algorithm). Note: if the block cipher algorithm 'none’ was agreed then encryp-
tion MUST NOT be performed and CA MUST be incremented by 1 (for replay protection).

m_final = CIPHER(KCA, CA, m_compressed)

4, Generate the whole serialized content of the <c/> element:
If there is encrypted XML content, the XML MUST include the Base64 encoded (even if

'6 Although counter mode encryption requires no padding, implementations MAY still disguise the length of m by
appending a random number of white-space characters.

71f Bob were to receive a stanza out-of-order, then he would fail to decrypt the stanza and be forced to terminate
the encrypted session.

/7 SENDING AN ENCRYPTED STANZA

the block cipher algorithm 'none’” was agreed %, in accordance with Section 4 of RFC
4648 1%) value of m_final wrapped in a <data/> element.

Only if Alice has received stanzas containing a <key/> element (see Re-Key Exchange)
from Bob since she sent her last stanza then the XML MUST include the (positive,
non-zero) number of such stanzas she has received (since she sent her last stanza)
wrapped in a <new/> element.

The content may also contain one <key/> element (see Re-Key Exchange) and one or
more <old/> elements (see Publishing Old MAC Values).

Alice MUST normalize the content by removing any whitespace from the serialized
content (i.e. remove all character data from between all elements). Note: <c/> elements
are so simple that there should never be a need to convert the XML to canonical form.
For example:

m_content = ’<data>_x*_Base64._encoded_m_final_*x_</data><new>1</
new>’

5. Process the XML content, concatenated with the value of Alice’s block cipher counter
CA before the data was encrypted, through the HMAC algorithm (as defined in Section 2
of RFC 2104 ?°), along with the agreed hash algorithm ("HASH”) and the integrity key
KMA.

a_mac = HMAC(HASH, KMA, m_content | CA)

7 Sending an Encrypted Stanza
Before sending the stanza to Bob, Alice MUST wrap the (unnormalized) content and the

Base64 encoded value of a_mac (wrapped in a <mac/> element) inside an <c/> element and
insert it into the stanza in place of the original content.

Listing 7: Message Stanza with Encrypted Content

<message from=’alice@example.org/pda’
to="bob@example.com/laptop’
type=’chat’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<c xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
<data> ** Base64 encoded m_final *x* </data>
<new>1</new>
<mac> ** Base64 encoded a_mac ** </mac>

3The content is encoded even if no encryption is used to avoid triggering namespace errors when entities parse
the XML.

“RFC 4648: The Base16, Base32, and Base64 Data Encodings <http://tools.ietf.org/html/rfc4648>,

RFC 2104: HMAC: Keyed-Hashing for Message Authentication <http://tools.ietf.org/html/rfc2104>,

http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc2104

/'8 DECRYPTING A STANZA

</c>
<amp xmlns=’http://jabber.org/protocol/amp’ per-hop=’true’>
<rule action=’error’ condition="match-resource’ value=’exact’/>
</amp>
</message>

8 Decrypting a Stanza

When Bob receives the stanza from Alice, he MUST extract and Base64 decode the values of
m_final and a_mac from the content and perform the following steps.

1. Use any <new/> element the stanza may (or may not) contain to determine which of
his <key/> elements (see Re-Key Initiation) Alice had received before she sent him the
stanza. He MUST use this information to determine which of his stored sets of values
{KCA KMA y} he should use to decrypt and verify the stanza. Bob MUST then securely
destroy any of his sets of values that are older than the selected set.

2. Remove the <mac/> element from the serialized content of the <c/> element, and
normalize the remaining content by removing all whitespace. Calculate the Message
Authentication Code (MAC) for the content concatenated with Alice’s block cipher
counter using the agreed hash algorithm ("HASH”) and the integrity key KMA.

b_mac = HMAC(HASH, KMA, m_content | CA)

3. Verify that b_mac and a_mac match. If they are not identical, the content has been
tampered with and Bob MUST terminate the encrypted session, he MAY send a <not-
acceptable/> error to Alice. %!

4. Decrypt m_final using the agreed algorithm, KCA and CA. Note: CA MUST be incre-
mented by 1 for each decrypted block (see Encrypting a Stanza). Note: if the block
cipher algorithm 'none’ was agreed decryption MUST NOT be performed and CA MUST
be incremented by 1.

m_compressed = DECIPHER(KCA, CA, m_final)

5. Decompress m_compressed using the negotiated algorithm (usually 'none’).

A1 Bob were to receive a stanza out-of-order, then the MACs would not match because the values of CA would not
be synchronized.

/9 RE-KEY EXCHANGE

m = DECOMPRESS(m_compressed)

6. Replace the <c/> element in the serialized XML stanza with m and feed the stanza into
an XML parser. If the parser returns an XML format error then Bob MUST terminate
the encrypted session, he MAY send a <not-acceptable/> error to Alice. %2

9 Re-Key Exchange

9.1 Introduction

Once an attacker has discovered an encryption key it could be used to decrypt all stanzas
within a session, including stanzas that were intercepted before the key was discovered. To
reduce the window of vulnerability, both Alice and Bob SHOULD use the Diffie-Hellman key
exchange described below to agree a new encryption key as regularly as possible. They MUST
also destroy all copies of keys as soon as they are no longer needed.

