
XEP-0207: XMPP Eventing via Pubsub

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

2007-04-01
Version 1.0

Status Type Short Name
Active Humorous N/A

This document specifies semantics for using the XMPP publish-subscribe protocol to handle generic
XMPP events (including presence, one-to-one messaging, and groupchat).

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Concepts and Approach 1

3 Presence 2

4 Rosters and Presence Subscriptions 4

5 Multi-User Chat 7

6 One-to-One Messaging 10

7 Conclusion 12

8 Security Considerations 12

9 IANA Considerations 13

10 XMPP Registrar Considerations 13

11 XML Schema 13

12 Acknowledgements 13

2 CONCEPTS AND APPROACH

1 Introduction
Personal Eventing Protocol (XEP-0163) 1 (PEP) introduced the concept of ”eventing” into the
Extensible Messaging and Presence Protocol (see XMPP Core 2). But PEP merely scratched
the surface of eventing technologies based on the XMPP Publish-Subscribe (XEP-0060) 3

extension. This document extends the eventing concept to its ultimate conclusion: the ability
to communicate all XMPP semantics via pubsub.

2 Concepts and Approach
Jabber technologies as invented by Jeremie Miller started out as a relatively lightweight XML
messaging transport, but they have become unnecessarily -- even ridiculously -- bloated
over the years. Formalization of the core Jabber protocols as the Extensible Messaging
and Presence Protocol (XMPP) within the IETF seemed like a good idea at the time, but the
extensible nature of the core protocols has tempted the developer community to extend
XMPP six ways from Sunday. The result has been a plethora of different conceptual models for
various extensions, such as Multi-User Chat (XEP-0045) 4 for multi-user communication and
Ad-Hoc Commands (XEP-0050) 5 for structured entity-to-entity request/response semantics.
These different models are inelegant and unnecessary. Indeed, even the inclusion of three
different basic packet types (presence, message, and IQ) in the core protocol is overkill.
We can do better. In fact, we can reduce all the communication types and styles that are
currently defined within the XMPP ecosystem to one model: publish-subscribe as specified in
Publish-Subscribe (XEP-0060) 6.
Consider:

• It has often been observed that presence (see XMPP IM 7) is a form of publish-subscribe.
8

• The primitive XMPP ”roster” can be easily implemented using the pubsub permissions
model.

• Multi-user chat too is a kind of publish-subscribe, since a single ”publish” to the room
results in multiple notifications to the room occupants, who are really subscribers to an
information node.

1XEP-0163: Personal Eventing Protocol <https://xmpp.org/extensions/xep-0163.html>.
2RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
3XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
4XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
5XEP-0050: Ad-Hoc Commands <https://xmpp.org/extensions/xep-0050.html>.
6XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
7RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

8See, for instance, <http://mail.jabber.org/pipermail/xmppwg/2003-February/000636.html>.

1

https://xmpp.org/extensions/xep-0163.html
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0060.html
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0163.html
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0050.html
https://xmpp.org/extensions/xep-0060.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://mail.jabber.org/pipermail/xmppwg/2003-February/000636.html

3 PRESENCE

• Even one-to-one messaging is just another example of publish-subscribe (in fact it is a
special case of multi-user chat).

The remainder of this documentwill prove beyond a doubt that the older, multiple approaches
are obsolete, and that there is indeed one model that serves all our needs: pubsub.

3 Presence
Presence simply is pubsub, since it follows the classic ”observer” pattern: multiple subscribers
receive notifications whenever the publisher (typically an end user) generates an event re-
lated to network availability. Currently in XMPP this is done with the <presence/> stanza,
which serves as a kind of pubsub primitive (though only for availability information). For
example, Juliet may log into the capulet.lit server and send presence:

Listing 1: Presence Update
<presence from=’juliet@capulet.lit/balcony ’>

<status >Moping </status >
</presence >

The capulet.lit server will then send notifications to all of the users who have subscribed to
Juliet’s presence:

Listing 2: Presence Notifications
<presence from=’juliet@capulet.lit/balcony ’ to=’romeo@montague.lit/

mobile ’>
<status >Moping </status >

</presence >

<presence from=’juliet@capulet.lit/balcony ’ to=’nurse@capulet.lit/
chamber ’>

<status >Moping </status >
</presence >

<presence from=’juliet@capulet.lit/balcony ’ to=’benvolio@montague.lit/
pda’>

<status >Moping </status >
</presence >

[etc.]

