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Direction Interval Retrieval With Thresholded
Nudging: A Method for Improving the Accuracy of
QuikSCAT Winds
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Abstract—The SeaWinds scatterometer was developed by in these regions: direction interval retrieval (DIR) to address
NASA JPL, Pasadena, CA, to measure the speed and direction of the nadir performance issue and thresholded nudging (TN) to
ocean surface winds. It was then launched onboard the QuikSCAT improve ambiguity removal at far swath. These two algorithms

spacecraft. The accuracy of the majority of the swath and the size . .
o?the swath are such tﬁ/at the See{Wirilds on QuikSCAT Mission are now performed operationally by the JPL Ground Processing

(QSCAT) meets its science requirements despite shortcomings atSystem. The combined algorithm is referred to as direction
certain cross-track positions. Nonetheless, it is desirable to modify interval retrieval with TN (DIRTH). The DIRTH wind vectors

the baseline processing in order to improve the quality of the less (as well as wind vectors produced without DIR) are included in
accurate portions of the swath, in particular near the far swath the QuikSCAT wind data product. In this paper, we discuss the

and nadir. Two disparate problems have been identified for these . . . .
regions. At far swgth, angbiguity removal skill is degraded due underlying theory behind the new algorithms (Section I1) and

to the absence of inner beam measurements, limited azimuth €mpirically compare their results (Section Ill) to those from the
diversity and boundary effects. Near nadir, due to nonoptimal baseline wind retrieval method. Wind vector accuracy relative

measurement geometry, (measurement azimuths approximately to analytical wind fields (ECMWF) and buoys are presented
180° apart) there is a marked decrease in directional accuracy for both the baseline and DIRTH cases

even when ambiguity removal works correctly. Two algorithms ’
have been developed: direction interval retrieval (DIR) to address .
the nadir performance issue and thresholded nudging (TN) to A. Review

improve ambiguity removal at far swath. We illustrate the impact Before discussing the new algorithms in detail, we first
of the two techniques by exhibiting prelaunch simulation results o0\ some of the general theory of wind scatterometers as
and postlaunch statistical performance metrics with respect to . .
ECMWF wind fields and buoy data. well as some featurgs peculiar to the QSCAT instrument. A
scatterometer is a microwave radar that measures the normal-
ized backscatter cross sectign Geophysical model functions
(GMF) have been developed empirically to map ocean wind
speed and direction te, [2]-[6]. The theoretical basis of this
. INTRODUCTION relationship is the action of wind on small-scale (capillary)
EAWINDS on QuikSCAT (QSCAT) was designedocean surface waves, which in turn affect the ocean surface
y NASA JPL to measure ocean surface wind fielddackscatter [7] (for a detailed overview of scatterometry, see
End-to-end simulations performed to estimate the performar]d4). Fig. 1 illustrates the QSCAT-1 model function, the most
of QSCAT prior to its launch indicated that the directional aacecent GMF used for QSCAT [5]. Thg-axis in Fig. 1 isog
curacy of the wind vectors varies across the swath. Postlaurctpressed in dB. The-axis is the angle between the radar
comparisons between scatterometer data and analytical wirechm and the wind direction. This figure represents the model
fields support this conclusion, as does visual inspection of thenction for V-polarizedso with a 54 incidence angle. Cases
scatterometer wind fields. At far swath, ambiguity removal skilvith different incidence angles and polarization are numerically
is degraded due to the absence of inner beam measurematiffgrent but similar in form.
limited azimuth diversity and boundary effects. Near nadire From Fig. 1, one can conclude that a singlemeasurement
to nonoptimal measurement geometry (measurement azimuflogs not contain enough information to uniquely determine a
approximately 18D apart), there is a marked decrease in diregvind vector. Multiple measurements from different look geome-
tional accuracy even when ambiguity removal works correctlifies are required. In the past, the need for multiple looks has
Two algorithms have been developed to improve wind retrievaten met by using multiple fan-beam antennas. This configu-
ration has been used for all previous spaceborne scatterometers
Manuscript received November 21, 2000; revised August 15, 2001. This wdcluding the NASA Scatterometer (NSCAT) [1] and the Euro-
was supported by the National Aeronautics and Space Administration (NASfean Research Satellite scatterometers (ERS-1 and ERS-2) [17].
Washington, DC. This work was performed at the Jet Propulsion Laboratopjgyy QSCAT’s look geometry is designed to obtain these dif-
California Institute of Technology, Pasadena, CA. . L. .
fgring measurements is illustrated by Fig. 2.
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Fig. 1. QSCAT1 geophysical model function. Theaxis represents the azimuth component of the angle between the wind direction and the radar beam. The
y-axis is the normalized backscatter cross section in dB. The multiple curves represent different wind speeds. All the plots are done for Vhpaakizdtio
incidence angle which correspond to the QSCAT outer beam.
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Fig. 2. QSCAT viewing geometry. (a) and (b) depict the sweet-spot and nadir-viewing geometries, respectively. Black squares depi@5&knvind vector
cells. The four spacecraft locations from which the cell is viewed are depicted by dots. Arrows from the dots to the squares indicate the viewmgailesit
depict rotations of the inner and outer beams. The nadir track is represented by a dashed line and the outer edges of the swath by solid lines.

