Content-Length: 96703 | pFad | https://zh.wikipedia.org/wiki/%E8%8E%B1%E5%B8%83%E5%B0%BC%E8%8C%A8%E4%B8%89%E8%A7%92%E5%BD%A2

莱布尼茨三角形 - 维基百科,自由的百科全书 跳转到内容

莱布尼茨三角形

本页使用了标题或全文手工转换
维基百科,自由的百科全书

莱布尼茨三角形是一種將分數等腰三角形排列的一種排列方式,三角形二側最外層的數字是其行編號的倒數,其中間的數字是其左側數字和左上方數字差的絕對值。若用代數方式表示:

L(r, 1) = 1/rr為行編號,最小編號為1)
L(r, c) = |L(r − 1, c − 1) − L(r, c − 1)|c為為列編號,不會大於r

莱布尼茨三角形是數學家戈特弗里德·莱布尼茨在1714年提出[1]。莱布尼茨三角形的前幾列為:

莱布尼茨三角形的分母列在(OEIS數列A003506)中,其分子均為1。

楊輝三角形中,每一項都是其左上方和右上方數字的和.而在莱布尼茨三角形中,每一項都是其左下方和右下方數字的和,例如在第五行中的1/30是第六行二個1/60的和。

楊輝三角形可以用二項式係數來計算,而莱布尼茨三角形也可以用二項式係數來計算:。而且可以用楊輝三角形中的項次來計算莱布尼茨三角形:「每一行的各項是第一項除以楊輝三角形中對應項次的結果」[2]

若將莱布尼茨三角形中第n行的所有分母相加,其結果會是。例如第3行的分母和為3 + 6 + 3 = 12 = 3 × 22

特別是的莱布尼茨三角形中的各項可以用以下的積分式表示:

相關條目

[编辑]

參考資料

[编辑]
  1. ^ Crilly, Tony. 50 Mathematical Ideas you really need to know. London: Quercus. 2007: 53. ISBN 978-1-84724-008-8. 
  2. ^ Wells, David (1986). The Penguin Dictionary of Curious and Interesting Numbers, p.98. ISBN 978-0-14-026149-3.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://zh.wikipedia.org/wiki/%E8%8E%B1%E5%B8%83%E5%B0%BC%E8%8C%A8%E4%B8%89%E8%A7%92%E5%BD%A2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy