
XEP-0347: Internet of Things - Discovery

Peter Waher
mailto:peterwaher@hotmail.com
xmpp:peter.waher@jabber.org

http://www.linkedin.com/in/peterwaher

Ronny Klauck
mailto:rklauck@informatik.tu-cottbus.de

xmpp:TBD
http://www-rnks.informatik.tu-cottbus.de/~rklauck

2018-11-03
Version 0.5.1

Status Type Short Name
Deferred Standards Track iot-discovery

This specification describes an architecture based on the XMPP protocol whereby Things can be in-
stalled and safely discovered by their owners and connected into networks of Things.

mailto:peterwaher@hotmail.com
xmpp:peter.waher@jabber.org
http://www.linkedin.com/in/peterwaher
mailto:rklauck@informatik.tu-cottbus.de
xmpp:TBD
http://www-rnks.informatik.tu-cottbus.de/~rklauck

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Glossary 2

3 Use Cases 5
3.1 Production . 5
3.2 Installation . 5
3.3 Finding XMPP Server . 5

3.3.1 DHCP . 6
3.3.2 Multicast DNS (mDNS) and DNS Service Discovery (DNS-SD) 7
3.3.3 SSDP/UPnP . 9

3.4 Connection to XMPP Server . 10
3.5 Finding Thing Registry . 10
3.6 Registering Thing . 10
3.7 Register self-owned Thing . 12
3.8 Register Thing behind Concentrator . 12
3.9 Claiming Ownership of a Thing . 13
3.10 Removing Thing from Registry . 17
3.11 Finding Provisioning Server . 19
3.12 Delegating Trust . 19
3.13 Update Meta Information about Thing in Registry 20
3.14 Owner updating Meta Information about Thing in Registry 22
3.15 Search for Public Things in Registry . 23
3.16 Unregistering Thing from Registry . 27
3.17 Disowning Thing . 28

4 Determining Support 30

5 Implementation Notes 32
5.1 JID vs Component Thing Registries . 32
5.2 Meta Tags . 33
5.3 Friendships between Things and Registry . 34

6 Security Considerations 34
6.1 Jabber Components Protocol . 34
6.2 Hijacking predefined JIDs . 35
6.3 Hijacking things in public areas . 35
6.4 Key meta information in searches . 35
6.5 KEY tag . 36
6.6 Tag name spam . 36
6.7 External services for creating QR-codes . 36
6.8 DHCP Security Considerations . 36
6.9 DNS Security Considerations . 36

6.10 UPnP Security Considerations . 36

7 IANA Considerations 37

8 XMPP Registrar Considerations 37

9 XML Schema 37

10 For more information 41

11 Acknowledgements 41

1 INTRODUCTION

1 Introduction
When installing massive amounts of Things into public networks care has to be taken to
make installation simple, but at the same time secure so that the Things cannot be hijacked
or hacked, making sure access to the Thing is controlled by the physical owner of the Thing.
One of the main problems is how to match the characteristics of a Thing, like serial number,
manufacturer, model, etc., with information automatically created by the Thing itself, like
perhaps its JID, in an environment with massive amount of Things without rich user inter-
faces. Care has also to be taken when specifying rules for access rights and user privileges.
This document provides a network architecture based on the XMPP protocol that provides a
means to safely install, configure, find and connect massive amounts of Things together, and
at the same time minimizing the risk that Things get hijacked. It also provides information
how each individual step in the process can be performed with as little manual intervention
as possible, aiming where possible at zero-configuration networking. Furthermore, this
document specifies how to create a registry that allows simple access to public Things without
risking their integrity unnecessarily.
Internet of Things contains many different architectures and use cases. For this reason, the
IoT standards have been divided into multiple XEPs according to the following table:

XEP Description
xep-0000-IoT-BatteryPoweredSensors Defines how to handle the peculiars related to bat-

tery powered devices, and other devices intermit-
tently available on the network.

xep-0000-IoT-Events Defines how Things send events, how event sub-
scription, hysteresis levels, etc., are configured.

xep-0000-IoT-Interoperability Defines guidelines for how to achieve interoper-
ability in Internet of Things, publishing interoper-
ability interfaces for different types of devices.

xep-0000-IoT-Multicast Defines how sensor data can be multicast in effi-
cient ways.

xep-0000-IoT-PubSub Defines how efficient publication of sensor data
can be made in Internet of Things.

xep-0000-IoT-Chat Defines how human-to-machine interfaces should
be constructed using chat messages to be user
friendly, automatable and consistent with other
IoT extensions and possible underlying architec-
ture.

XEP-0322 Defines how to EXI can be used in XMPP to achieve
efficient compression of data. Albeit not an Inter-
net of Things specific XEP, this XEP should be con-
sidered in all Internet of Things implementations
where memory and packet size is an issue.

1

2 GLOSSARY

XEP Description
XEP-0323 Provides the underlying architecture, basic oper-

ations and data structures for sensor data com-
munication over XMPP networks. It includes a
hardware abstraction model, removing any tech-
nical detail implemented in underlying technolo-
gies. This XEP is used by all other Internet of
Things XEPs.

XEP-0324 Defines how provisioning, the management of ac-
cess privileges, etc., can be efficiently and easily
implemented.

XEP-0325 Defines how to control actuators and other devices
in Internet of Things.

XEP-0326 Defines how to handle architectures contain-
ing concentrators or servers handling multiple
Things.

XEP-0331 Defines extensions for how color pa-
rameters can be handled, based on Data
Forms (XEP-0004) XEP-0004: Data Forms
<https://xmpp.org/extensions/xep-0004.html>.

XEP-0336 Defines extensions for how dynamic
forms can be created, based on Data
Forms (XEP-0004) XEP-0004: Data Forms
<https://xmpp.org/extensions/xep-
0004.html>., Data Forms Validation (XEP-
0122) XEP-0122: Data Forms Validation
<https://xmpp.org/extensions/xep-0122.html>.,
Publishing Stream Initiation Requests (XEP-
0137) XEP-0137: Publishing Stream Initiation
Requests <https://xmpp.org/extensions/xep-
0137.html>. and Data Forms Layout
(XEP-0141) XEP-0141: Data Forms Layout
<https://xmpp.org/extensions/xep-0141.html>..

XEP-0347 This specification. Defines the peculiars of Thing
discovery in Internet of Things. Apart fromdiscov-
ering Things by JID, it also defines how to discover
Things based on location, etc.

2 Glossary
The following table lists common terms and corresponding descriptions.

2

2 GLOSSARY

Actuator Device containing at least one configurable property or output that can and should
be controlled by some other entity or device.

Authority Used synonymously with Provisioning Server.

Computed Value A value that is computed instead of measured.

Concentrator Device managing a set of devices which it publishes on the XMPP network.

Field One item of sensor data. Contains information about: Node, Field Name, Value, Preci-
sion, Unit, Value Type, Status, Timestamp, Localization information, etc. Fields should
be unique within the triple (Node ID, Field Name, Timestamp).

Field Name Name of a field of sensor data. Examples: Energy, Volume, Flow, Power, etc.

Field Type What type of value the field represents. Examples: Momentary Value, Status
Value, Identification Value, Calculated Value, Peak Value, Historical Value, etc.

Historical Value A value stored in memory from a previous timestamp.

Identification Value A value that can be used for identification. (Serial numbers, meter IDs,
locations, names, etc.)

Localization information Optional information for a field, allowing the sensor to control
how the information should be presented to human viewers.

Meter A device possible containing multiple sensors, used in metering applications. Exam-
ples: Electricity meter, Water Meter, Heat Meter, Cooling Meter, etc.

Momentary Value A momentary value represents a value measured at the time of the read-
out.

Node Graphs contain nodes and edges between nodes. In Internet of Things, sensors, actua-
tors, meters, devices, gateways, etc., are often depicted as nodes whereas links between
sensors (friendships) are depicted as edges. In abstract terms, it’s easier to talk about a
Node, rather than list different possible node types (sensors, actuators, meters, devices,
gateways, etc.). Each Node has a Node ID.

Node ID An ID uniquely identifying a node within its corresponding context. If a globally
unique ID is desired, an architecture should be used using a universally accepted ID
scheme.

Parameter Readable and/or writable property on a node/device. The XEP-0326 Internet
of Things - Concentrators (XEP-0326) XEP-0326: Internet of Things - Concentrators
<https://xmpp.org/extensions/xep-0326.html>. deals with reading and writing param-
eters on nodes/devices. Fields are not parameters, and parameters are not fields.

Peak Value A maximum or minimum value during a given period.

3

2 GLOSSARY

Provisioning Server An application that can configure a network and provide services to
users or Things. In Internet of Things, a Provisioning Server knows who knows whom,
what privileges users have, who can read what data and who can control what devices
and what parts of these devices.

Precision In physics, precision determines the number of digits of precision. In sensor net-
works however, this definition is not easily applicable. Instead, precisiondetermines, for
example, the number of decimals of precision, or power of precision. Example: 123.200
MWh contains 3 decimals of precision. All entities parsing and delivering field informa-
tion in sensor networks should always retain the number of decimals in a message.

Sensor Device measuring at least one digital value (0 or 1) or analog value (value with pre-
cision and physical unit). Examples: Temperature sensor, pressure sensor, etc. Sensor
values are reported as fields during read-out. Each sensor has a unique Node ID.