two beams differ in incidence angle @6inner beam; 52, apart between fore and aft looks. As we shall see in Section I,
outer beam) and polarization (H pol, inner beam; V pol, outdhis is also a suboptimal viewing geometry. For a more detailed
beam). For most of the swath, every 25 km25 km cell on discussion of the QSCAT instrument, see [8].

the ground is measured using four different look geometr . )

configurations. Fore and aft measurements are obtained For Baseline Wind Retrieval

each beam. The viewing geometry differs across the swathBefore we discuss changes to the wind retrieval algorithm,
For the outer portions of the swath, the viewing geometry ige first describe the baseline technique. Wind retrieval was im-
suboptimal: no inner beam measurements are available gheimented for the NASA Scatterometer (NSCAT) and, initially,

as the extreme edge of the swath is approached, the azimighQSCAT as a two step procedure: 1) a pointwise maximum
diversity of the measurements approaches zero. At nadir, béikelihood estimator to calculate a set of likely wind vectors and
beams are available, but the antenna azimuths are nearly 180a median filter to select the best vector from the set. In the
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After the maximum likelihood step is performed, median fil-
tering is used (with a & 7 window size) to select among the
available solutions (ambiguities) [13], [14]. This process is ini-
tialized by selecting the closest of the two most likely ambigui-
ties to an analytical wind field. The initialization step is referred
to asnudging Thetwo most likely ambiguities are used for his-
torical reasons. For NSCAT, by far the most common set of am-
biguities was two likely ambiguities approximately f&part
and two other ambiguities with much lower likelihood values.

Il. ALGORITHM

Two algorithms have been developed, direction interval re-
trieval (DIR) to address the nadir performance issue and TN to
improve ambiguity removal at far swath.
TS SRS SO 0000 USSR UENOO SO SRS NOIOY S S DIR is a set theoretical estimation technique [9]. It is similar
0 %0 60 g0 120 180 180 210 240 270 300 330 30  tO the conventional (NSCAT) wind retrieval technique in that
lal rection (degre: . . . . .
ind Direvton (degrees) first a set of wind vectors are determined which are consistent
Fig. 3. Wind vector probability maps for (a) a sweet spot wind vector ceWith the data (solution set), then median filtering is used (spa-
(ChrOSS-track IndegdZO) and (?) aknadlrfwmd VeCrEOT ;;" (Cross-tfng lnddex 3gial information incorporated) to select a solution vector from
Thex-axis is wind direction clockwise from north. Theaxis is wind speed in . . . .
m/s. Darker regions are more probable. Regions of 80% probability are enclogabS S_et‘ DlR_d'ﬁers f“?”f' the conventional method in that the
by thick solid lines. Thin solid lines depict the best speed ridges for the inner ai@lution set is not a finite set of vectors, but rather a set of
outer forelooking measurements. Dashed lines depict the best speed ridgegifgjoint one-dimensional (1-D) curves in the two-dimensional
the two sets of aft-looking measurements. Each peak of the objective functj . . . . .
is denoted by ark. @D) space of wind speed and dlrectlon.. The range of wind di-
rection spanned by each of these curves is determined by a prob-

