
XEP-0285: Encapsulating Digital Signatures in XMPP

Kurt Zeilenga
mailto:Kurt.Zeilenga@Isode.COM
xmpp:Kurt.Zeilenga@Isode.COM

2011-01-12
Version 0.3

Status Type Short Name
Deferred Standards Track N/A

This document provides a technical specification for Encapsulating Digital Signatures in the Extensible
Messaging and Presence Protocol (XMPP).

mailto:Kurt.Zeilenga@Isode.COM
xmpp:Kurt.Zeilenga@Isode.COM

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Signing XMPP Stanzas 1
2.1 Example of Signing Messages . 2
2.2 Example of Securing IQs . 4

3 Interaction with Stanza Semantics 4

4 Handling of Inbound Stanzas 4

5 Inclusion and Checking of Timestamps 5

6 Mandatory-to-Implement Cryptographic Algorithms 6

7 Certificates 6

8 Security Considerations 6

9 XMPP Registrar Considerations 7
9.1 XML Namespace Name for Signed Data in XMPP 7

10 Acknowledgements 7

2 SIGNING XMPP STANZAS

1 Introduction
This document is one of two proposals for digital signatures in XMPP. It is expected that only one of these
proposals be progressed beyond Experimental on the Standards Track.
This document provides a technical specification for Digital Signatures in Extensible Messag-
ing and Presence Protocol (XMPP 1) based upon End-to-End Object Encryption (E2EEncrypt 2)
”work in progress”.
The S/MIME approach defined in RFC 3923 3 has never been implemented in XMPP clients to
the best of our knowledge, but has some attractive features, especially the ability to store-
and-forward a signed message at a user’s server if the user is not online when the message is
received (in the XMPP community this is called ”offline storage” and the message is referred
to as an ”offline message”). The authors surmise that RFC 3923 has not been implemented
mainly because it adds several new dependencies to XMPP clients, especially MIME (along
with the CPIM and MSGFMT media types).
This document explores the possibility of an approach that is similar to but simpler than
RFC 3923. Like the approach detailed in RFC 3923, the approach utilizes encapsulating digital
signatures.
Like other encapsulating signature approaches (e.g., Current Jabber OpenPGP Usage (XEP-
0027) 4), this approach does not support optimistic signing.

2 Signing XMPP Stanzas
The process that a sending agent follows for securing stanzas is very similar regardless of the
form of stanza (i.e., <iq/>, <message/>, or <presence/>).

1. Constructs a cleartext version of the stanza, S.

2. Notes the current UTC date and time N when this stanza is constructed, formatted as
described in Section 5.

3. Converts the stanza to a UTF-8, as defined by RFC 3629 5, encoded string, optionally re-
moving line breaks and other insignificant whitespace between elements and attributes,
i.e., UTF8-encode(S) = S’. We call S’ a ”stanza-string” because for purposes of signing and
verification it is treated not as XML but as an opaque string (this avoids the need for
complex canonicalization of the XML input).

1Extensible Messaging and Presence Protocol (XMPP) <https://xmpp.org/>.
2End-to-End Object Encryption for the Extensible Messaging and Presence Protocol (XMPP), Miller, M. and P.
Saint-Andre, work in progress <http://datatracker.ietf.org/doc/draft-miller-3923bis>.

3RFC 3923: End-to-End Signing andObject Encryption for the ExtensibleMessaging and Presence Protocol (XMPP)
<http://tools.ietf.org/html/rfc3923>.

4XEP-0027: Current Jabber OpenPGP Usage <https://xmpp.org/extensions/xep-0027.html>.
5RFC 3629: UTF-8, a transformation format of ISO 10646 <http://tools.ietf.org/html/rfc3629>.