SN SensorNetwork. A network consisting, but not limited to sensors, where transport and use
of sensor data is of primary concern. A sensor network may contain actuators, network
applications, monitors, services, etc.

Status Value A value displaying status information about something.

Timestamp Timestamp of value, when the value was sampled or recorded.

Thing Internet of Things basically consists of Things connected to the Internet. Things can
be any device, sensor, actuator etc., that can have an Internet connection.

Thing Registry A registry where Things can register for simple and secure discovery by the
owner of the Thing. The registry can also be used as a database for meta information
about Things in the network.

Token A client, device or user can get a token from a provisioning server. These tokens can
be included in requests to other entities in the network, so these entities can validate
access rights with the provisioning server.

Unit Physical unit of value. Example: MWh, l/s, etc.

Value A field value.

Value Status Status of field value. Contains important status information for Quality of Ser-
vice purposes. Examples: Ok, Error, Warning, Time Shifted, Missing, Signed, etc.

Value Type Can be numeric, string, boolean, Date & Time, Time Span or Enumeration.

WSN Wireless Sensor Network, a sensor network including wireless devices.

XMPP Client Application connected to an XMPP network, having a JID. Note that sensors, as
well as applications requesting sensor data can be XMPP clients.

4

3 USE CASES

3 Use Cases
The life cycle of a Thing can be divided into multiple steps. The following sections will list
many of these steps in possible order of occurrence during the life cycle of the Thing.

3.1 Production
During production of a Thing, decisions have to be made whether the following parameters
should be pre-configured, manually entered after installation or automatically found and/or
created by the device if possible (zero-configuration networking):

• Address and domain of XMPP Server.

• JID of the Thing.

• JID of Thing Registry, if separate from the XMPP Server.

• JID of first Provisioning Server, if separate from Thing Registry or XMPP Server.

A decision has to be made at this point if global/manufacturer/customer servers should be
used, or if local resources should be searched for and used if found. The first option is easy to
configure in a production environment and might have commercial significance, but cannot
use local resources where available. The second leaves much responsibility to the Thing for
finding local resources, but has the advantage of allowing for a more decentralized network
architecture. A detailed discussion of the two alternatives goes beyond the scope of this
specification, and will not be presented here.

3.2 Installation
Apart from physical installation, and connection to power and communication infrastructure,
the installation phase of a Thing might also require manual entry of values that could not be
set in the production environment. Since Things might have very limited human user inter-
faces, external tools might be required to provide this information. Due to its complexity, any
manual entry of configuration parameters should be avoided, if possible. However, manual
entry of some parameters might allow for Things to use local resources where such cannot be
found nor set in a production environment.

3.3 Finding XMPP Server
If the address of an XMPP Server is not preconfigured, the Thing must attempt to find one in
its local surroundings. This can be done using one of several methods:

5

3 USE CASES

• DHCP

• Multicast DNS

• SSDP/UPnP

The following sections describe them in more detail.

3.3.1 DHCP

DHCP offers an internal structure for advertising configuration information to clients in a
network. This includes configuration parameters and other control elements, which are
transmitted in special marked data elements, called ’options’, as described in RFC 3942 1.
Dynamic Host Configuration Protocol (DHCP) and Bootstrap Protocol (BOOTP) Parameters
lists currently assigned ’options’ by IANA. Note: There does exist no ’option’ for XMPP at the
moment. Options 224 to 254 are marked as ’site-specific option range’ to support local (to a
site) configuration options (i.e., reserved as ’Private Use’).
Possible codes for the XMPP server option:

• Use ’site-specific option range’. Use of ’option-code’ 224.

• TBD: Define and register DHCP and BOOTP option as described in Parameters for IoT
Discovery. Use of ’option-code’ 84.

This option specifies the name of the XMPP server. The name may or may not be qualified
with the local domain name. See RFC 1035 2 for character set restrictions.
The code for this option is 224 (for ’site-specific option range’) or 84 (for DHCP and BOOTP
Parameters for IoT Discovery), and its minimum length is 1.

Listing 1: IoT Discovery DHCP Option
<option code> <data length > machine

So, for example, if the machine name is ”pronto”, the code for the option is 224, the XMPP
server option would be as follows:

Listing 2: IoT Discovery DHCP Option Example
224 12 pronto.local

The following parameters in use as of MONTH 201x. Refer to the DHCP and BOOTP parameters
itself for a complete and current list of parameters (this specification might or might not be
revised when new parameters are registered).

1 RFC 3942: Reclassifying Dynamic Host Configuration Protocol version 4 (DHCPv4) Options <http://tools.iet
f.org/html/rfc3942>.

2RFC 1035: Domain Names - Implementation and Specification <http://tools.ietf.org/html/rfc1035>.

6

http://tools.ietf.org/html/rfc3942
http://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.txt
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc3942
http://tools.ietf.org/html/rfc3942
http://tools.ietf.org/html/rfc1035

3 USE CASES

Listing 3: IoT Discovery DHCP and BOOTP Parameters Registry
<tag>84</tag>

<name>XMPP server </name>
<data length >N</data length >
<meaning >XMPP Servers DHCP Option </meaning >
<reference >[RFC6120]</reference >

3.3.2 Multicast DNS (mDNS) and DNS Service Discovery (DNS-SD)

An introduction of mDNS/DNS-SD (e.g., how it works and terminology) is described in Link-
Local Messaging (XEP-0174) 3 (i.e., sections [1.2] and [2]). For the purpose of IoT Discovery we
are interested only in the ”xmpp-client” service. An XMPP server MUST publish four different
kinds of DNS records to advertise its availability using the services of type ”xmpp-client”. An
XMPP chat client (actually its mDNS daemon) can send out multicast DNS queries for services
of type ”xmpp-client”. Note: the service of type ”xmpp-client” is the reservered name for
client-to-server connections by IANA, as described in RFC 6120 4.
In order to advertise its availability, a serverMUST publish four different kinds of DNS records:

1. A PTR record of the following form:

Listing 4: PTR record
_xmpp -client._tcp.local. PTR machine._xmpp -client._tcp.local.

2. An address (”A” or ”AAAA”) record of the following form (where the IP address can be
either an IPv4 address or an IPv6 address):

Listing 5: A record
machine.local. A ip-address

3. A SRV record of the following form:

Listing 6: SRV record
machine._xmpp -client._tcp.local <ttl> SRV <priority > <weight >

port -number machine.local.

4. A TXT record whose name is the same as the SRV record and whose value follows the
format described in the TXT Record section of this document, consisting of a set of
strings that typically represent a series of key-value pairs such as the following:

3XEP-0174: Link-Local Messaging <https://xmpp.org/extensions/xep-0174.html>.
4RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.

7

https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0174.html
http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0174.html
http://tools.ietf.org/html/rfc6120

3 USE CASES

Listing 7: TXT record
txtvers =1

ordom=example.com
regis=registry
provis=provisioning

Note: The DNS-SD specification stipulates that the TXT record MUST be published, but
that it MAY contain no more than a single zero byte (e.g., if the server does not wish to
publish any personal information).

For the purpose of IoT Discovery we are interested only in the ”xmpp-client” service. An
XMPP server MUST publish four different kinds of DNS records to advertise its availability
using the services of type ”xmpp-client”. An XMPP chat client (actually its mDNS daemon)
can send out multicast DNS queries for services of type ”xmpp-client”. Note: the service
of type ”xmpp-client” is the reservered name for client-to-server connections by IANA, as
described in RFC 6120 5.
So, for example, if the machine name is ”pronto”, the IP address is ”10.2.1.188”, and the
personal information, the DNS records would be as follows:

Listing 8: IoT Discovery DNS Records Example
_xmpp -client._tcp.local. PTR pronto._xmpp -client._tcp.local.

pronto._xmpp -client._tcp.local. SRV 5222 pronto.local.

pronto.local. A 10.2.1.188

pronto._xmpp -client._tcp.local. IN TXT
”txtvers =1”
”ordom=example.com”
”regis=registry”
”provis=provisioning”

The IPv4 and IPv6 addresses associated with a machine might vary depending on the local
network to which the machine is connected. For example, on an Ethernet connection the
physical address might be ”192.168.0.100” but when the machine is connected to a wireless
network the physical address might change to ”10.10.1.188”. See RFC 3927 6 for details.
If the machine name asserted by a client is already taken by another machine on the network,
the client MUST assert a different machine name, which SHOULD be formed by adding the
character ”-” and digit ”1” to the end of themachine name string (e.g., ”pronto-1”), adding the
character ”-” and digit ”2” if the resulting machine name is already taken (e.g., ”pronto-2”),
and similarly incrementing the digit until a unique machine name is constructed.
Note: DNS-SD enables service definitions to include a TXT record that specifies parameters

5RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
6RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses <http://tools.ietf.org/html/rfc3927>.

8

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc3927
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc3927

3 USE CASES

to be used in the context of the relevant service type. For detailed information refer to
Link-Local Messaging (XEP-0174) 7 (Link-Local Messaging - TXT Record).
The registration process is described in Link-Local Messaging (XEP-0174) 8 (Link-Local Mes-
saging - Registration Process).
The following submission registers parameters in use as of MONTH 201x. Refer to the registry
itself for a complete and current list of parameters (this specification might or might not be
revised when new parameters are registered).

