
XEP-0436: MUC presence versioning

JC Brand
mailto:jc@opkode.com
xmpp:jc@opkode.com

Matthew Wild
mailto:mwild1@gmail.com
xmpp:me@matthewwild.co.uk

2020-05-10
Version 0.2.0

Status Type Short Name
Deferred Standards Track omnipresent-muc-affiliates

This specification defines a versioning mechanism which reduces the amount of presence traffic in a
XEP-0045 MUC

mailto:jc@opkode.com
xmpp:jc@opkode.com
mailto:mwild1@gmail.com
xmpp:me@matthewwild.co.uk

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 How it works 1

3 Determining support 2

4 Requirements 3
4.1 Always broadcast presence for affiliated users 3
4.2 Include a reset token when the client’s version number has expired 3

5 Business Rules 4

6 Security Considerations 4

7 IANA Considerations 4

8 XMPP Registrar Considerations 5
8.1 Protocol Namespaces . 5
8.2 Protocol Versioning . 5

2 HOW IT WORKS

1 Introduction
Many modern-day non-XMPP groupchat implementations have discarded the metaphor
of physical presence inside a room that a user must enter and exit, as implemented by
Multi-User Chat (XEP-0045) 1. The newer Mediated Information eXchange (MIX) (XEP-0369) 2

has therefore made presence subscriptions optional.
Often it no longer makes sense for a chat service to require that a user is ”present” in order
for them to be addressed by other occupants or to receive messages, especially if the chat
implementation will inform you out-of-band, for example via push notifications or email. The
notion of ”room presence” is therefore less relevant than before, and in some cases can be
done away with entirely.
Broadcasting all XEP-0045 MUC participants’ presences to one another scales quadratically
(O(nˆ2)) and can greatly increase the amount of network traffic, for potentially negligable
gain.
Even though the metaphorical concept of presence inside a roommight no longer be relevant
for a groupchat implementation, <presence/> stanzas might still contain useful metadata,
such as the user’s affiliation or Hats (XEP-0317) 3.
This XEP defines a versioning mechanism (similar to roster versioning in RFC 6121 4) whereby
the amount of presence traffic in a MUC may be greatly reduced.

2 How it works
A client that supports MUC presence versioning needs to keep track and store the presence
states of all MUC occupants, across multiple MUC sessions. Similarly, a MUC service which
supports presence versioning will also need to maintain a changelog of version numbers and
corresponding presence states.
Before the client enters a MUC, it SHOULD use service discovery to check whether presence
versioning is supported (see determining support below.). If MUC presence versioning is
supported, the client MAY include a <version> tag with a ’ver’ attribute set to the last known
version inside the <
pathhttp://jabber.org/protocol/muc#user}x> tag of the <presence/> stanza, which it sends
to join the MUC.
If MUC presence versioning is not supported by the server, the client MUST NOT include a
’ver’ attribute.

Listing 1: User specifies the last known version when seeking to enter a MUC
<presence

1XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
2XEP-0369: Mediated Information eXchange (MIX) <https://xmpp.org/extensions/xep-0369.html>.
3XEP-0317: Hats <https://xmpp.org/extensions/xep-0317.html>.
4RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

1

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0317.html
http://tools.ietf.org/html/rfc6121
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0369.html
https://xmpp.org/extensions/xep-0317.html
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121

3 DETERMINING SUPPORT

from=’hag66@shakespeare.lit/pda’
id=’n13mt3l ’
to=’coven@chat.shakespeare.lit/thirdwitch ’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<version xmlns=’urn:xmpp:muc -presence -versioning:0 ’ ver=’ver16 ’ />

</x>
</presence >

The MUC will return only those presences that have changed since the version indicated by
the client, and in the self-presence of the joining user it will add a <version> tag with a ’ver’
attribute set to the latest version number inside the <
pathhttp://jabber.org/protocol/muc#user}x> tag. The client must save the version number
(and continuously update with never versions as they’re received) and use that next time it
joins the MUC.

Listing 2: Service Sends New Occupant’s Presence to New Occupant
<presence

from=’coven@chat.shakespeare.lit/thirdwitch ’
id=’n13mt3l ’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<version xmlns=’urn:xmpp:muc -presence -versioning:0 ’ ver=’ver17 ’ />
<item affiliation=’member ’ role=’participant ’/>
<status code=’110’/>

</x>
</presence >

When presence versioning is enabled, every subsequent <presence/> stanza sent by the server
MUST include a new version number, which replaces the existing one saved by the client.