1

https://xmpp.org/
http://datatracker.ietf.org/doc/draft-miller-3923bis
http://tools.ietf.org/html/rfc3923
https://xmpp.org/extensions/xep-0027.html
https://xmpp.org/extensions/xep-0027.html
http://tools.ietf.org/html/rfc3629
https://xmpp.org/
http://datatracker.ietf.org/doc/draft-miller-3923bis
http://tools.ietf.org/html/rfc3923
https://xmpp.org/extensions/xep-0027.html
http://tools.ietf.org/html/rfc3629

2 SIGNING XMPP STANZAS

4. Constructs a plaintext envelope (E) <plain/> qualified by the ”urn:xmpp:signed:0”
namespace as follows:

• The attribute ’timestamp’ set to the UTC date and time value N
• The XML character data set to the base64-encoded form of S’ (where the encoding
adheres to the definition in Section 4 of BASE64 6 and where the padding bits are
set to zero). This encoding is necessary to preserve a canonicalized form of S’.

5. Converts the envelope (E) to a UTF-8 encoded string, optionally removing line breaks
and other insignificant whitespace between elements and attributes, i.e., E’ = UTF8-
encode(E).

6. Produce a signature of UTF8-encoded envelope (E’) using the intended signature algo-
rithm. T = signature(E’). (This step is underspecified and will be expanded upon in later
revision of this document.)

7. Base64-encodes T to produce the signature data T’.

8. Constructs an <signed/> element qualified by the ”urn:xmpp:signed:0” namespace as
follows:

• The child element <signature> (implicitly qualified by the ”urn:xmpp:signed:0”
namespace) as follows:
– The attribute ’algorithm’ set to a string identifying the signature algorithm

used.
– The XML character data T’.

• The child element <data> (implicitly qualified by the ”urn:xmpp:signed:0” names-
pace) as follows:
– The XML character data E’.

9. Sends the <signed> element as the payload of a stanza that SHOULD match the
stanza from step 1 in kind (e.g., <message/>), type (e.g., ”chat”), and addressing (e.g.
to=”romeo@montague.net” from=”juliet@capulet.net/balcony”). If the original stanza
(S) has a value for the ”id” attribute, this stanza MUST NOT use the same value for its
”id” attribute.

2.1 Example of Signing Messages
The sender begins with the cleartext version of the <message/> stanza ”S”:

<message xmlns=’jabber:client ’
from=’juliet@capulet.net/balcony ’
id=’183 ef129 ’
to=’romeo@montague.net’

6RFC 4648: The Base16, Base32, and Base64 Data <http://tools.ietf.org/html/rfc4648>.

2

http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648

2 SIGNING XMPP STANZAS

type=’chat’>
<thread >8996aef0 -061d-012d-347a-549 a200771aa </thread >
<body>Wherefore art thou , Romeo?</body>

</message >

The sender then performs the steps 1 through 4 from above to generate:

<plain xmlns=”urn:xmpp:signed:0”
timestamp=”2010 -06 -29 T02:15:21 .012Z”>

PG1lc3NhZ2UgeG1sbnM9ImphYmJlcjpjbGllbnQiIGZyb209Imp1bGlldEBjYXB
1bGV0Lm5ldC9iYWxjb255IiB0bz0icm9tZW9AbW9udGVndWUubmV0IiB0eXBlPS
JjaGF0Ij48dGhyZWFkPmM2MzczODI0LWEzMDctNDBkZC04ZmUwLWJhZDZlNzI5O
WFkMDwvdGhyZWFkPjxib2R5PldoZXJlZm9yZSBhcnQgdGhvdSwgUm9tZW8/PC9i
b2R5PjwvbWVzc2FnZT4=

</plain >

And then performs steps 5 through 9 steps, causing the following to be sent:

<message xmlns=’jabber:client ’
from=’juliet@capulet.net/balcony ’
id=’6410 ed123 ’
to=’romeo@montague.net’
type=’chat’>