Listing 9: IoT Discovery TXT Record Parameters Registry
<param >

<name>ordom </name>
<desc>The ”origin␣domain” of the XMPP service.</desc>
<status >recommended </status >

</param >

<param >
<name>regis </name>
<desc>

The username portion of the JID to Thing Registry;
can contain a space -separated list of more than one JID.

</desc>
<status >optional </status >

</param >

<param >
<name>provis </name>
<desc>

The username portion of the JID to provisioning server;
can contain a space -separated list of more than one JID.

</desc>
<status >optional </status >

</param >

3.3.3 SSDP/UPnP

TBD
Note: If server-less messaging is to be used, as described in Link-Local Messaging (XEP-0174)
9 this step can be used to find the Thing Registry and optionally the Provisioning Server and
other peers it want to connect to. The next section can thus be skipped.

7XEP-0174: Link-Local Messaging <https://xmpp.org/extensions/xep-0174.html>.
8XEP-0174: Link-Local Messaging <https://xmpp.org/extensions/xep-0174.html>.
9XEP-0174: Link-Local Messaging <https://xmpp.org/extensions/xep-0174.html>.

9

https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0174.html
https://xmpp.org/extensions/xep-0174.html

3 USE CASES

3.4 Connection to XMPP Server
Once an XMPP Server has been found, a connection can be made. If multiple XMPP Servers
are found, the client is free to choose the one that best suits its purposes.
If the Thing does not have an account already, an account can be registered along what is
specified in In-Band Registration (XEP-0077) 10. If multiple servers are available, the first
XMPP server that allows account creation can be used.

3.5 Finding Thing Registry
If a Thing Registry is not preconfigured, one must be found. A Thing Registry can be hosted
either as a server component using Jabber Component Protocol (XEP-0114) 11 or as an XMPP
Client accessible through a JID. The following lists methods to obtaining the Component
Address or JID for the Thing Registry. Note that the last one has security considerations that
need to be taken into account, if implemented.

1. Preconfigured Component Address of Thing Registry. A Component address is normally
a subdomain to the domain of the XMPP Server that hosts the component.

2. Preconfigured bare JID of Thing Registry.

3. Preconfigured subdomain part of Component Address. This will be added to the domain
of the XMPP Server used to connet to.

4. Preconfigured user name of JID. This will be added to the domain of the XMPP Server
used to connected to.

5. Searching through Server Components on the XMPP Server currently connected to, as
described in Determining Support.

3.6 Registering Thing
Once a Thing Registry has been found and been befriended, the Thing can register itself with
the registry, as follows:

Listing 10: Register Thing
<iq type=’set’

from=’thing@example.org/imc’
to=’discovery.example.org’
id=’1’>

<register xmlns=’urn:xmpp:iot:discovery ’>
<str name=’SN’ value=’394872348732948723 ’/>

10XEP-0077: In-Band Registration <https://xmpp.org/extensions/xep-0077.html>.
11XEP-0114: Jabber Component Protocol <https://xmpp.org/extensions/xep-0114.html>.

10

https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0077.html
https://xmpp.org/extensions/xep-0114.html

3 USE CASES

<str name=’MAN’ value=’www.ktc.se’/>
<str name=’MODEL ’ value=’IMC’/>
<num name=’V’ value=’1.2’/>
<str name=’KEY’ value=’4857402340298342 ’/>

</register >
</iq>

<iq type=’result ’
from=’discovery.example.org’
to=’thing@example.org/imc’
id=’1’/>

There are two types of tags: Tags with string values and tags with numerical values. The
distinction is important, since the type of value affects how comparisons are made later when
performing searches in the registry.
The Thing should only register parameters required to be known by the owner of the Thing.
Dynamic meta information must be avoided at this point. To claim the ownership of the
Thing, the owner needs to present the same meta information as registered by the Thing.
Before an owner has claimed ownership of the Thing, it will not be returned in any search
results. A list of predefined meta tag names can be found in the Meta Tags section below.
The Thing can register itself as many times as it wants, and the response is always empty.
Only one record per resource-less JID must be created. A new registration overrides any
previous information, including meta tags previously reported but not available in the new
registration. Once a Thing has been claimed by an owner, it should not register itself again,
unless it is reset and the installation process restarted.
If the Thing tries to register itself even though the Thing has already been claimed in the
registry, the registry must not update any meta data in the registry, and instead respond with
the following response. When the thing receives this, it can safely extract the JID of the owner
and switch its internal state to claimed.

Listing 11: Registration response when alrady claimed
<iq type=’result ’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’1’>

<claimed xmlns=’urn:xmpp:iot:discovery ’ jid=’owner@example.org’/
>

</iq>

Note: Meta Tag names are case insensitive. In this document, all tag names have been written
using upper case letters.

11

3 USE CASES

3.7 Register self-owned Thing
If a thing is self-owned, it can register itself with the Registry as normal, with the addition of
setting the attribute selfOwned to true, as is shown below. This registers the Thing directly
as PUBLIC CLAIMED, with no need for an owner to claim ownership of the device. This can be
useful if installing Things that should be publically available.

Listing 12: Register self-owned Thing
<iq type=’set’

from=’thing@example.org/imc’
to=’discovery.example.org’
id=’2’>

<register xmlns=’urn:xmpp:iot:discovery ’ selfOwned=’true’>
<str name=’SN’ value=’394872348732948723 ’/>
<str name=’MAN’ value=’www.ktc.se’/>
<str name=’MODEL ’ value=’IMC’/>
<num name=’V’ value=’1.2’/>
<str name=’KEY’ value=’4857402340298342 ’/>

</register >
</iq>

<iq type=’result ’
from=’discovery.example.org’
to=’thing@example.org/imc’
id=’2’/>

3.8 Register Thing behind Concentrator
A Thing might reside behind a gateway or concentrator and might not be directly connected
to the XMPP network itself, as is described in Internet of Things - Concentrators (XEP-0326)
12. In these cases, there are three optional attributes that can be used to identify the Thing
behind the JID: The nodeId attribute gives the ID of the Thing (a.k.a. ”Node”). The Node
might reside in specific Data Source (large systems might have multiple sources of nodes).
In this case, the data source is specified in the sourceId attribute. Normally, the Node ID is
considered to be unique within the concentrator. If multiple data sources are available, the
Node ID is unique within the data source. However, a third attribute allows the uniqueness
to be restricted to a given cacheType. Finally, it is the triple (nodeId, sourceId, cacheType)
which guarantees uniqueness within the concentrator.
For a Thing controlled by a concentrator to register itself in the Thing Registry, it simply adds
the optional attributes nodeId, sourceId and cacheType as appropriate to the registration
request, as follows:

12XEP-0326: Internet of Things - Concentrators <https://xmpp.org/extensions/xep-0326.html>.

12

https://xmpp.org/extensions/xep-0326.html
https://xmpp.org/extensions/xep-0326.html

3 USE CASES

Listing 13: Register Thing behind Concentrator
<iq type=’set’

from=’rack@example.org/plcs’
to=’discovery.example.org’
id=’3’>

<register xmlns=’urn:xmpp:iot:discovery ’ nodeId=’imc1’ sourceId=
’MeteringTopology ’>
<str name=’SN’ value=’394872348732948723 ’/>
<str name=’MAN’ value=’www.ktc.se’/>
<str name=’MODEL ’ value=’IMC’/>
<num name=’V’ value=’1.2’/>
<str name=’KEY’ value=’4857402340298342 ’/>

</register >
</iq>

<iq type=’result ’
from=’discovery.example.org’
to=’rack@example.org/plcs’
id=’3’/>

If the Thing behind the concentrator is self-owned, it simply adds the selfOwned attribute to
the request and sets it to true.

3.9 Claiming Ownership of a Thing
As mentioned above, the owner of the Thing must provide the information provided by the
Thing to the Registry, in order to claim ownership over it. To avoid the possibility that some-
body can guess the information, the information must necessarily be long. This creates the
problem of transfer of information. One method to solve this is through the use of QR-codes.
Such codes can be either printed on a sticker and put on the Thing itself, its wrapping, or
displayed on its display when not claimed. This QR-code can then be photographed by a smart
phone or tablet, decoded and the information retrieved can be used in the ownership claim
call.
If QR-codes are used to transfer Thing meta data for ownership claims, it must be generated
as follows: To the string ”IoTDisco” is appended all meta tags in order. Each tag name is
prefixed by a semi-colon (;), and if the tag is numeric, the tag is prefixed by an additional hash
sign (#). Each tag value is prefixed by a colon (:). If the meta value contains semi-colons or
back-slashes, each one is prefixed by a back-slash. When decoding the string, this allows the
decoder to correctly differ between tag delimiters and characters belonging to tag values. A
tag name must never contain colon, hash sign or white space characters.
The above meta data would therefore generate the string:

Listing 14: String to encode as a QR-code
IoTDisco;SN:394872348732948723;MAN:www.ktc.se;MODEL:IMC ;#V:1.2;

KEY:4857402340298342

13

3 USE CASES

UsingUTF-8 encodingwhen generating theQR-code, this string returns the followingQR-code:

Once the client has the required meta information about the Thing to claim ownership, it
sends itself the following request to the Thing Registry:

Listing 15: Claim Ownership of public Thing
<iq type=’set’

from=’owner@example.org/phone ’
to=’discovery.example.org’
id=’4’>

<mine xmlns=’urn:xmpp:iot:discovery ’>
<str name=’SN’ value=’394872348732948723 ’/>
<str name=’MAN’ value=’www.ktc.se’/>
<str name=’MODEL ’ value=’IMC’/>
<num name=’V’ value=’1.2’/>
<str name=’KEY’ value=’4857402340298342 ’/>

</mine>
</iq>

If this claim is successful, the Thing is marked as a public claimed Thing. The thing can always
be removed later, but after the claim, the Thing is public. If you want to claim a private Thing,
you can add the public attribute with value false to the claim, as follows:

Listing 16: Claim Ownership of private Thing
<iq type=’set’

from=’owner@example.org/phone ’
to=’discovery.example.org’
id=’4’>

<mine xmlns=’urn:xmpp:iot:discovery ’ public=’false ’>
<str name=’SN’ value=’394872348732948723 ’/>
<str name=’MAN’ value=’www.ktc.se’/>
<str name=’MODEL ’ value=’IMC’/>
<num name=’V’ value=’1.2’/>
<str name=’KEY’ value=’4857402340298342 ’/>

</mine>
</iq>

In this case, if the claim is successful, the Thing will not be made public in the Thing Registry,
after the claim.
If a claim is successful, i.e. there’s a Thing that has not been claimed with EXACTLY the
same meta data (however, the order is not important), the Thing is marked in the Registry as

14

3 USE CASES

CLAIMED, and as public or private depending on the public attribute, and an empty result is
returned as follows. If there’s a claimed Thing with exactly the same meta data, and the JID of
the claimant (without resource) matches the JID of the claimer (without resource), a success
response is also returned, containing the resource-less JID of the Thing, as follows:

Listing 17: Ownership claim successful
<iq type=’result ’

from=’discovery.example.org’
to=’owner@example.org/phone ’
id=’4’>

<claimed xmlns=’urn:xmpp:iot:discovery ’ jid=’thing@example.org’/
>

</iq>

If the Thing that has been claimed resides behind a concentrator, the result will contain
those of the attributes nodeId, sourceId and cacheType that are required to access the
Thing in calls made using Internet of Things - Sensor Data (XEP-0323) 13, Internet of Things -
Provisioning (XEP-0324) 14, Internet of Things - Control (XEP-0325) 15 and Internet of Things
- Concentrators (XEP-0326) 16. The following example illustrates a response where a Thing
behind a Concentrator has been claimed:

Listing 18: Ownership claim of a Thing behind a concentrator successful
<iq type=’result ’

from=’discovery.example.org’
to=’owner@example.org/phone ’
id=’4’>

<claimed xmlns=’urn:xmpp:iot:discovery ’ jid=’rack@example.org/
plcs’ nodeId=’imc1’ sourceId=’MeteringTopology ’/>

</iq>

If, on the other hand, no such Thing was found, or if such a Thing was found, but it is already
claimed by somebody else, a failure response is returned. This response should avoid to
inform the client in detail why the claim failed, as follows:

Listing 19: Ownership claim failure
<iq type=’error ’

from=’discovery.example.org’
to=’owner@example.org/phone ’
id=’4’>

<error type=’cancel ’>

13XEP-0323: Internet of Things - Sensor Data <https://xmpp.org/extensions/xep-0323.html>.
14XEP-0324: Internet of Things - Provisioning <https://xmpp.org/extensions/xep-0324.html>.
15XEP-0325: Internet of Things - Control <https://xmpp.org/extensions/xep-0325.html>.
16XEP-0326: Internet of Things - Concentrators <https://xmpp.org/extensions/xep-0326.html>.

15

https://xmpp.org/extensions/xep-0323.html
https://xmpp.org/extensions/xep-0324.html
https://xmpp.org/extensions/xep-0324.html
https://xmpp.org/extensions/xep-0325.html
https://xmpp.org/extensions/xep-0326.html
https://xmpp.org/extensions/xep-0326.html
https://xmpp.org/extensions/xep-0323.html
https://xmpp.org/extensions/xep-0324.html
https://xmpp.org/extensions/xep-0325.html
https://xmpp.org/extensions/xep-0326.html

3 USE CASES

<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

When the Thing has been successfully claimed, the Registry sends information about this
to the Thing, to inform it that it has been claimed and the resource-less JID of owner. After
receiving this information, it doesn’t need to register itself with the Registry anymore.

Listing 20: Ownership claimed
<iq type=’set’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’5’>

<claimed xmlns=’urn:xmpp:iot:discovery ’ jid=’owner@example.org’/
>

</iq>

If the Thing was claimed as a private Thing, this is shown using the public attribute in the
response, as follows:

Listing 21: Ownership claim of private Thing successful
<iq type=’set’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’5’>

<claimed xmlns=’urn:xmpp:iot:discovery ’ jid=’owner@example.org’
public=’false ’/>

</iq>

If the public attribute is present and has value false, it means no further meta data updates
are necessary, since the device is not searchable through the Thing Registry.
If the Thing resides behind a concentrator, the request must contain those of the attributes
nodeId, sourceId and cacheType that are required to access the Thing, as follows:

Listing 22: Ownership of Thing behind concentrator claimed
<iq type=’set’

from=’discovery.example.org’
to=’rack@example.org/plcs’
id=’5’>

<claimed xmlns=’urn:xmpp:iot:discovery ’ jid=’owner@example.org’
nodeId=’imc1’ sourceId=’MeteringTopology ’/>

</iq>

The Thing simply returns an empty response to acknowledge the receipt of the information,
as follows:

16

3 USE CASES

Listing 23: Ownership claimed acknowledged
<iq type=’result ’

from=’thing@example.org/imc’
to=’discovery.example.org’
id=’5’/>

After receiving this, the thing knows it can accept friendship requests from the corresponding
owner. It can also safely send a friendship request to the owner.
Note: Meta Tag names are case insensitive. In this document, all tag names have been written
using upper case letters.

3.10 Removing Thing from Registry
After a Thing has been claimed and is registed as a PUBLIC CLAIMED Thing in the Registry,
it implies the Thing is available in searches. The owner can choose to remove the Thing
from the Registry, to avoid that the Thing appears in searches. To remove a Thing from the
Registry the owner simply sends a removal request to the Registry with the resource-less JID
of the Thing to remove, as follows:

Listing 24: Remove Thing
<iq type=’set’

from=’owner@example.org/phone ’
to=’discovery.example.org’
id=’6’>

<remove xmlns=’urn:xmpp:iot:discovery ’ jid=’thing@example.org’/>
</iq>

If the Thing resides behind a concentrator, the request must contain those of the attributes
nodeId, sourceId and cacheType that are required to access the Thing, as follows:

Listing 25: Remove Thing behind concentrator
<iq type=’set’

from=’owner@example.org/phone ’
to=’discovery.example.org’
id=’6’>

<remove xmlns=’urn:xmpp:iot:discovery ’ jid=’rack@example.org/
plcs’ nodeId=’imc1’ sourceId=’MeteringTopology ’/>

</iq>

If such a Thing is found and is owned by the caller, it is removed from the Registry, and an
empty response is returned, to acknowledge the removal of the Thing from the registry, as
follows:

17

3 USE CASES

Listing 26: Thing removed
<iq type=’result ’

from=’discovery.example.org’
to=’owner@example.org/phone ’
id=’6’/>

However, if such a thing is not found, or if the thing is owned by another, an item-not-found
error is returned, as follows:

Listing 27: Removal failure
<iq type=’error ’

from=’discovery.example.org’
to=’owner@example.org/phone ’
id=’6’>

<error type=’cancel ’>
<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

After successfully removing a Thing from the Registry, and if the Thing is friend to the
Registry, the Registry informs the Thing it has been removed from the Registry. It does this,
so the Thing can remove the friendship and stop any meta data updates to the Registry.

Listing 28: Thing removed from registry by owner
<iq type=’set’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’7’>

<removed xmlns=’urn:xmpp:iot:discovery ’/>
</iq>

<iq type=’result ’
from=’thing@example.org/imc’
to=’discovery.example.org’
id=’7’/>

If the Thing lies behind a concentrator, the removal request would look as follows:

Listing 29: Thing behind concentrator removed from registry by owner
<iq type=’set’

from=’discovery.example.org’
to=’rack@example.org/plcs’
id=’7’>

<removed xmlns=’urn:xmpp:iot:discovery ’ nodeId=’imc1’ sourceId=’
MeteringTopology ’/>

</iq>

18

3 USE CASES

The Thing acknowledges the removal request by returning an empty response, as follows:

Listing 30: Removal acknowledgement
<iq type=’result ’

from=’thing@example.org/imc’
to=’discovery.example.org’
id=’7’/>

3.11 Finding Provisioning Server
Up to this point only basic configuration and ownership and visibility of a Thing has been
covered. For more advanced operations, a Thing might be required to use a Provisioning
Server to whom it can delegate trust and allow making decisions, controlling access rights
and privileges for the Thing, as described in Internet of Things - Provisioning (XEP-0324) 17.
If a Provisioning Server is not preconfigured, one must be found. The following lists methods
to obtaining the JID for the Provisioning Server.