Note: Although most entities are capable of exchanging new keys after every stanza, clients
running in constrained runtime environments may require a few seconds of full-load CPU
time in order to re-key. During encrypted session negotiation (when using Encrypted Session
Negotiation for example) these clients MAY negotiate the minimum number of stanzas to be
exchanged between re-keys at the cost of a larger window of vulnerability. Entities MUST
NOT initiate key re-exchanges more frequently than the agreed limit.

Either Alice or Bob MAY initiate a key re-exchange. Here we describe the process initiated by
Alice.

9.2 Re-Key Initiation

First Alice MUST calculate new values for the encryption parameters:

1. Generate: a secret random number x (where 22" ~! <x < p - 1, where n is the number of
bits per cipher block for CIPHER)

2. Calculate: e = g mod p
3. Calculate: K = d* mod p (the new shared secret)

4. Alice’s Encryption key: KCA = HMAC(HASH, K, "Rekey Initiator Crypt”)

*2Bob MUST NOT send a stream error to his server since intermediate entities are not responsible for encoded
content.

/9 RE-KEY EXCHANGE

5. Bob’s Encryption key: KCB = HMAC(HASH, K, "Rekey Acceptor Crypt”)

6. Alice’s Integrity key: KMA = HMAC(HASH, K, "Rekey Initiator MAC”)

7. Bob’s Integrity key: KMB = HMAC(HASH, K, "Rekey Acceptor MAC”)

Note: Once KCA, KMA, KCB and KMB have been calculated the value of K MUST be securely
destroyed. When calculating those keys, as many bits of key data as are needed for each key
MUST be taken from the least significant bits of the output of HMAC. For algorithms with
variable-length keys the maximum length (up to the output length of HMAC) SHOULD be
used.

The new value of e SHOULD be wrapped in a <key/> element and sent to Bob. To avoid unnec-
essary network traffic, it SHOULD be sent together with encrypted content (see Encrypting a
Stanza). Alice MUST use her old KCA and KMA to encrypt and calculate the MAC of this stanza,
after which she MUST securely destroy all copies of the old value of KCA. She MUST use her
new KCA and KMA when sending subsequent stanzas.

Note: There is no need for Alice to provide a signature because the calculation of the MAC
includes the new value of e (see Encrypting a Stanza).

Listing 8: Alice Sends Re-Key Stanza

<message from=’alice@example.org/pda’ to=’bob@example.com/laptop’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<c xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
<data> ** Base64 encoded m_final ** </data>
<key> x*x Base64 encoded value of new e ** </key>
<mac> ** Base64 encoded a_mac ** </mac>
</c>
</message>

Note: Bob may send one of more stanzas before he receives Alice’s <key/> element (i.e. the
stanzas may be in transit at the same time). So, before destroying her old values of KCB and
KMB, Alice MUST wait until either she receives a stanza encrypted with her new key, or a
reasonable time has passed (60 seconds should cover a network round-trip and calculations
by a constrained client). Similarly she MUST wait before destroying her old value of x, in case
Bob sends one or more stanzas including a <key/> element before he receives Alice’s new key.
Consequently, if Alice sends several <key/> elements to Bob within a reasonable time without
receiving a stanza from him, then she MUST remember several "sets” of the three values:
{KCB KMB x}.

Note: Alice never remembers more than one copy of KCA and KMA.

10

\/ 10 PUBLISHING OLD MAC VALUES

9.3 Re-Key Acceptance

After receiving and decrypting a stanza that contains a <key/> element Bob MUST extract the
new value of e and confirm that it is greater than one. Then he MUST calculate K using the
new value of e and the value of y from his oldest stored set of values {KCA KMA y} (i.e. the set
that also contains the value of KCA used to decrypt the stanza):

K = ey mod p

Bob MUST replace the values of KCA and KMA in all his stored sets of values {KCA KMA y} with
values that are derived from K in exactly the same way as Alice did (see Re-Key Initiation).

Only if Bob is storing exactly one set of values {KCA KMA y} then he MUST also replace his
values of KCB and KMB with values that are derived from K in exactly the same way as Alice did.

10 Publishing Old MAC Values

Once the expired MAC keys have been published, anyone could create valid arbitrary stanzas
with them. This prevents anyone being able to prove the authenticity of a transcript of the
encrypted session in the future.

Either entity MAY publish old values of KMA and/or KMB within any encrypted stanza as long
as it knows that all the stanzas that MAY use the old values have been received and validated.
Note: A 'man-in-the-middle’ could delay the delivery of stanzas indefinitely. So, before Alice
publishes KMA (and KMB), she MUST wait until she has both sent a re-key to Bob and received
a stanza from Bob encrypted with her new key. (She MAY also publish KMB after she has
received a re-key from Bob.)