<signed xmlns=”urn:xmpp:signed:0”>
<signature algorithm=”RSA -SHA1”>

DxbxIziY1C1Ytcxkj0IFLsfmDLMv96JMlMAQZ7jh49IbsOIPsxI2LyLmqhKH
/994 UXDJKQLHvLJz

gAmw8V2b+zmyZeItJzSmB+
HHiLFVXkD2Dd4JfetsafsfIcB7uNWg0gAeiKrTHfFgiyEC /2 WxwOj3

JUMRyQ9ykEPIzS0GZ/k=
</signature >
<data>

PHBsYWluIHhtbG5zPSJ1cm46eG1wcDpzaWduZWQ6MCIgdGltZXN0YW1wPSIyMDEwLTA2LTI5VDAy

OjE1OjIxLjAxMloiPgogIFBHMWxjM05oWjJVZ2VHMXNibk05SW1waFltSmxjanBqYkdsbGJuUWlJ

R1p5YjIwOUltcDFiR2xsZEVCallYQgogIDFiR1YwTG01bGRDOWlZV3hqYjI1NUlpQjBiejBpY205

dFpXOUFiVzl1ZEdWbmRXVXVibVYwSWlCMGVYQmxQUwogIEpqYUdGMElqNDhkR2h5WldGa1BtTTJN

emN6T0RJMExXRXpNRGN0TkRCa1pDMDRabVV3TFdKaFpEWmxOekk1TwogIFdGa01Ed3ZkR2h5WldG

a1BqeGliMlI1UGxkb1pYSmxabTl5WlNCaGNuUWdkR2h2ZFN3Z1VtOXRaVzgvUEM5aQogIGIyUjVQ

and2YldWemMyRm5aVDQ9CjwvcGxhaW4+Cg==
</data>

</signed >
</message >

3

4 HANDLING OF INBOUND STANZAS

2.2 Example of Securing IQs
To be added....

3 Interaction with Stanza Semantics
The following limitations and caveats apply:

• Undirected <presence/> stanzas SHOULD NOT be signed.

• Stanzas directed to multiplexing services (e.g. multi-user chat) SHOULD NOT be signed,
unless the sender has established the service supports the handling of signed stanzas.

4 Handling of Inbound Stanzas
Several scenarios are possible when an entity receives an encrypted stanza:

Case #1: The receiving application does not understand the protocol.

Case #2: The receiving application understands the protocol and is able to verify the signa-
ture.

Case #3: The receiving application understands the protocol and is able to verify the signa-
ture, but the timestamps fail the checks specified under Checking of Timestamps.

Case #4: The receiving application understands the protocol and is unable to verify the sig-
nature.

In Case #1, the receiving application MUST do one and only one of the following: (1) ignore
the <signed/> extension, (2) ignore the entire stanza, or (3), except where precluded by the
protocol (RFC 6120 7), return a <service-unavailable/> error to the sender.
In Case #2, the receiving application MUST NOT return a stanza error to the sender, since this
is the success case.
In Case #3, the receiving application MAY, except where precluded by the protocol, return
a <not-acceptable/> error to the sender, optionally supplemented by an application-specific
error condition element of <bad-timestamp/> as shown below:

<message from=’romeo@example.net/orchard ’
id=’6410 ed123 ’
to=’juliet@capulet.net/balcony ’
type=’error ’>

7RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.

4

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6120

5 INCLUSION AND CHECKING OF TIMESTAMPS

<signed xmlns=’urn:xmpp:signed:0 ’>
<!-{}- original content -{}->

</signed >
<error type=’modify ’>

<not -acceptable xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<bad -timestamp xmlns=’urn:xmpp:signed:0 ’/>

</error >
</message >

In Case #4, the receiving application SHOULD, except as precluded by the protocol, return a
<bad-request/> error to the sender, optionally supplemented by an application-specific error
condition element of <bad-signature/> as shown below:

<message from=’romeo@example.net/orchard ’
id=’6410 ed123 ’
to=’juliet@capulet.net/balcony ’
type=’error ’>

<signed xmlns=’urn:xmpp:signed:0 ’>
<!-{}- original content -{}->

</signed >
<error type=’modify ’>

<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<bad -signature xmlns=’urn:ietf:params:xml:xmpp -signed:0 ’/>

</error >
</message >

Additionally in Case #4, the receiving application SHOULD NOT present the stanza to the
intended recipient (human or application) and SHOULD provide some explicit alternate
processing of the stanza (which may be to display a message informing the recipient that it
has received a stanza that cannot be verified).