1. Preconfigured Component Address of Provisioning Server. A Component address is nor-
mally a subdomain to the domain of the XMPP Server that hosts the component.

2. Preconfigured bare JID of Provisioning Server.

3. Preconfigured subdomain part of Component Address. This will be added to the domain
of the XMPP Server used to connet to.

4. Preconfigured user name of JID. This will be added to the domain of the XMPP Server
used to connected to.

5. The Thing Registry itself can be a Provisioning Server. This can be found out by sending
a discovery request to the Thing Registry, as described in Determining Support.

6. The Owner itself can be a Provisioning Server. This can be found out by sending a dis-
covery request to the Owner, as described in Determining Support.

7. Searching through Server Components on the XMPP Server currently connected to, as
described in Determining Support.

3.12 Delegating Trust
Once a Provisioning Server has been found and been befriended, the Thing can delegate its
trust to it, according to Internet of Things - Provisioning (XEP-0324) 18.

17XEP-0324: Internet of Things - Provisioning <https://xmpp.org/extensions/xep-0324.html>.
18XEP-0324: Internet of Things - Provisioning <https://xmpp.org/extensions/xep-0324.html>.

19

https://xmpp.org/extensions/xep-0324.html
https://xmpp.org/extensions/xep-0324.html
https://xmpp.org/extensions/xep-0324.html
https://xmpp.org/extensions/xep-0324.html

3 USE CASES

3.13 Update Meta Information about Thing in Registry
Once a Thing has been claimed and chooses to reside as a public Thing in the registry, it can
update its meta information at any time. This meta information will be available in searches
made to the registry by third parties and is considered public. However, the Thing should
be connected to a provisioning server at this point, so that correct decisions can be made
regarding to friendship, readout and control requests made by parties other than the owner.
Meta information updated in this way will only overwrite tags provided in the request,
and leave other tags previously reported as is. To remove a string-valued tag, it should be
updated with an empty value. It is also recommended that key meta information required to
claim ownership of the Thing after a factory reset is either removed, truncated or otherwise
modified after it has been claimed so that third parties with physical access to a public Thing
cannot hijack it by searching for it, extracting its meta information from the registry, then
resetting it and then claiming ownership of it.
To update meta data about itself, a Thing simply sends a request to the Thing Registry, as
follows:

Listing 31: Update Meta Data request
<iq type=’set’

from=’thing@example.org/imc’
to=’discovery.example.org’
id=’8’>

<update xmlns=’urn:xmpp:iot:discovery ’>
<str name=’KEY’ value=’{}’/>
<str name=’CLASS ’ value=’PLC’/>
<num name=’LON’ value=’ -71.519722 ’/>
<num name=’LAT’ value=’ -33.008055 ’/>

</update >
</iq>

If the Thing resides behind a concentrator, the request must contain those of the attributes
nodeId, sourceId and cacheType that are required to access the Thing, as follows:

Listing 32: Update Meta Data of Thing behind concentrator
<iq type=’set’

from=’rack@example.org/plcs’
to=’discovery.example.org’
id=’8’>

<update xmlns=’urn:xmpp:iot:discovery ’ nodeId=’imc1’ sourceId=’
MeteringTopology ’>
<str name=’KEY’ value=’{}’/>
<str name=’CLASS ’ value=’PLC’/>
<num name=’LON’ value=’ -71.519722 ’/>
<num name=’LAT’ value=’ -33.008055 ’/>

</update >

20

3 USE CASES

</iq>

If the Thing is found in the registry and it is claimed, the registry simply acknowledges the
update as follows:

Listing 33: Update Meta Data request acknowledgement
<iq type=’result ’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’8’/>

However, if the Thing is not found in the registry, probably because the owner has removed it
from the registry, an error response is returned. When receiving such a response, the Thing
should assume it is the owner who has removed it from the registry, and that further meta
data updates are not desired. The Thing can then unfriend the registry and stop further meta
data updates. The error response from the registry would look as follows:

Listing 34: Update Meta Data request failure
<iq type=’error ’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’8’>

<error type=’cancel ’>
<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the Thing on the other hand is found in the Registry, but is not claimed, the registry must
not update any meta data in the registry, and instead respond with the following response.
When the thing receives this, the Thing can assume it has been disowned, and perform a new
registration in the Registry so that it can be re-claimed.

Listing 35: Update Meta Data response to request from disowned Thing
<iq type=’result ’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’8’>

<disowned xmlns=’urn:xmpp:iot:discovery ’/>
</iq>

Note: Meta Tag names are case insensitive. In this document, all tag names have been written
using upper case letters.

21

3 USE CASES

3.14 Owner updating Meta Information about Thing in Registry
An owner of a thing can also update the metadata of a thing it has claimed. To do this, you
simply add a jid attribute containing the JID of the thing to the update element. (If this
attribute is not present, the JID is assumed to be that of the sender of the message.)

Listing 36: Owner requests an update of Meta Data of Thing
<iq type=’set’

from=’owner@example.org /1234 ’
to=’discovery.example.org’
id=’8’>

<update xmlns=’urn:xmpp:iot:discovery ’ jid=’thing@example.org’>
<str name=’ROOM’ value=’...’/>
<str name=’APT’ value=’...’/>
<str name=’BLD’ value=’...’/>
<str name=’STREET ’ value=’...’/>
<str name=’STREETNR ’ value=’...’/>
<str name=’AREA’ value=’...’/>
<str name=’CITY’ value=’...’/>
<str name=’REGION ’ value=’...’/>
<str name=’COUNTRY ’ value=’...’/>

</update >
</iq>

The owner can update metadata of things behind concentrators also. To do this, the corre-
sponding attributes nodeId, sourceId and cacheType must be used to identify the thing, as
follows:

Listing 37: Owner requests an update of Meta Data of Thing behind concentrator
<iq type=’set’

from=’owner@example.org /1234 ’
to=’discovery.example.org’
id=’8’>

<update xmlns=’urn:xmpp:iot:discovery ’ jid=’rack@example.org’
nodeId=’imc1’ sourceId=’MeteringTopology ’>
<str name=’ROOM’ value=’...’/>
<str name=’APT’ value=’...’/>
<str name=’BLD’ value=’...’/>
<str name=’STREET ’ value=’...’/>
<str name=’STREETNR ’ value=’...’/>
<str name=’AREA’ value=’...’/>
<str name=’CITY’ value=’...’/>
<str name=’REGION ’ value=’...’/>
<str name=’COUNTRY ’ value=’...’/>

</update >
</iq>

22

3 USE CASES

If the Thing is found in the registry and it is claimed by the sender of the current message (i.e.
owner is the sender), the registry simply acknowledges the update as follows:

Listing 38: Owner updating thing Meta Data request acknowledgement
<iq type=’result ’

from=’discovery.example.org’
to=’owner@example.org /1234 ’
id=’8’/>

But if the owner is not the sender of the current message (i.e. owner is somebody else), or if
the thing is not found at all, the server must report the node as not existing (i.e. not existing
among the set of things claimed by the owner).

Listing 39: Owner updating thing Meta Data request failure
<iq type=’error ’

from=’discovery.example.org’
to=’owner@example.org /1234 ’
id=’8’>

<error type=’cancel ’>
<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

3.15 Search for Public Things in Registry
It is possible for anyone with access to the Thing Registry to search for public Things that
have been claimed, including self-owned Things. Such searches will never return things that
have not been claimed or have been removed from the registry.
A search is performed by providing one or more comparison operators in a search request to
the registry. If more than one comparison operator is provided, the search is assumed to be
performed on the intersection (i.e. AND) of all operators. If the union (i.e. OR) of different
conditions is desired, multiple consecutive searches have to be performed.
The following table lists available search operators, their element names and meanings:

Element Type Operator Description
strEq String tag = c Searches for string

values tags with values
equal to a provided
constant value.

strNEq String tag <> c Searches for string val-
ues tags with values
not equal to a provided
constant value.

23

3 USE CASES

Element Type Operator Description
strGt String tag > c Searches for string val-

ues tags with values
greater than a provided
constant value.

strGtEq String tag >= c Searches for string val-
ues tags with values
greater than or equal
to a provided constant
value.

strLt String tag < c Searches for string val-
ues tags with values
lesser than a provided
constant value.

strLtEq String tag <= c Searches for string
values tags with values
lesser than or equal to
a provided constant
value.

strRange String min <(=) tag <(=) max Searches for string
values tags with values
within a specified
range of values. The
endpoints can be in-
cluded or excluded in
the search.

strNRange String tag <(=) min OR tag >(=)
max

Searches for string
values tags with values
outside of a specified
range of values. The
endpoints can be in-
cluded or excluded in
the range (and there-
fore correspondingly
excluded or included in
the search).

strMask String tag LIKE c Searches for string val-
ues tags with values
similar to a provided
constant value includ-
ing wildcards.

numEq Numeric tag = c Searches for numerical
values tags with val-
ues equal to a provided
constant value.

24

3 USE CASES

Element Type Operator Description
numNEq Numeric tag <> c Searches for numerical

values tags with values
not equal to a provided
constant value.

numGt Numeric tag > c Searches for numerical
values tags with values
greater than a provided
constant value.

numGtEq Numeric tag >= c Searches for numerical
values tags with values
greater than or equal
to a provided constant
value.

numLt Numeric tag < c Searches for numerical
values tags with values
lesser than a provided
constant value.

numLtEq Numeric tag <= c Searches for numerical
values tags with val-
ues lesser than or equal
to a provided constant
value.

numRange Numeric min <(=) tag <(=) max Searches for numerical
values tags with val-
ues within a specified
range of values. The
endpoints can be in-
cluded or excluded in
the search.

numNRange Numeric tag <(=) min OR tag >(=)
max

Searches for numerical
values tags with values
outside of a specified
range of values. The
endpoints can be in-
cluded or excluded in
the range (and there-
fore correspondingly
excluded or included in
the search).

The following example shows how a search for specific devices within a specific geographic
area can be found. More precisely, it searches for a certain kind of PLC produced by a certain
manufacturer, but only versions 1.0 <= v < 2.0 and with serial numbers beginning with 39487.

25

3 USE CASES

The PLCs must also lie within latitude 33 ad 34 degrees south and between longitude 70 and
72 west.

Listing 40: Searching for Things
<iq type=’get’

from=’curious@example.org/client ’
to=’discovery.example.org’
id=’9’>

<search xmlns=’urn:xmpp:iot:discovery ’ offset=’0’ maxCount=’20’>
<strEq name=’MAN’ value=’www.ktc.se’/>
<strEq name=’MODEL ’ value=’IMC’/>
<strMask name=’SN’ value=’39487* ’ wildcard=’*’/>
<numRange name=’V’ min=’1’ minIncluded=’true’ max=’2’

maxIncluded=’false ’/>
<numRange name=’LON’ min=’ -72’ minIncluded=’true’ max=’ -70’

maxIncluded=’true’/>
<numRange name=’LAT’ min=’ -34’ minIncluded=’true’ max=’ -33’

maxIncluded=’true’/>
</search >

</iq>

The offset attribute tells the registry the number of responses to skip before returning found
things. It provides amechanism to page result sets that are too large to return in one response.
the maxCount attribute contains the desired maximum number of things to return in the
response. The registry can lower this value, if it decides the requested maximum number is
too large.
If tag names are not found corresponding to the names provided in the search, the result
set will always be empty. There’s a reserved tag named KEY that can be used to provide
information shared only between things and their owners. If a search contains an operator
referencing this tag name, the result set must also always be empty. Searches on KEY MUST
never find things. Furthermore, search results must never return KEY tags.
The registry returns any things found in a response similar to the following:

Listing 41: Search result
<iq type=’result ’

from=’discovery.example.org’
to=’curious@example.org/client ’
id=’9’>

<found xmlns=’urn:xmpp:iot:discovery ’ more=’false ’>
<thing owner=’owner@example.org’ jid=’thing@example.org’>

<str name=’SN’ value=’394872348732948723 ’/>
<str name=’MAN’ value=’www.ktc.se’/>
<str name=’MODEL ’ value=’IMC’/>
<num name=’V’ value=’1.2’/>
<str name=’CLASS ’ value=’PLC’/>
<num name=’LON’ value=’ -71.519722 ’/>

26

3 USE CASES

<num name=’LAT’ value=’ -33.008055 ’/>
</thing >
...

</found >
</iq>

If a Thing resides behind a concentrator, the response must contain those of the attributes
nodeId, sourceId and cacheType that are required to access the Thing, as follows:

Listing 42: Search result containing Thing behind a concentrator
<iq type=’result ’

from=’discovery.example.org’
to=’curious@example.org/client ’
id=’9’>

<found xmlns=’urn:xmpp:iot:discovery ’ more=’false ’>
<thing owner=’owner@example.org’ jid=’rack@example.org’

nodeId=’imc1’ sourceId=’MeteringTopology ’>
<str name=’SN’ value=’394872348732948723 ’/>
<str name=’MAN’ value=’www.ktc.se’/>
<str name=’MODEL ’ value=’IMC’/>
<num name=’V’ value=’1.2’/>
<str name=’CLASS ’ value=’PLC’/>
<num name=’LON’ value=’ -71.519722 ’/>
<num name=’LAT’ value=’ -33.008055 ’/>

</thing >
...

</found >
</iq>

If more results are available in the search (accessible by using the offset attribute in a new
search), themore attribute is present with value true.
Note: Meta Tag names are case insensitive. In this document, all tag names have been written
using upper case letters.

3.16 Unregistering Thing from Registry
A thing can unregister itself from the Registry. This can be done in an uninstallation proce-
dure for instance. To unregister from the registry, it simply sends an un-registration request
to the registry as follows.

Listing 43: Unregister Thing
<iq type=’set’

from=’thing@example.org/imc’
to=’discovery.example.org’
id=’10’>

27

3 USE CASES

<unregister xmlns=’urn:xmpp:iot:discovery ’/>
</iq>

If the Thing resides behind a concentrator, the request must contain those of the attributes
nodeId, sourceId and cacheType that are required to access the Thing, as follows:

Listing 44: Unregistring Thing behind concentrator
<iq type=’set’

from=’rack@example.org/plcs’
to=’discovery.example.org’
id=’10’>

<unregister xmlns=’urn:xmpp:iot:discovery ’ nodeId=’imc1’
sourceId=’MeteringTopology ’/>

</iq>

The registry always returns an empty response, simply to acknowledge the receipt of the
request.

Listing 45: Unregister Thing acknowledgement
<iq type=’result ’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’10’/>

3.17 Disowning Thing
The owner of a Thing can disown the Thing, returning it to a state without owner. This is
done by sending the following request to the Thing Registry:

Listing 46: Disowning Thing
<iq type=’set’

from=’owner@example.org/phone ’
to=’discovery.example.org’
id=’11’>

<disown xmlns=’urn:xmpp:iot:discovery ’ jid=’thing@example.org’/>
</iq>

If the Thing resides behind a concentrator, the request must contain those of the attributes
nodeId, sourceId and cacheType that are required to access the Thing, as follows:

Listing 47: Disowning Thing behind concentrator
<iq type=’set’

from=’owner@example.org/phone ’

28

3 USE CASES

to=’discovery.example.org’
id=’11’>

<disown xmlns=’urn:xmpp:iot:discovery ’ jid=’rack@example.org/
plcs’ nodeId=’imc1’ sourceId=’MeteringTopology ’/>

</iq>

If such a Thing is not found, or if the thing is not owned by the caller, an item-not-found
error is returned, as follows:

Listing 48: Failure to disown Thing - Not Found
<iq type=’error ’

from=’discovery.example.org’
to=’owner@example.org/phone ’
id=’11’>

<error type=’cancel ’>
<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If such a Thing is found, and it is owned by the caller, but not online as a friend, the Thing
cannot be disowned, since it would put the Thing in a state fromwhich it cannot be re-claimed.
Therefore, the Thing Registry must respond in the following manner:

Listing 49: Failure to disown Thing - Offline
<iq type=’error ’

from=’discovery.example.org’
to=’owner@example.org/phone ’
id=’11’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

Before returning a response to the caller, the Thing Registry informs the Thing it has been
disowned. It does this, so the Thing can remove the friendship to the owner, and perform a
new registration.

Listing 50: Thing disowned in registry by owner
<iq type=’set’

from=’discovery.example.org’
to=’thing@example.org/imc’
id=’12’>

<disowned xmlns=’urn:xmpp:iot:discovery ’/>
</iq>

29

4 DETERMINING SUPPORT

If the Thing lies behind a concentrator, the disowned request would look as follows:

Listing 51: Thing behind concentrator disowned in registry by owner
<iq type=’set’

from=’discovery.example.org’
to=’rack@example.org/plcs’
id=’12’>

<disowned xmlns=’urn:xmpp:iot:discovery ’ nodeId=’imc1’ sourceId=
’MeteringTopology ’/>

</iq>

The Thing acknowledges that it has been disowned by returning an empty response, as follows:

Listing 52: Acknowledging disownment
<iq type=’result ’

from=’thing@example.org/imc’
to=’discovery.example.org’
id=’12’/>

When receiving the acknowledgement from the Thing, the Thing is set as an unclaimed Thing
in the Registry. Furthermore, all tags corresponding to the Thing are removed from the
registry, and a random KEY tag is added of sufficient complexity to make sure other clients
cannot claim the Thing by guessing. Finally, an empty response is returned, to acknowledge
that the Thing has been disowned, as follows:

Listing 53: Thing disowned
<iq type=’result ’

from=’discovery.example.org’
to=’owner@example.org/phone ’
id=’11’/>

If for any reason, the Thing does not acknowledge the disowned request, or an error occurs,
the Registry returns the same error as if the Thing would have been offline.

4 Determining Support
If an entity is a Thing Registry and supports the protocol specified herein, it MUST advertise
that fact by returning a feature of ”urn:xmpp:iot:discovery” in response to Service Discovery
(XEP-0030) 19 information requests.

19XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

30

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

4 DETERMINING SUPPORT

Listing 54: Service discovery information request
<iq type=’get’

from=’device@example.org/device ’
to=’provisioning@example.org’
id=’13’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 55: Service discovery information response
<iq type=’result ’

from=’provisioning@example.org’
to=’device@example.org/device ’
id=’13’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
...
<feature var=’urn:xmpp:iot:discovery ’/>
...

</query >
</iq>

To search for a Thing Registry hosted as a component on an XMPP Server, you first request a
list of available components, as follows:

Listing 56: Checking if server supports components
<iq from=’device@example.org/device ’ to=’example.org’ type=’get’ id=’

14’>
<query xmlns=”http: // jabber.org/protocol/disco#info”/>

</iq>

Listing 57: Response confirming support for components
<iq type=”result” id=”14” from=”example.org” to=”device@example.org/

device”>
<query xmlns=”http: // jabber.org/protocol/disco#info”>

...
<feature var=”http: // jabber.org/protocol/disco#items”/>
...

</query >
</iq>

If components (items) are supported, a request for available components is made:

Listing 58: Requesting list of server components
<iq from=’device@example.org/device ’ to=’example.org’ type=’get’ id=’

15’>
<query xmlns=”http: // jabber.org/protocol/disco#items”/>

</iq>

31

5 IMPLEMENTATION NOTES

Listing 59: Response containing list of server components
<iq type=”result” id=”15” from=”example.org” to=”995

fab3dd759452ca9c370647323af0c@example.org/ebe2348e”>
<query xmlns=”http: // jabber.org/protocol/disco#items”>
...

<item jid=”discovery.example.org” name=”Registro␣de␣cosas”/>
...

</query >
</iq>

The client then loops through all components (items) and checks what features they support,
until a Thing Registry is found:

Listing 60: Service discovery information request made to each component
<iq type=’get’

from=’device@example.org/device ’
to=’discovery.example.org’
id=’16’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 61: Service discovery information response from each component
<iq type=’result ’

from=’discovery.example.org’
to=’device@example.org/device ’
id=’16’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
...
<feature var=’urn:xmpp:iot:discovery ’/>
...

</query >
</iq>

5 Implementation Notes
5.1 JID vs Component Thing Registries
A client must treat the connection between a Thing Registry differently if it is hosted as a
client, having a JID, or if it is hosted as a Jabber Server Component. If it is hosted as a server
component, there’s no need for the thing to become friends with the Thing Registry. Messages
and requests can be made directly to the server component without having to add it to the
roster or request presence subscriptions. If the Thing Registry is hosted as a client, having a
JID (@ in the address), the Thing Registry must be added to the roster of the client before the
client can communicate with the Thing Registry.

32

5 IMPLEMENTATION NOTES

5.2 Meta Tags
This document does not limit the number or names of tags used by Things to register meta
information about themselves. However, it provides some general limits and defines the
meaning of a few tags that must have the meanings specified herein.
The maximum length of a tag name is 32 characters. Tag names must not include colon (:),
hash sign (#) or white space characters. String tag values must not exceed 128 characters in
length.
The following table lists predefined tag names and their corresponding meanings.

Tag Name Type Description
ALT Numeric Altitude (meters)
APT String Apartment associated with the Thing
AREA String Area associated with the Thing
BLD String Building associated with the Thing
CITY String City associated with the Thing
CLASS String Class of Thing
COUNTRY String Country associated with the Thing
KEY String Key, shared between thing and

owner.
LAT Numeric Latitude (degrees)
LON Numeric Longitude (degrees)
MAN String Domain name owned by theManufac-

turer
MLOC String Meter Location ID
MNR String Meter Number
MODEL String Name of Model
NAME String Name associated with the Thing
PURL String URL to product information for the

Thing.
REGION String Region associated with the Thing
ROOM String Room associated with the Thing
SN String Serial Number
STREET String Street Name
STREETNR String Street Number
V Numeric Version Number

It is up to the Thing Registry to choose which tags it persists and which tags it doesn’t. To
avoid the possibility of malicious reporting of tags, some limit should be imposed on what
tags are supported. As a minimum, a Thing Registry must support all predefined tags, as listed
above.
Note: Meta Tag names are case insensitive. In this document, all tag names have been written

33

6 SECURITY CONSIDERATIONS

using upper case letters.

5.3 Friendships between Things and Registry
In the case the Thing Registry is not the XMPP Server to which the Thing is connected, a
friendship relationship between the Thing and the Thing Registry needs to be handled. To
minimize the number of concurrent friends the Thing Registry needs to maintain, a Thing
must only maintain an active friendship with the registry if it needs to communicate with the
registry. This means that unless updating meta data frequently, the Thing must unfriend the
Registry when done with its communication. If only updating meta data intermittently, the
friendship can be reestablished when needed, and removed when done.

6 Security Considerations
6.1 Jabber Components Protocol
The Jabber Component Protocol (XEP-0114) 20 provides an elegant way to introduce external
services as server components using a third port into the server (the first two being the
client-to-server port and the server-to-server port). But since XEP-0114 is historical, meaning
it is not guaranteed to conform to v1.0 of the XMPP specification, it has some serious security
issues:

1. It lacks SSL/TLS support, or the starttls element to switch to TLS after connecting. This
makes it possible to sniff traffic in this port.

2. It lacks SASL authentication. Instead a simple handshake is performed

3. There is no way to actually verify that the server is the server. This makes it possible to
create a simple Man-in-the-middle attack.

For these reasons, it is not recommended that a Thing Registry service, publishing itself as a
Jabber Server Component, does so from outside of the network. Instead, the Thing Registry
should be installed on the same server or on a server in the same local area network, so that
the Jabber Component protocol port is closed to the Internet.
Since it is not guaranteed that an XMPP Server operator allows installation of third party
products (such as a Thing Registry), the option to host a Thing Registry using a normal JID is
still available. It can be used in proof of concepts, etc. For scalability issues it is recommended
that the Thing Registry be hosted as a Jabber Server Component when the population of
Things grows.

20XEP-0114: Jabber Component Protocol <https://xmpp.org/extensions/xep-0114.html>.

34

https://xmpp.org/extensions/xep-0114.html
https://xmpp.org/extensions/xep-0114.html

6 SECURITY CONSIDERATIONS

6.2 Hijacking predefined JIDs
If using predefined user names when searching for a Thing Registry or Provisioning Server,
care must be taken to which XMPP Server things connect. It might be possible for third
parties to register these predefined account names, and pretend to be a Thing Registry or
Provisioning Server and in this way hijack unsuspecting Things. If installing things using this
method of finding a Thing Registry or Provisioning Server, these accounts must be registered
beforehand, to make sure the things cannot be hijacked.

6.3 Hijacking things in public areas
The combination of visible key meta information (perhaps in a visible QR-code) and a factory
default reset button on a Thing, opens up the possibility to hijack the Thing. To avoid this,
at least one of the two should be removed after successful installation. Either the key meta
information (QR-code) should be placed on the package or separate paper and not on the
thing itself, or the factory default reset button should be sealed or hidden and only accessible
by licensed maintenance personell. If using an electronic means to present the key meta
information (for instance by displayed a QR-code on a display on the thing), care should be
taken so that the information cannot be displayed without breaking a seal, or other means to
protect the Thing.
Regardless the above security measures, a Thing can be hijacked by a third party in the time
window between successful installation of the device and until the correct owner has claimed
ownership of the device. Minimizing this time window, and using a shared secret (KEY tag)
between the Thing and its owner, decreases the possibility of getting the thing hijacked.

6.4 Key meta information in searches
Care should be taken what key meta information is used to accept an ownership claim. After
a successful claim, this meta information is still available in the registry, at least until the
Thing is removed from the registry. While public in the registry, the meta information can be
searched and presented to third parties. Access to this information can help third parties to
hijack Things, if they can reset them to factory default settings.
To avoid this, the Thing can do three things after a successful ownership claim:

• Including a KEY tag in the key meta information. The KEY tag is not searchable nor
presented in search results.

• Remove, truncate or change some key meta information after a successful ownership
claim. Partial information is not sufficient for a successful ownership claim.

• Remove the Thing from the registry.

35

6 SECURITY CONSIDERATIONS

6.5 KEY tag
TheKEY tag is unique in that it is not searchable nor available is search results. For this reason
it is ideal for providing secrets shared only between the Thing and the owner. By providing a
sufficiently long KEY value in the key meta information required to claim the Thing, guessing
the information even though the other meta information is available, will be sufficiently hard
to make it practically impossible.
Even though the KEY tag is not searchable or available in search results, it should be emptied
by the Thing after a successful claim, just to make sure the key cannot be learned by looking
into the database of the registry, or by some other means.

6.6 Tag name spam
This document does not limit tag names or the number of tags that can be used by Things.
This opens up the possibility of tag spam. Malicious things could fill the database of the
registry by reporting random tag names until the database is full.
To prevent suchmalicious attacks, the registry could limit the tags it allows to be stored in the
database. The registry must however allow the storage of the predefined tag names defined
in this document. If it has a configurable list of approved tags that can be stored, or if it allows
any tags is an implementation decision.

6.7 External services for creating QR-codes
If using external services when creating QR-codes, like the Google Charts API used in this
document, make sure HTTPS is used and certificates validated. If HTTP is used, metadata
tags used in Thing Registry registrations can be found out by sniffing the network, making it
possible to hijack the corresponding devices.

6.8 DHCP Security Considerations
TBD

6.9 DNS Security Considerations
TBD

6.10 UPnP Security Considerations
TBD

36

9 XML SCHEMA

7 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
21.