abilistic analysis of the noise on the measurements and its effect

first step, a search is performed in the space of all possible wig e directional discrimination information available (see Sec-
directions and speeds (a speed range of 0-50 m/s is presur%gl)”_A)

to maximize a function that represents the likelihood that a cer-rp is a technique for optimizing the manner in which ambi-
tain trial wind direction and speed is the actual ocean surfagfir, removal is initialized. In the baseline wind retrieval algo-
wind speed and direction existent when themeasurements iy, the closest of the two most likely ambiguities to a co-lo-
were obtained. The likelihood function is cated numerical weather product (NWP) wind vector is used to
0; — ol (1, B) 2 initialize the median filter. With TN, the number of ambiguities
flu, ¢) = Z <$> (1) available for initialization is not limited to two; instead it is de-
7 termined by thresholding the likelihood values associated with
the ambiguities. In this manner, fewer ambiguities are consid-
ered in regions of high instrument skill and the impact of the
WP field is lessened. On the other hand, in regions of lower
instrument skill, more ambiguities are considered and the im-
Ract of the NWP field is heightened (see Section II-B).

%

The value of theth o measurement isy;. The corresponding
calculatedro measuremend(,(u, ¢) is obtained from the trial
wind speedy, direction¢$ and measurement geometry via th
GMF. The expected standard deviation, of theith oo mea-
surement is computed from known characteristics of the inst
ment noise. The trial wind speeds and directions corresponding . . .

to maxima of the likelihood function are found by a heuristié" Direction Interval Retrieval

search technique. The maximum likelihood estimator alone had-or QSCAT, the rate at which the likelihood value drops off
been shown to be insufficient to choose a unique wind vectistom the maxima varies with cross-track distance. For wind
[10]. For a small set of measurement azimuth angles, multiplector cells near nadir, there are large ranges of direction over
wind vectors may yield the same setwf values. Even if there which the likelihood value is relatively similar and it is inaccu-
are enough measurements from enough different azimuth angkese to represent the set of likely wind vectors by the likelihood
to preclude this possibility, the addition of noise can still leasthaxima alone. The DIR method addresses this problem by cal-
to multiple solutions of significant likelihood. For this reasongulating a solution set for each wind vector cell which includes
a discrete set of feasible solutions are obtained rather thaa eange of wind directions around each likelihood maxima. The
single solution. The solution set thus obtained is the set of loaaltent of the ranges is determined independently for each wind
maxima of the likelihood function. For NSCAT, this solutionvector cell according to the specific shape of the likelihood func-
set resulted in acceptable directional accuracy. The likelihotdn for that cell. Fig. 3 depicts the difference in the shape of the
function dropped off quickly in the neighborhood of the locdikelihood function for a nadir QSCAT wind cell and a wind
maxima, so that the chance of the true wind vector being fegll in the optimal viewing geometry (sweet spot) portion of the
away from every vector in the solution set was small. As we shallvath. The likelihood values are depicted by gray scale pixels.
see, the previous statement is not true for scanning pencil-beBarker pixels indicate regions of greater likelihood. The bold
scatterometers like QSCAT. lines in the plots enclose regions of 80% probability. Given the
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Fig. 4. Simulated RMS direction error versus cross-track distance. Baseline and DIRTH methods are compared for four ranges of wind speedsarsing data f
25 simulated orbits. Cross track distance is defined to be the cross-track component of the wind vector cell position in km, with the nadir traxk set to z