But the same functionality can be implemented more elegantly using pubsub:

Listing 3: Presence Publish

2

3 PRESENCE

<iq from=’juliet@capulet.lit/balcony ’ type=’set’ id=’pres1 ’>
<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>

<publish node=’presence ’>
<item>

<presence from=’juliet@capulet.lit/balcony ’ xmlns=’
jabber:client ’>

<status >Moping </status >
</presence >

</item>
</publish >

</pubsub >
</iq>

<iq to=’juliet@capulet.lit/balcony ’ type=’result ’ id=’pres1 ’/>

The server (here implementing PEP) then sends notifications to the subscribers:

Listing 4: Presence Notifications via Pubsub
<message from=’juliet@capulet.lit’

to=’romeo@montague.lit/mobile ’
id=’presfoo ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’presence ’>

<item>
<presence from=’juliet@capulet.lit/balcony ’ xmlns=’

jabber:client ’>
<status >Moping </status >

</presence >
</item>

</items >
</event >

</message >

<message from=’juliet@capulet.lit’
to=’nurse@capulet.lit/chamber ’
id=’presfoo ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’presence ’>

<item>
<presence from=’juliet@capulet.lit/balcony ’ xmlns=’

jabber:client ’>
<status >Moping </status >

</presence >
</item>

</items >
</event >

</message >

3

4 ROSTERS AND PRESENCE SUBSCRIPTIONS

<message from=’juliet@capulet.lit’
to=’benvolio@montague.lit/pda’
id=’presfoo ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’presence ’>

<item>
<presence from=’juliet@capulet.lit/balcony ’ xmlns=’

jabber:client ’>
<status >Moping </status >

</presence >
</item>

</items >
</event >

</message >

It is true that in this case the packets are significantly larger in the pubsub realization than
in the old-fashioned presence realization. This is the price of elegance. Implementations
SHOULD use native Transport Layer Security compression (see RFC 5246 9) or Stream Com-
pression (XEP-0138) 10 at the application layer to conserve bandwidth.

4 Rosters and Presence Subscriptions
The original Jabber technologies included a kind of Buddy List ™ (called the ”roster”). But the
roster is simply a list of the entities that are subscribed to a user’s presence. Occam’s Razor
would indicate that it is foolish to implement two concepts (presence subscription and roster)
when one will solve the problem at hand. In XMPP Eventing via Pubsub, there is no need for a
specialized ”roster” since the same information is represented in the list of entities who are
subscribed to the user’s ”presence” node in pubsub/PEP.
Using XMPP Eventing via Pubsub also cleans up the syntax for presence subscription man-
agement, which currently uses four specialized values of the <presence/> element’s ’type’
attribute: ”subscribe”, ”subscribed”, ”unsubscribe”, and ”unsubscribed”.
Thus for example a presence subscription request is currently made by sending the following
presence stanza:

Listing 5: Presence Subscription Request
<presence from=’bard@shakespeare.lit’ to=’juliet@capulet.lit’ type=’

subscribe ’/>

And that request is then delivered to the intended recipient:

Listing 6: Presence Subscription Request

9RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 <http://tools.ietf.org/html/rfc5246>.
10XEP-0138: Stream Compression <https://xmpp.org/extensions/xep-0138.html>.

4

http://tools.ietf.org/html/rfc5246
https://xmpp.org/extensions/xep-0138.html
https://xmpp.org/extensions/xep-0138.html
http://tools.ietf.org/html/rfc5246
https://xmpp.org/extensions/xep-0138.html

4 ROSTERS AND PRESENCE SUBSCRIPTIONS

<presence from=’bard@shakespeare.lit’ to=’juliet@capulet.lit’ type=’
subscribe ’/>

In order to approve the subscription request, the user sends a presence stanza of type
”subscribed”:

Listing 7: Presence Subscription Approval
<presence from=’juliet@capulet.lit’ to=’bard@shakespeare.lit’ type=’

subscribed ’/>

At this point the user’s server also creates an entry on the user’s roster for the relevant
contact and pushes that entry to the user:

Listing 8: Roster Push
<iq to=’juliet@example.com/balcony ’

type=’set’
id=’a78b4q6ha463 ’>

<query xmlns=’jabber:iq:roster ’>
<item jid=’bard@shakespeare.lit’

subscription=’from’/>
</query >

</iq>

Observe how much more elegant it is to use XMPP Eventing via Pubsub:

Listing 9: Pubsub Subscription Request
<iq type=’set’

from=’bard@shakespeare.lit/globe ’
to=’juliet@capulet.lit’
id=’sub1’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<subscribe

node=’presence ’
jid=’bard@shakespeare.lit’/>

</pubsub >
</iq>

The pubsub service then sends an authorization request to the user:

Listing 10: Service sends authorization request to node owner
<message to=’juliet@capulet.lit’ from=’capulet.lit’ id=’approve1 ’>

<x xmlns=’jabber:x:data ’ type=’form’>
<title >PubSub subscriber request </title >
<instructions >

5

4 ROSTERS AND PRESENCE SUBSCRIPTIONS

To approve this entity's subscription request ,
click the OK button. To deny the request , click the
cancel button.

</instructions >
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http: // jabber.org/protocol/pubsub#subscribe_authorization
</value >

</field >
<field var=’pubsub#node’ type=’text -single ’ label=’Node␣ID’>

<value >presence </value >
</field >
<field var=’pusub#subscriber_jid ’ type=’jid -single ’ label=’

Subscriber␣Address ’>
<value >bard@shakespeare.lit</value >

</field >
<field var=’pubsub#allow ’ type=’boolean ’

label=’Allow␣this␣JID␣to␣subscribe␣to␣this␣pubsub␣node?’>
<value >false </value >

</field >
</x>

</message >

In order to approve the request, the owner shall submit the form and set the ”pubsub#allow”
field to a value of ”1” or ”true”; for tracking purposes the message MUST reflect the ’id’
attribute originally provided.

Listing 11: User approves subscription request
<message from=’juliet@capulet.lit/balcony ’ to=’montague.lit’ id=’

approve1 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >http: // jabber.org/protocol/pubsub#subscribe_authorization

</value >
</field >
<field var=’pubsub#node’>

<value >presence </value >
</field >
<field var=’pubsub#subscriber_jid ’>

<value >bard@shakespeare.lit</value >
</field >
<field var=’pubsub#allow ’>

<value >true</value >
</field >

</x>
</message >

Simple. Elegant. And no need for a roster! The pubsub approach is bit more verbose, but then
again clients and servers should implement and deploy stream compression if they are really

6

5 MULTI-USER CHAT

worred about bandwidth usage.

5 Multi-User Chat
The existing groupchat protocol for XMPP overloads the <presence/> stanza for temporary
”subscriptions” to a virtual room and uses the <message/> stanza (with a special type of
”groupchat”) to communicate information to multiple room occupants. Sound familiar? It’s
just another form of pubsub!
In groupchat, a user joins a room by sending presence to ”room@service/nick”:

Listing 12: Groupchat Join
<presence from=’juliet@capulet.lit/balcony ’ to=’characters@chat.

shakespeare.lit/JC’/>

But on the pubsub model that is merely a temporary subscription, which can be handled quite
elegantly as so:

Listing 13: Groupchat Join via Pubsub
<iq type=’set’

from=’juliet@capulet.lit/balcony ’
to=’chat.shakespeare.lit’
id=’sub2’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<subscribe

node=’characters ’
jid=’juliet@capulet.lit/balcony ’/>

<options node=’characters ’ jid=’juliet@capulet.lit/balcony ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >http:// jabber.org/protocol/pubsub#subscribe_options </

value >
</field >
<field var=’roomnick ’><value >JC</value ></field >

</x>
</options >

</pubsub >
</iq>

In groupchat, room occupants can send messages to all other occupants via the <message/>
stanza:

Listing 14: Groupchat Message

7

5 MULTI-USER CHAT

<message from=’juliet@capulet.lit/balcony ’ to=’characters@chat.
shakespeare.lit’ type=’groupchat ’>

<body>hi</body>
</message >

The groupchat service then ”reflects” that message to all the occupants:

Listing 15: Groupchat Message Delivery
<message from=’characters@chat.shakespeare.lit/JC’ to=’

bard@shakespeare.lit/globe ’ type=’groupchat ’>
<body>hi</body>

</message >

<message from=’characters@chat.shakespeare.lit/JC’ to=’romeo@montague.
lit/mobile ’ type=’groupchat ’>

<body>hi</body>
</message >

<message from=’characters@chat.shakespeare.lit/JC’ to=’
benvolio@montague.lit/pda’ type=’groupchat ’>

<body>hi</body>
</message >

But on the pubsub model that is merely a publish resulting in multiple notifications, which
can be handled quite elegantly as so:

Listing 16: Groupchat Publish
<iq from=’juliet@capulet.lit/balcony ’ to=’chat.shakespeare.lit’ type=’

set’ id=’gc1’>
<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>

<publish node=’characters ’>
<item>

<message xmlns=’jabber:client ’>
<body>hi</body>

</message >
</item>

</publish >
</pubsub >

</iq>

<iq from=’chat.shakespeare.lit’ to=’juliet@capulet.lit/balcony ’ type=’
result ’ id=’gc1’/>

The service then sends notifications to all the node subscribers:

Listing 17: Groupchat Notifications

8

5 MULTI-USER CHAT

<message from=’chat.shakespeare.lit’
to=’bard@shakespeare.lit/globe ’
id=’mucfoo ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’characters ’>

<item>
<message xmlns=’jabber:client ’>

<body>hi</body>
</message >

</item>
</items >

</event >
<addresses xmlns=’http: // jabber.org/protocol/address ’>

<address type=’replyto ’ jid=’juliet@capulet.lit/balcony ’/>
</addresses >

</message >

<message from=’chat.shakespeare.lit’
to=’romeo@montague.lit/mobile ’
id=’mucfoo ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’characters ’>

<item>
<message xmlns=’jabber:client ’>

<body>hi</body>
</message >

</item>
</items >

</event >
<addresses xmlns=’http: // jabber.org/protocol/address ’>

<address type=’replyto ’ jid=’juliet@capulet.lit/balcony ’/>
</addresses >

</message >

<message from=’chat.shakespeare.lit’
to=’benvolio@montague.lit/pda’
id=’mucfoo ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’characters ’>

<item>
<message xmlns=’jabber:client ’>

<body>hi</body>
</message >

</item>
</items >

</event >
<addresses xmlns=’http: // jabber.org/protocol/address ’>

<address type=’replyto ’ jid=’juliet@capulet.lit/balcony ’/>
</addresses >

9

6 ONE-TO-ONE MESSAGING

</message >

Here again the pubsub approach is slightly more verbose, but that’s what stream compression
is for.

6 One-to-One Messaging
It’s really rather silly that XMPP includes two different models for messaging, one for
groupchat and the other for one-to-one messages. Pubsub solves that problem by using one
model for everything. In order to exchange messages, one of the parties simply creates a
pubsub node with a whitelist model and adds the other person as a publisher (it may also be
necessary to add the other party to the whitelist):

Listing 18: Creating a One-to-One Messaging Node
<iq type=’set’

from=’juliet@capulet.lit/balcony ’
to=’pubsub.shakespeare.lit’
id=’create1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<create node=’me_and_romeo ’/>
<configure >

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#node_config </value >
</field >
<field var=’pubsub#access_model ’><value >whitelist </value ></

field >
<field var=’pubsub#publisher ’><value >romeo@montague.lit</value

></field >
</x>

</configure >
</pubsub >

</iq>

<iq type=’result ’ from=’pubsub.shakespeare.lit’ to=’juliet@capulet.lit
/balcony ’ id=’create1 ’/>

<iq type=’set’
from=’juliet@capulet.lit/balcony ’
id=’manage1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub#owner ’>
<subscriptions node=’me_and_romeo ’/>

<subscription jid=’romeo@capulet.lit’ subscription=’subscribed ’/
>

</subscriptions >

10

6 ONE-TO-ONE MESSAGING

</pubsub >
</iq>

<iq type=’result ’
to=’juliet@capulet.lit/balcony ’
id=’manage1 ’/>

Now Juliet can send a message to the node and it will be delivered to both parties (it’s always
nice to receive a bcc to one’s sending address, the client can simply ignore it, or treat it as an
ack):

Listing 19: Message Publish
<iq from=’juliet@capulet.lit/balcony ’ to=’pubsub.shakespeare.lit’ type

=’set’ id=’msg1’>
<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>

<publish node=’me_and_romeo ’>
<item>

<message xmlns=’jabber:client ’>
<body>wherefore art thou?</body>

</message >
</item>

</publish >
</pubsub >

</iq>

<iq from=’pubsub.shakespeare.lit’ to=’juliet@capulet.lit/balcony ’ type
=’result ’ id=’msg1’/>

The service then sends notifications to both parties:

Listing 20: Groupchat Notifications
<message from=’pubsub.shakespeare.lit’

to=’romeo@montague.lit/mobile ’
id=’msgfoo ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’me_and_romeo ’>

<item>
<message xmlns=’jabber:client ’>

<body>wherefore art thou?</body>
</message >

</item>
</items >

</event >
<addresses xmlns=’http: // jabber.org/protocol/address ’>

<address type=’replyto ’ jid=’juliet@capulet.lit/balcony ’/>
</addresses >

</message >

11

8 SECURITY CONSIDERATIONS

<message from=’pubsub.shakespeare.lit’
to=’juliet@capulet.lit/balcony ’
id=’msgfoo ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’me_and_romeo ’>

<item>
<message xmlns=’jabber:client ’>

<body>wherefore art thou?</body>
</message >

</item>
</items >

</event >
<addresses xmlns=’http: // jabber.org/protocol/address ’>

<address type=’replyto ’ jid=’juliet@capulet.lit/balcony ’/>
</addresses >

</message >

Beautiful, no?

7 Conclusion
Although this document shows how to do presence notifications, presence subscriptions,
rosters, groupchat, and one-to-one messaging via pubsub, XMPP Eventing via Pubsub (XEP)
is not limited to these functionality areas, which are provided only as examples. Indeed,
XMPP Eventing via Pubsub (XEP) provides a generic mechanism for XMPP eventing that
obviates the need for any future XMPP Extension Protocol (XEP) specifications other than
payload formats for communication over the XMPP Eventing via Pubsub (XEP) transport.
Truly, pubsub is the ”one ring to bind them all” and the XEP XEP is the mother of all future
XEPs. We have a clear path forward to a powerful, robust, payload-agnostic technology for
the full range of eventing needs. Let us grasp the opportunity to rebuild XMPP the way it
should have been built from the beginning: on top of a solid foundation of publish-subscribe. 11

8 Security Considerations
In XMPP Eventing via Pubsub (XEP), access control is handled through a single permissions
model, that of subscriptions to pubsub nodes. XEP nodes MUST have a default access model
of ”authorize” to prevent open data retrieval from potentially private data sources; this will
result in a great deal of authorization requests and thus annoy typical end users to no end,
but users will at least have the illusion of security, which is all they really want anyway.
End-to-end encryption is made more difficult in XMPP Eventing via Pubsub (XEP) since all

11But did we mention that developers really need to implement stream compression?

12

12 ACKNOWLEDGEMENTS

information passes through the pubsub service, which is typically associated with or hosted
by the user’s server. The solution is to run your own XMPP server in a high-security fashion.
In particular, universal deployment of personal XMPP servers, domain certificates (X.509 /
PKI) for channel encryption (TLS) and server-to-server trust (SASL), IPv6, DNSSEC, and IPsec
will solve all security problems.
If that is not enough, XMPP can utilize onion routing schemes such as Tor for added security.
Typically this results in high latency. But the word ”instant” in ”instant messaging” has
always made XMPP seem quite frivolous (especially back when we called it ”Jabber”, what a
silly word that is!), whereas ”secure messaging” sounds like a serious technology. Who cares
if delivery takes forever? (Oh and while we’re at it, we should add per-hop acknowledgements
for every stanza and perhaps full transactional abilities; however, those initiatives are beyond
the scope of this document.)

9 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
12.

10 XMPP Registrar Considerations
This document requires no interaction with the XMPP Registrar 13.

11 XML Schema
Because XMPP Eventing via Pubsub simply reuses the protocol specified in Publish-Subscribe
(XEP-0060) 14, a separate schema is not needed.

12 Acknowledgements
Thanks to Maciek Niedzielski for inspiration.

12The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

13The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

14XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

13

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0060.html

	Introduction
	Concepts and Approach
	Presence
	Rosters and Presence Subscriptions
	Multi-User Chat
	One-to-One Messaging
	Conclusion
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	XML Schema
	Acknowledgements