8 XMPP Registrar Considerations
The protocol schema needs to be added to the list of XMPP protocol schemas.

9 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>
<xs:schema

xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’urn:xmpp:iot:discovery ’
xmlns=’urn:xmpp:iot:discovery ’
elementFormDefault=’qualified ’>

<xs:element name=’register ’ type=’Register ’/>
<xs:element name=’mine’ type=’Mine’/>
<xs:element name=’update ’ type=’Update ’/>

<xs:element name=’claimed ’ type=’Claimed ’/>
<xs:element name=’remove ’ type=’Jid’/>
<xs:element name=’removed ’ type=’NodeInfo ’/>
<xs:element name=’unregister ’ type=’NodeInfo ’/>
<xs:element name=’disown ’ type=’Jid’/>
<xs:element name=’disowned ’ type=’NodeInfo ’/>

<xs:element name=’search ’>
<xs:complexType >

<xs:choice minOccurs=’1’ maxOccurs=’unbounded ’>
<xs:element name=’strEq ’ type=’StrTag ’/>
<xs:element name=’strNEq ’ type=’StrTag ’/>
<xs:element name=’strGt ’ type=’StrTag ’/>
<xs:element name=’strGtEq ’ type=’StrTag ’/>
<xs:element name=’strLt ’ type=’StrTag ’/>
<xs:element name=’strLtEq ’ type=’StrTag ’/>
<xs:element name=’strRange ’ type=’StrRange ’/>
<xs:element name=’strNRange ’ type=’StrRange ’/>
<xs:element name=’strMask ’>

21The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

37

http://www.iana.org/
http://xmpp.org/resources/schemas/
http://www.iana.org/

9 XML SCHEMA

<xs:complexType >
<xs:attribute name=’name’ type=’xs:string ’ use

=’required ’/>
<xs:attribute name=’value ’ type=’xs:string ’

use=’required ’/>
<xs:attribute name=’wildcard ’ type=’xs:string ’

use=’required ’/>
</xs:complexType >

</xs:element >
<xs:element name=’numEq ’ type=’NumTag ’/>
<xs:element name=’numNEq ’ type=’NumTag ’/>
<xs:element name=’numGt ’ type=’NumTag ’/>
<xs:element name=’numGtEq ’ type=’NumTag ’/>
<xs:element name=’numLt ’ type=’NumTag ’/>
<xs:element name=’numLtEq ’ type=’NumTag ’/>
<xs:element name=’numRange ’ type=’NumRange ’/>
<xs:element name=’numNRange ’ type=’NumRange ’/>

</xs:choice >
<xs:attribute name=’offset ’ type=’xs:nonNegativeInteger ’

use=’optional ’ default=’0’/>
<xs:attribute name=’maxCount ’ type=’xs:positiveInteger ’

use=’optional ’/>
</xs:complexType >

</xs:element >

<xs:element name=’found ’>
<xs:complexType >

<xs:sequence minOccurs=’0’ maxOccurs=’unbounded ’>
<xs:element name=’thing ’>

<xs:complexType >
<xs:choice minOccurs=’0’ maxOccurs=’unbounded ’

>
<xs:element name=’str’ type=’StrTag ’/>
<xs:element name=’num’ type=’NumTag ’/>

</xs:choice >
<xs:attribute name=’owner ’ type=’xs:string ’

use=’required ’/>
<xs:attribute name=’jid’ type=’xs:string ’ use=

’required ’/>
<xs:attributeGroup ref=’nodeInfo ’/>

</xs:complexType >
</xs:element >

</xs:sequence >
<xs:attribute name=’more’ type=’xs:boolean ’ use=’optional ’

default=’false ’/>
</xs:complexType >

</xs:element >

<xs:attributeGroup name=’nodeInfo ’>

38

9 XML SCHEMA

<xs:attribute name=’nodeId ’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’sourceId ’ type=’xs:string ’ use=’optional ’/

>
<xs:attribute name=’cacheType ’ type=’xs:string ’ use=’optional ’

/>
</xs:attributeGroup >

<xs:complexType name=’MetaData ’>
<xs:choice minOccurs=’0’ maxOccurs=’unbounded ’>

<xs:element name=’str’ type=’StrTag ’/>
<xs:element name=’num’ type=’NumTag ’/>

</xs:choice >
</xs:complexType >

<xs:complexType name=’MetaDataNodeInfo ’>
<xs:complexContent >

<xs:extension base=’MetaData ’>
<xs:attributeGroup ref=’nodeInfo ’/>

</xs:extension >
</xs:complexContent >

</xs:complexType >

<xs:complexType name=’Register ’>
<xs:complexContent >

<xs:extension base=’MetaDataNodeInfo ’>
<xs:attribute name=’selfOwned ’ type=’xs:boolean ’ use=’

optional ’ default=’false ’/>
</xs:extension >

</xs:complexContent >
</xs:complexType >

<xs:complexType name=’Mine’>
<xs:complexContent >

<xs:extension base=’MetaDataNodeInfo ’>
<xs:attribute name=’public ’ type=’xs:boolean ’ use=’

optional ’ default=’true’/>
</xs:extension >

</xs:complexContent >
</xs:complexType >

<xs:complexType name=’Update ’>
<xs:complexContent >

<xs:extension base=’MetaDataNodeInfo ’>
<xs:attribute name=’jid’ type=’xs:string ’ use=’

optional ’/>
</xs:extension >

</xs:complexContent >
</xs:complexType >

39

9 XML SCHEMA

<xs:complexType name=’Claimed ’>
<xs:complexContent >

<xs:extension base=’Jid’>
<xs:attribute name=’public ’ type=’xs:boolean ’ use=’

optional ’ default=’false ’/>
</xs:extension >

</xs:complexContent >
</xs:complexType >

<xs:complexType name=’Jid’>
<xs:attribute name=’jid’ type=’xs:string ’ use=’required ’/>
<xs:attributeGroup ref=’nodeInfo ’/>

</xs:complexType >

<xs:complexType name=’NodeInfo ’>
<xs:attributeGroup ref=’nodeInfo ’/>

</xs:complexType >

<xs:complexType name=’StrTag ’>
<xs:attribute name=’name’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’value ’ type=’xs:string ’ use=’required ’/>

</xs:complexType >

<xs:complexType name=’NumTag ’>
<xs:attribute name=’name’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’value ’ type=’xs:double ’ use=’required ’/>

</xs:complexType >

<xs:complexType name=’StrRange ’>
<xs:attribute name=’name’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’min’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’minIncluded ’ type=’xs:boolean ’ use=’

optional ’ default=’true’/>
<xs:attribute name=’max’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’maxIncluded ’ type=’xs:boolean ’ use=’

optional ’ default=’true’/>
</xs:complexType >

<xs:complexType name=’NumRange ’>
<xs:attribute name=’name’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’min’ type=’xs:double ’ use=’required ’/>
<xs:attribute name=’minIncluded ’ type=’xs:boolean ’ use=’

optional ’ default=’true’/>
<xs:attribute name=’max’ type=’xs:double ’ use=’required ’/>
<xs:attribute name=’maxIncluded ’ type=’xs:boolean ’ use=’

optional ’ default=’true’/>
</xs:complexType >

</xs:schema >

40

11 ACKNOWLEDGEMENTS

10 For more information
For more information, please see the following resources:

• The Sensor Network section of the XMPP Wiki contains further information about the
use of the sensor network XEPs, links to implementations, discussions, etc.

• The XEP’s and related projects are also available on github, thanks to Joachim Lindborg.

• A presentation giving an overview of all extensions related to Internet of Things can be
found here: http://prezi.com/esosntqhewhs/iot-xmpp/.

11 Acknowledgements
Thanks to Eelco Cramer, Henrik Svedlund, Ivan Vučica, Joachim Lindborg, Joakim Eriksson,
Joakim Ramberg, Johannes Hund, Karin Forsell, Kevin Smith, Lance Stout, Lars Åkerskog, Olof
Zandrén, Philipp Hancke, Steffen Larsen, Teemu Väisänen and Yusuke Doi for all valuable
feedback.

41

http://wiki.xmpp.org/web/Tech_pages/SensorNetworks
https://github.com/joachimlindborg/
http://prezi.com/esosntqhewhs/iot-xmpp/

	Introduction
	Glossary
	Use Cases
	Production
	Installation
	Finding XMPP Server
	DHCP
	Multicast DNS (mDNS) and DNS Service Discovery (DNS-SD)
	SSDP/UPnP

	Connection to XMPP Server
	Finding Thing Registry
	Registering Thing
	Register self-owned Thing
	Register Thing behind Concentrator
	Claiming Ownership of a Thing
	Removing Thing from Registry
	Finding Provisioning Server
	Delegating Trust
	Update Meta Information about Thing in Registry
	Owner updating Meta Information about Thing in Registry
	Search for Public Things in Registry
	Unregistering Thing from Registry
	Disowning Thing

	Determining Support
	Implementation Notes
	JID vs Component Thing Registries
	Meta Tags
	Friendships between Things and Registry

	Security Considerations
	Jabber Components Protocol
	Hijacking predefined JIDs
	Hijacking things in public areas
	Key meta information in searches
	KEY tag
	Tag name spam
	External services for creating QR-codes
	DHCP Security Considerations
	DNS Security Considerations
	UPnP Security Considerations

	IANA Considerations
	XMPP Registrar Considerations
	XML Schema
	For more information
	Acknowledgements