QSCAT noise model, the true wind vector falls within this re- The endpoints of the segments are determined by estimating
gion with 80% probability. Notice that the 80% regions in therror bounds in a manner similar to techniques described in
NSCAT-like cell are much smaller than in the nadir wind cell[11] and [12]. These techniques estimate probability distribu-
so that choosing the likelihood maxima alone as a solution simns (and confidence intervals) for each measurement and then
is @ much better choice for the former than the latter. The thcmmbine information by intersecting solution sets derived from
lines represent the best speed ridges for the four sets of meanfidence intervals on each measurement. The DIR technique
surements (inner/fore, outer/fore, inner/aft, outer/aft). The basstead estimates a joint probability distribution for all the mea-
speed ridge is the curwe = b(¢) in the 2-D space of wind di- surements and then directly computes the solution set, yielding a
rection and wind speed determined by choosing the wind speethre accurate (and more time-consuming) result. Since most of
u, which maximizes the likelihood functiory,(u, ¢) for each the information needed for the calculation is already available
wind direction,¢. For the nadir cell case, the four best speeflom the maximum likelihood [ML] estimator and the search
ridges calculated from the four sets of measurements all neasfyace is limited to one dimension (by the best speed ridge as-
intersect for a large range of directions, leading to decreasedslimption) computational efficiency is not a problem.
rectional discrimination. We assume the various noigy measurements come from
The DIR technique is a set theoretical estimation techniqueutually independent Gaussian distributions. The means and
[9] that incorporates information from tlg measurements andvariances of these distributions can be calculated in a manner
amodel of the noise on those measurements in order to constrartsistent with the ML estimator algorithm. For a given wind
the solution set. Allowing the technique to consider all possiblector and known measurement geometry, the geophysical
sets of wind vectors would be time prohibitive, so a simplifyingnodel function is used to compute the conditional mean for
assumption must be made regarding the types of sets to be amach oy measurement. The variances are computed using
sidered. In the baseline technique, solution sets are four or feiapwn characteristics of the instrument noise. The means and
points on the best speed ridge corresponding to local likelihoedriances are then used to determi€{oy; }|u, ¢), the con-
maxima. In DIR, solution sets are generalized to four or feweitional probability density of obtaining the, measurements
segments of the best speed ridge, with each segment includirgiven the wind vector. The conditional probability is related to
local maxima. This choice of solution set is justified by the emthe likelihood functionf(u, ¢) by
pirical observations that likelihood drops off sharply for speeds
away from the best speed ridge and that whenever the wind di-
rection is determined accurately, the wind speed is as well.

)

P ({o0i}u, ¢) = kexp <f(u, ¢)>

2
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Fig. 5. Simulated RMS speed error versus cross-track distance. Baseline and DIRTH methods are compared for four ranges of wind speeds usirtg data from 2
simulated orbits.

for some constant. However, since the purpose of wind re- By combining (2) and (3) and limiting consideration to wind
trieval is to find the most likely wind vector for a given setf vectors on the best speed ridge we get
values rather than vice versa, a more relevant probability den-
sity function isP(u, ¢|{0;}), the probability density of wind P (pl{o0;}) = cexp <M>
vectors given an observed set«f values. This function when 2
integrated over any region in wind vector space yields the profar which the constant is chosen to satisfy the probabilistic
ability that a wind vector within that region has occurred givepientity
the observed backscatter measurements. The two probability o
density functions are related by Bayes’ Theorem, / P(¢|{o0:}) dp = 1.
0

Now that the estimation of the probability density function
P, |00 }) = P ({oo;: }|w, ) P(u, ¢) 3) (pdf) has been obtained, the solution set segments are deter-
’ Vif) = P ({o0:}) mined by thresholding the probability. Given a threshélda
set of directional intervals around each of the local maxima is
whereP(u, ¢) is the a priori probability density of wind vectorsselected such that the sum of the widths of the intervals is min-
and P({o¢; }) is the a priori probability density of, observa- imized, and the integral of the pdf over the interval€’is
tions. For a given set of measurement${oo; }) is a constant.  The choice of the thresholfl is an important consideration.

In order to restrict the solution space to the best speed rid§evalue that is too low, i.e., 0.1, results in a solution set that is
we let P(u, ¢) = 1/2x for (u, ¢) on the best speed ridge andoo small to sufficiently represent the uncertainty in the mea-
0 everywhere else. The ML estimator as used in the baselsw@ements. In such a case the DIR technique will not go far
technique omits”(«, ¢). This is mathematically equivalent toenough in reducing the near nadir directional error (the base-
assuming that in the absence of measurements, all wind spdedstechnique is identical to DIR witll" = 0). A value which
(within the range of 0—-50 m/s) and directions are equally likelis too high, i.e., 0.95, overestimates the uncertainty in the mea-
We make the same assumption with the additional constraintsafrements allowing the ambiguity removal step to oversmooth
limiting the nonzero probabilities to the best speed ridge. Thiee data. In simulatior]” = 0.8, the value used in producing
extra constraint is a heuristic simplification which improves thihe QSCAT wind data product, is found to be reasonable. Per-
computational efficiency of the algorithm. It is justified by theformance is found to be insensitive to small chang€g.ifThe
observation that probability density drops off rapidly with inchoice of1” deserves further study because simulation studies
creasing distance from the best speed ridge. and analysis wind field comparisons are insufficient to deter-
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Fig. 6. RMS direction difference from ECMWEF. Baseline and DIRTH methods are compared for four ranges of wind speeds. Difference is plotted sersus cros
track distance, using 4500 orbits of QSCAT data. Data flagged for rain is omitted from the statistics.
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mine its impact on mesoscale phenomena. Depending on h 100 I SR S S—
well mesoscale phenomena are preserved in the current proc T i :
T may be decreased to reduce smoothing or increased to i %0 £ — E?'RCT’E'V
prove noise removal. 80 N T O I s Baseline
Once the solution set has been calculated for each wi 20 30 40 50 60 70 80 90

vector. Ambiguity removal is performed to select a uniqu 44,
solution vector from each solution set. A two-step procedul

is employed. First, one of the disjoint segments that compos  gp
each solution set is selected by performing ambiguity remov

in the usual mannérAmbiguity removal is performed on the 80
local likelihood maximas and the segment which enclost 2 (b)
the selected maxima is chosen. Next, a unique vector witt 100
the chosen segment is selected by iteratively choosing t*g e
vector which is closest in direction to the median vector of thg 90 |~
surrounding % 7 windows Each wind vector cell is initialized p
by the maxima within the selected segment. Wind vectorsa 80,0 o= o0 e 70 80 %0
not updated until after each median filtering pass is complet Directional Difference From Buoy (degrees)
Passes continue until no wind vectors change by more thar. __ (©

threshold amount (5 or a maximum number of passes (10029. 8. Cumulative probability of directional difference from buoys. Three
SCAT data sets were compared: DIRTH, TN only and baseline data. Results

is exceeded. In praCtise'. the maximum nu.mt.)er of passgs,@e further divided into three cross track locations: (a) far swath (750-900
seldom reached and typically the vast majority of the winkin), (b) sweet spot (400700 km) and (c) nadir (0300 km). iHais is the

vectors are determined by the fourth pass. directional difference from the buoy wind vector. Theaxis is the cumulative
y P probability. A point on the curvey( y) indicates thay% of the buoy hits had

. directional differences less tharf. Buoy hits were restricted to a set of 24
B. Thresholded Nudging moored NDBC buoys more than 100 km from land. A buoy was co-located with

. . . P . & QSCAT wind vector if it was within 30 min in time and 25 km in distance.
. The base“ne_ nUd.gmg algomhm.Chooses an ambiguity to IIﬁ’ain-flagged cells and cells with buoy wind speeds less than 7 m/s were omitted.
tialize the median filter. The algorithm only allows one of the
two most likely ambiguities to pe chosen. The rationale for thaénked (highest likelihood) ambiguity is one({) = 1).
limit is based on NSCAT experience, where we assume that {h . . .
. e set the maximum rank for nudging by choosing the
scatterometer can choose the correct streamline and want the S . .
S - . number of ambiguities above a certain threshiddn relative
nudging field to select the proper ambiguity from that line. Thlek . . S
o L ikelihood. For example, if there are four ambiguities and
other reason for limiting to two the number of ambiguities from
: L . I . (1) > r(2) > r(3) > M > r(4), then the closest of the
which the nudging field can choose is to limit the influence qf . o : X .
S . .~ Tirst, second, and third ambiguities to the nudging field is
the nudging field and to rely on the scatterometer information as L T ) .
; S Sed to initialize the median filter. The optimal threshold is a
much as possible. If allambiguities are allowed to be selected . : L .
S . o ction of the quality of the nudging field. The value used in
the nudging field, the retrieved wind field would be very C|OSﬁ1 L
. . . . e QSCAT data producty/ = 0.2, was chosen to optimize
to the nudging field, defeating the point of making the measure-~, =~ . S . i
ment ambiguity removal skill in simulation. As we shall see in
The QSCAT situation is somewhat different from the NSCA ection ”ITC’ comparisons of Q.S(.:AT data with _buoys |_nd|pate
I hat TN with M = 0.2 results in improvement in ambiguity
situation. In the outer swath, the scatterometer cannot alwa Secti . . .

. S election over the baseline technique. These results imply that
select the correct streamline. A significant percentage of the 0.2 is reasonable for real data but not necessarily optimal
time (10-15% in simulation), the ambiguity closest to the truth” = yop ’
is the third or fourth ranked ambiguity. Given that situation,
one method that suggests itself is to use more ambiguities for
nudging in the outer swath. In this section, we discuss empirical comparisons between

The likelihood functionf can be converted into an estimatehe baseline wind retrieval technique and the DIRTH method.
of probability (see previous section). We calculaiative like- Three types of results are presented: comparisons to analytical

lihood (%), a quantity proportional t&({oq; }|u,, ¢;) for each wind fields, comparisons to buoys, and simulation results. Sim-

I1l. STATISTICAL ANALYSIS

ambiguity (u;, ¢;). ulation studies performed prior to launch were used in the de-
velopment of the DIRTH algorithm. Although the simulation re-
(i) = cexp <M) (4) sultsare superseded by results obtained later from real data, they
2 have the advantage that they can be compared with “truth.” Real

with some constant. The value ofc is chosen for each QSCAT data can only be compared with analytical wind fields
wind vector cell so that the relative likelihood of the firstVhich have their own sources of error, or buoy measurements
which are sparse and not entirely consistent with scatterometer
2with the exception that the median filter is initialized using TN. See the negheasurements. The simulations were performed using an exten-
section for more detail. _ sive high fidelity simulation package which has been developed
3The window size was chosen to correspond to the size used by the baseline b f ing | | d duri he NSCAT
median filtering algorithm. Additional window sizes deserve further study boffVEr @ number of years using lessons learned during the

for DIR and the standard algorithm. mission (see [15] for an overview of the simulation strategy
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Fig. 9. Example-selected ambiguity wind field. An example of the selected wind vectors in the QSCAT wind data product as computed with TN but without
direction interval retrieval. Note the noisy nature of the vectors along the nadir track.

employed and [16] for a detailed description of the QuikSCAlised to calculate the DIRTH speed once the DIRTH direction
End-To-End Simulator). For these reasons, we have includetias been determined. In any case the problem is small.
discussion of our simulation results along with the other com- Because these results are simulated, there are of course a
parison metrics. number of caveats worthy of examination. Perhaps, the most
unrealistic aspect of the simulation is the use dfx11° true
wind fields thereby eliminating small scale changes in the wind
field from consideration. Clearly, the DIR method, because it
Twenty five orbits were simulated using kX 1° ECMWF makes greater use of spatial information in determining the
fields as truth. Fig. 4 illustrates the selected (after ambiguity rednd vector, is more prone to losing high resolution informa-
moval) root mean square (RMS) direction error for the baselitien. Since DIR is applied preferentially to cases in which the
and DIRTH techniques. Results are depicted as a functiongfality of the directional information is subject to doubt, the
cross track distance for four ranges of true wind speeds. Wiluds of useful information is theoretically minimal. Clearly,
speed error results are depicted similarly in Fig. 5. the simulation results alone do not address this issue satis-
Applying DIRTH significantly improves the simulatedfactorily. We justify our choice of true field, by pleading the
directional RMS error across the swath for all four ranges &dck of realistic fields with small scale variation. All available
wind speeds. The most noticeable improvement is at nadmall scale fields of which we were aware are obtained from
where RMS direction error is improved by more tharf i@ previous scatterometers and thus have edge effects due to time
all wind speed ranges. For most wind speed ranges and crdsterence between passes or ambiguity removal problems.
track positions the RMS speed error is also improved althou§lich edge effects might drastically impact median filtering
not as significantly. One notable exception is a slight increaieereby producing confusing results. Another major caveat
in RMS speed error< 0.02 m/s) for wind speeds between 3of the simulation is that the geophysical model function was
and 5.5 m/s and cross track distance between 400 and 700tk@ated as the truth. Although random measurement errors were
on both sides of the swath. This degradation in performancedeled extensively, the GMF was assumed to be free from
may be due to quantization errors in the interpolation schemsgstematic error.