5 Inclusion and Checking of Timestamps
Timestamps are included to help prevent replay attacks. All timestamps MUST conform
to DATETIME 8 and be presented as UTC with no offset, always including the seconds and
fractions of a second to three digits (resulting in a datetime 24 characters in length). Absent
a local adjustment to the sending agent’s perceived time or the underlying clock time, the
sending agent MUST ensure that the timestamps it sends to the receiver increase monotoni-
cally (if necessary by incrementing the seconds fraction in the timestamp if the clock returns
the same time for multiple requests). The following rules apply to the receiving application:

• It MUST verify that the timestamp received is within five minutes of the current time,
except as described below for offline messages.

8RFC 3339: Date and Time on the Internet Timestamps <http://tools.ietf.org/html/rfc3339>.

5

http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339

8 SECURITY CONSIDERATIONS

• If the foregoing check fails, the timestamp SHOULD be presented to the receiving en-
tity (human or application) marked with descriptive text indicating ”old timestamp” or
”future timestamp” and the receiving entity MAY return a stanza error to the sender
(except as precluded in the protocol).

The foregoing timestamp checks assume that the recipient is online when the message is
received. However, if the recipient is offline then the server will probably store the message
for delivery when the recipient is next online (offline storage does not apply to <iq/> or
<presence/> stanzas, only <message/> stanzas). As described in Best Practices for Handling
Offline Messages (XEP-0160) 9, when sending an offline message to the recipient, the server
SHOULD include delayed delivery data as specified in Delayed Delivery (XEP-0203) 10 so that
the recipient knows that this is an offline message and also knows the original time of receipt
at the server. In this case, the recipient SHOULD verify that the timestamp received in the
encrypted message is within five minutes of the time stamped by the recipient’s server in the
<delay/> element.

6 Mandatory-to-Implement Cryptographic Algorithms
All implementations MUST support the following algorithms. Implementations MAY support
other algorithms as well.

• TBD (RSA/SHA1? RSASSA-RKCS1-v1_5? RSASSA-PSS?)

7 Certificates
To participate in end-to-end signing using the methods defined in this document, a client
needs to possess an X.509 certificate. It is expected that many clients will generate their
own (self-signed) certificates rather than obtain a certificate issued by a certification au-
thority (CA). In any case the certificate MUST include an XMPP address that is represented
using theASN.1 Object Identifier ”id-on-xmppAddr” as specified in Section 5.1.1 of RFC 3920bis.

8 Security Considerations
TBD.

9XEP-0160: Best Practices for Handling Offline Messages <https://xmpp.org/extensions/xep-0160.html>.
10XEP-0203: Delayed Delivery <https://xmpp.org/extensions/xep-0203.html>.

6

https://xmpp.org/extensions/xep-0160.html
https://xmpp.org/extensions/xep-0160.html
https://xmpp.org/extensions/xep-0203.html
https://xmpp.org/extensions/xep-0160.html
https://xmpp.org/extensions/xep-0203.html

10 ACKNOWLEDGEMENTS

9 XMPP Registrar Considerations
9.1 XML Namespace Name for Signed Data in XMPP
A URN sub-namespace of signed content for the Extensible Messaging and Presence Protocol
(XMPP) is defined as follows.

URI: urn:xmpp:signed

Specification: ProtoXEP

Description: This is an XML namespace name of signed content for the Extensible Messaging
and Presence Protocol as defined by ProtoXEP.

Registrant Contact: XSF

10 Acknowledgements
This document borrows ideas and text from End-to-End Object Encryption ”work in progress”
by Matthew Miller and Peter Saint-Andre.

7

	Introduction
	Signing XMPP Stanzas
	Example of Signing Messages
	Example of Securing IQs

	Interaction with Stanza Semantics
	Handling of Inbound Stanzas
	Inclusion and Checking of Timestamps
	Mandatory-to-Implement Cryptographic Algorithms
	Certificates
	Security Considerations
	XMPP Registrar Considerations
	XML Namespace Name for Signed Data in XMPP

	Acknowledgements