3 Determining support
If a MUC implements presence versioning, it MUST specify the ’urn:xmpp:muc-presence-
versioning:0’ feature in its service discovery information features, as specified in Service
Discovery (XEP-0030) 5.

Listing 3: Client queries for information about a specific MUC
<iq type=’get’

from=’romeo@montague.example/orchard ’
to=’room@muc.shakespeare.example ’
id=’info1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>

5XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

2

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

4 REQUIREMENTS

</iq>

Listing 4: The MUC advertises support for presence versioning
<iq type=’result ’

to=’romeo@montague.example/home’
from=’room@muc.shakespeare.example ’
id=’info1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
...

<feature var=’urn:xmpp:muc -presence -versioning:0 ’/>
...
</query >
</iq>

4 Requirements
4.1 Always broadcast presence for affiliated users
A MUC that supports presence versioning MUST broadcast presence for all affiliated users,
including those who are currently ’unavailable’. Multi-User Chat (XEP-0045) 6 documents the
status code ’102’, which is used to indicate that a MUC shows unavailable members.
The only exception is when a MUC has been explicitly configured to only broadcast presence
from occupants above a certain affiliation, (see the presence broadcast section of Multi-User
Chat (XEP-0045) 7).
In order for a user to permanently join a room, and therefore become affiliated so that they
are included in presence broadcasts, they MAY be allowed to register themselves as members
in the MUC. Multi-User Chat (XEP-0045) 8 describes in section 7.10 ”Registering with a Room
how a user may register themselves with a room, thereby receiving the ”member” affiliation
and having their preferred nickname reserved in that room.

4.2 Include a reset token when the client’s version number has expired
If a MUC receives a presence version number that’s so old, that it no longer has the corre-
sponding state available, it MUST include a <reset> token in the first <presence> stanza it
sends (regardless of whom in theMUC the presence relates to). The first presence stanza MAY
be from the MUC itself (as shown in the example below). Afterwards, the MUC MUST then
send all presences (including ’unavailable’ for affiliated users) as if the client is starting from
a blank slate.

6XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
7XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
8XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.

3

https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html#enter-pres
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html#register
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html
https://xmpp.org/extensions/xep-0045.html

7 IANA CONSIDERATIONS

Listing 5: Service Sends a Reset Token
<presence from=’coven@chat.shakespeare.lit’

id=’r3s3t -m3’
to=’hag66@shakespeare.lit/pda’>

<x xmlns=’http: // jabber.org/protocol/muc#user’>
<reset xmlns=’urn:xmpp:muc -presence -versioning:0 ’ ver=’ver36 ’

/>
</x>

</presence >

5 Business Rules
Even if the client did not include a <version> tag with a ’ver’ attribute in its ”join” <presence/>
stanza, the server SHOULD still return a <version> tag with ’ver’ attribute (set to the latest
version number) on all relevant <presence/> stanzas. This allows clients to bootstrap MUC
presence versioning without having to do a service discovery query first.
If the client has not yet saved a presence version number and the corresponding presence
states, then it MUST bootstrap presence versioning by sending a ’ver’ attribute set to the
empty string (i.e., ver=””).
In some cases, the presence states being kept track of by the MUC service MAY be reduced
to a minimum of only two states, ’available’ and ’unavailable’. This can drastically reduce
the number of states the server needs to keep track off, at the cost of not allowing users to
provide more fine-grained reporting of their level of availability.

6 Security Considerations
The MUC service should strip the <version> tag from the user’s <presence> before relaying it
to other occupants, to avoid leaking information on when last the user joined the MUC.

7 IANA Considerations
None.

4

8 XMPP REGISTRAR CONSIDERATIONS

8 XMPP Registrar Considerations
8.1 Protocol Namespaces
The XMPP Registrar 9 includes ’urn:xmpp:muc-presence-versioning:0’ in its registry of proto-
col namespaces (see <https://xmpp.org/registrar/namespaces.html>).

• urn:xmpp:muc-presence-versioning:0

8.2 Protocol Versioning
If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

9The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

5

https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/registrar/

	Introduction
	How it works
	Determining support
	Requirements
	Always broadcast presence for affiliated users
	Include a reset token when the client's version number has expired

	Business Rules
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Protocol Versioning