A. Simulation Study
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Fig. 10. Example DIRTH wind field. The same wind field as in Fig. 9, with direction interval retrieval performed.

B. Comparisons to ECMWF Wind Fields are plotted versus cross track distance for four ranges of

In this section, we compare QSCAT retrieved winds usifgCMWF wind speeds. Fig. 7 depicts the RMS speed differ-
both the baseline and DIRTH techniques with European Cenf&c€s similarly. Wind vector cells in which the QSCAT rain
for Medium-Range Weather Forecasts (ECMWF) analysis wisgntamination flag is set are omitted from the analysis.
fields. The 2 x 1° ECMWF wind fields were used and interpo- Applying DIRTH reduces the directional differences from
lated spatially (but not temporally) to the QSCAT wind vectoF CMWF significantly across the entire swath for all ranges of
celllocations. ECMWF wind fields are produced every six houind speeds. The impact is less than that observed in simulation
and each 100 min QSCAT orbit was only co-located with With the maximal nadir improvements of &ther than the more
single ECMWF field, so that the greatest possible temporal dframatic 10observed in simulation. The speed RMS difference
ference is three hours and 50 min. When on occasion a partiglues are similar for the baseline and DIRTH cases. The only
ular ECMWF wind field was unavailable, the orbits temporallpubstantial differences are slight advantages for DIRTH in the
co-located with that field were left out of the analysis. Of cours&)id swath region for the two highest wind speed ranges.
one must take these comparisons with a grain of salt. Clearly,The ECMWF comparisons differ from the simulated results
the time difference between QSCAT and ECMWF winds arid that the improvement due to DIRTH is smaller. There are
the spatial resolution difference (25 km versi$ dan lead to several reasons for this result. Notice that the differences from
substantial differences between the two wind fields even if boBCMWEF for both DIRTH and the baseline wind retrieval are
are error-free. For this reason, the magnitude of the differentich larger than the simulated error values. This result is ex-
between the fields indicates little about the absolute accurgmgcted because the difference from ECMWEF includes not only
of either the QSCAT or ECMWF fields. However, comparinghe errors in the QSCAT retrieved winds but also errors in the
QSCAT with ECMWEF is useful as means of comparing the reeCMWF wind fields, temporal differences between ECMWF
ative accuracy of the DIRTH and baseline wind retrieval tecland QSCAT and any high resolutiog (1° x 1°) information
niques, especially when used in conjunction with buoy compan the QSCAT fields. Also any systematic error in the model
isons and simulation results. function will produce errors in both sets of QSCAT winds. Sys-

Fig. 6 depicts the RMS direction difference betweetematic model function error was assumed to be zero in simula-
ECMWF and the retrieved winds. The directional differencegon.
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The addition of these extra sources of noise results in RMBRTH and TN-only cases. It is is important to note that the far
directional and speed differences being greater than the sirswath had significantly fewer buoy hits (1580) than the nadir
lated error values. It also results in a compression in the apparant sweet spot (3329 and 3300, respectively). Fig. 8(b) depicts
improvement due to DIRTH. DIRTH can reduce the errors ithe sweet spot direction difference probability functions. In the
the QSCAT retrieved winds and arguably smooth high resolsweet spot, all three wind retrieval methods compare similarly
tion information, but it has no impact on other sources of direesith the buoys. Fig. 8(c) illustrates the nadir case. Clearly, the
tional difference such as time differences between ECMWF aBdRTH wind retrieval scheme compares more favorably with
QSCAT or error in ECMWEF-. Due to these additional sources tfioys than does either of the other two cases. For the DIRTH
noise, the height of the nadir bumps in the baseline directiorwse, the directional difference from the buoys exceeds 20
accuracy curve are much less in Fig. 6 than in Fig. 4. DIRTbBhly 13% of the time as opposed to 20% for the other two wind
dramatically reduces the nadir bumps in both figures. The addétrieval methods. This difference is particularly dramatic,
tional noise sources also provide a possible explanation for thben one considers buoy directional errors as well as inherent
much poorer baseline directional performance and DIRTH irdifferences in the measurements (point measurements versus
provement at lower wind speeds, as one would expect erroriirkm averages) are contributing to the directional differences.
the ECMWF wind fields and high resolution information to be
more significant at lower wind speeds. D. Example Wind Field