Listing 9: Publishing Expired MAC Keys

<message from=’alice@example.org/pda’ to=’bob@example.com/laptop’>
<thread>ffd7076498744578d10edabfe7f4a866</thread>
<c xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’>
<data> ** Base64 encoded m_final ** </data>
<old> x* Base64 encoded old MAC key *x </old>
<old> ** Base64 encoded old MAC key #*x </old>
<mac> ** Base64 encoded a_mac **x </mac>
</c>
</message>

Entities SHOULD ignore any <old/> elements they receive.

11

\/ 11 SECURITY CONSIDERATIONS

11 Security Considerations

11.1 Random Numbers

Weak pseudo-random number generators (PRNG) enable successful attacks. Implementors
MUST use a cryptographically strong PRNG to generate all random numbers (see RFC 1750 23).

11.2 Storage

If either entity stores a (re-encrypted) transcript of an encrypted session for future consulta-
tion then the Perfect Forward Secrecy offered by this protocol is lost. If the negotiated value
of the ’otr’ Stanza Session Negotiation field is 'true’ the entities MUST NOT store any part of
the encrypted session content (not even in encrypted form).

11.3 Replay Attacks

The block cipher counters maintained implicitly by Alice and Bob (CA and CB) prevent stanzas
being replayed within any encrypted session. They ensure that the MAC will be different for
all stanzas, even if the HMAC key and the content of the stanza are identical.
Alice and Bob MUST ensure that every value of x and y (and therefore e and d) they generate
is unique. This prevents complete online encrypted sessions being replayed.

11.4 Maximum Key Life

After each key exchange an entity MUST NOT exchange a total of 232 encrypted blocks (not

stanzas) before it initiates a key re-exchange (see RFC 4344 **). Note: This limitation also
ensures the same key and counter values are never used to encrypt two different blocks using
counter mode (thus preventing simple attacks).

In order to reduce the Perfect Forward Secrecy window of vulnerability, after an extended
period of inactivity entities SHOULD re-key (or terminate the encrypted session).

11.5 Extra Responsabilities of Implementors

Cryptography plays only a small part in an entity’s security. Even if it implements this protocol
perfectly it may still be vulnerable to other attacks. For examples, an implementation might
store encrypted session keys on swap space or save private keys to a file in cleartext! Im-
plementors MUST take very great care when developing applications with secure technologies.

RFC 1750: Randomness Recommendations for Security <http://tools.ietf.org/html/rfc1750>.,
**RFC 4344: SSH Transport Layer Encryption Modes <http://tools.ietf.org/html/rfc4344>,

12

http://tools.ietf.org/html/rfc1750
http://tools.ietf.org/html/rfc4344
http://tools.ietf.org/html/rfc1750
http://tools.ietf.org/html/rfc4344

\/ 14 XML SCHEMAS

12 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
25

13 XMPP Registrar Considerations

13.1 Protocol Namespaces

Until this specification advances to a status of Draft, its associated namespace shall be
"http://www.xmpp.org/extensions/xep-0200.html#ns”; upon advancement of this specifica-
tion, the XMPP Registrar 2° shall issue a permanent namespace in accordance with the process
defined in Section 4 of XMPP Registrar Function (XEP-0053) /.

14 XML Schemas

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="http://www.xmpp.org/extensions/xep-0200.html#ns’
xmlns="http://www.xmpp.org/extensions/xep-0200.html#ns’
elementFormDefault="qualified’>

<xs:element name=’data’ type=’xs:string’/>

<xs:element name=’c’>
<xs:complexType>
<xs:sequence>
<xs:element ref=’data’ minOccurs=’0’ maxOccurs=’1"/>
<xs:element ref=’key’ minOccurs=’@’ maxOccurs=’1"/>
<xs:element ref="mac’ minOccurs=’0’ maxOccurs="1"/>
<xs:element ref="new’ minOccurs=’0’ maxOccurs="1"/>
<xs:element ref=’0ld’ minOccurs=’0’ maxOccurs="unbounded’/>
</xs:sequence>
</xs:complexType>
</xs:element>

»The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>

*The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

#"XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

13

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

\/ 14 XML SCHEMAS

<xs:element name=’key’ type=’xs:string’/>
<xs:element name=’mac’ type=’xs:string’/>
<xs:element name=’new’ type=’xs:positivelnteger’/>
<xs:element name=’o0ld’ type=’xs:string’/>

</xs:schema>

14

	Introduction
	Requirements
	Dramatis Personae
	Assumptions
	Encryptable Content
	Encrypting a Stanza
	Sending an Encrypted Stanza
	Decrypting a Stanza
	Re-Key Exchange
	Introduction
	Re-Key Initiation
	Re-Key Acceptance

	Publishing Old MAC Values
	Security Considerations
	Random Numbers
	Storage
	Replay Attacks
	Maximum Key Life
	Extra Responsabilities of Implementors

	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces

	XML Schemas