In addition to computing performance statistics, one can de-
termine the effectiveness of a wind retrieval technique by ob-

In this section, we compare QSCAT retrieved winds witRerving the retrieved wind fields. Fig. 9 depicts a wind field ob-
co-located buoy wind measurements. Three wind retrieJ@ined using the TN algorithm only. Fig. 10 depicts the same
methods are examined: DIRTH, TN-only, and the baselifig!d with the DIR algorithm also employed. Notice that DIR
wind retrieval algorithm. Due to varying buoy heights, th&€leans up the noisy wind vectors along the nadir track without
wind speed measurements are not easily comparable betwis@pacting the abrupt change in wind direction in the northwest
buoys and scatterometer measurements. Wind speed vag¢Ri&er of the wind field.
significantly with distance from the ocean surface. The direc-
tions do not vary as significantly with height, so in order to
simplify our analysis and discussion, we only present direction IV. SUMMARY
comparisons. We analyzed co-locations with National Data
Buoy Center moored buoys between July 1999 and April 2000.In conclusion, end-to-end simulation studies and compar-
Only co-locations within 25 km and 30 min and with buoyisons of QSCAT data to analytical wind fields and buoy winds
wind speeds within the range of 7-30 m/s were included in thedicate that the DIRTH wind processing algorithms reduce
analysis. Buoys within 100 km of land were excluded. QSCA&rrors in the wind directions of the QSCAT wind vectors.
wind vector cells which were flagged for rain contaminatioPerformance improvement is especially evident for wind vector
were also omitted. In all, 9761 co-locations with 24 buoys werlls near the nadir track. Comparisons to buoy winds also
included in the analysis. indicate that TN results in a modest improvement in ambiguity

Fig. 8 depicts the cumulative probability of the differencesemoval at far swath.
between buoy wind directions and the directions from each of While, both simulation studies and analytical wind field
three cases: baseline wind retrieval, TN-only, and DIRTH. Cgomparisons fail to address the question of whether or not
mulative probability functions are reported for three portions ®&IR is oversmoothing the data, the comparisons with buoy
the swath: nadir, far swath and the sweet spot. Nadir was defingitids do address this question somewhat: one would expect
to be within 300 km of the nadir track, sweet zone from 400 tan oversmoothed wind field not to compare favorably with
700 km and far swath from 750 to 900 km. Transitional regiorimsioys (clearly the higher the resolution the more closely the
were omitted in order to better demonstrate the cross-track vavind field approximates point measurements). Near nadir, the
ations in performance. The outer two cross-track locations RTH winds compare more favorably with buoys than do
each side of the swath (cross track distanc#0 km) were also winds produced without DIR. In the rest of the swath, DIR and
omitted. These cross-track locations are only observed sporalle the standard technique compare similarly with the buoy
cally and exhibit poor wind performance. The curves depicteddata. These results suggest that any oversmoothing resulting
Fig. 8 are cumulative probability functions, with theaxis rep- from DIR is minimal. Furthermore, any oversmoothing in the
resenting directional difference from the buoys andsjkexis nadir region is overshadowed by noise reduction, yielding
representing percentage of co-locations. For example if a cusignificantly improved buoy comparisons. Nonetheless, the
passes through the poifit,y) = (20, 90) that means 90% of question of oversmoothing still deserves further research. There
the buoy co-locations had directional differences less thadn 2@re two DIRTH parameters which can be adjusted to further

Fig. 8(a) depicts the directional difference probabilitpptimize the noise reduction/oversmoothing tradeoff. These
functions for the far swath. TN results in a modest ambiguiigre the error bar probability’ (currently 80%) and the median
removal improvement in the far swath. Direction differenceffiter window size (currently 7x 7). Developing methods to
from the buoys greater than 90ccur 2.5% of the time for the improve these parameters would be an interesting avenue for
baseline wind vectors as opposed to 1.7% and 1.8% for thether research.

C. Comparisons to Buoy Winds
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