Examining the
climate system’s

predictability

by David M. Legler, Director

ne of the fundamental

tenets motivating CLI-

VAR is that there is
some predictability in the cli-
mate system. While the predic-
tion community has successfully
demonstrated successful ENSO
predictions, there have been
some not-so great predictions
too. When it comes to produc-
ing consistent and skillful fore-
casts of North American temper-
ature and precipitation at lead
times of a season and longer,
have we reached the estimated
limits of predictability? What are
these limits and what processes
limit predictability? How should
the prediction skill of climate
models be calculated and com-
pared?

At the most recent Climate
Diagnostics and Prediction
Workshop (late October 2006),
there were several interesting
presentations addressing these
important topics. In this issue of
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Practices for
Seasonal-to-Interannual
Climate Prediction

Lisa Goddard, International Research Institute for Climate,
Martin P. Hoerling, NOAA Climate Diagnostics Center

ccuracy in seasonal-to-inter-
annual climate forecasts for
the United States (US)
remains a challenge. This
despite advances in understanding
sources of climate variability and pre-
dictability as well as improvements in
prediction tools. Our use of the tools has
greatly improved in the past decade with
the implementation of robust model bias
correction and multi-modeling strategies.
Furthermore, validation measures have
become more sophisticated, rating the
performance of forecast systems in a
manner more consistent with the proba-
bilistic world they describe. Still, further
room for improvement exists. This article
outlines the current practices of seasonal-
to-interannual climate prediction: current
understanding of the sources of variabili-
ty, the tools used to predict it, common
methodologies applied to those tools to
produce forecasts, and relevant verifica-
tion analyses with which to judge the per-
formance of the forecasts. These are fore-
casts of opportunity, which if used pru-
dently have potential to benefit decision-
making.
Background

Before discussing current prediction
practices and their accuracies, it is impor-
tant to distinguish between prediction and
predictability itself. The latter is a physi-
cal characteristic of the natural system,
and is not altered by forecasting method-
ologies. The tools used to make forecasts

are often employed, e.g. judging the
model against itself, in determining the
theoretical limit of predictability, and as
such predictability estimates can indeed
change (for non-physical reasons) as
models evolve. Nonetheless, it is often of
interest to know how the current skill lev-
els differ from the existing theoretical
limits because such knowledge guides
expectations for the skill impacts of
improved practices. However, given the
indeterminate nature of predictability
estimates, this report focuses on skill esti-
mates obtained by comparing model-
derived forecasts with the observed cli-
mate, emphasizing seasonal mean surface
temperature and precipitation variations
over the US.

Attributable causes of US
seasonal climate variability

Understanding US seasonal climate
variability is essential for exposing the
sources of its predictability. Seasonal
forecasting (when done at the minimal
15-day lead times beyond which deter-
ministic atmospheric predictions are skill-
ful) is effectively the practice of predict-
ing the climate signal due to external
forcings. These forcings include anom-
alous sea surface temperature (SST), soil
moisture, sea ice, and chemical con-
stituents. The resulting climate pre-
dictability is known as predictability of
the "second kind" arising from the influ-
ence of specified boundary conditions on
the atmosphere. For seasonal prediction
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Variations, two Workshop pre-
senters explore predictability.
First Ben Kirtman characterizes
predictability of ENSO SSTA
and then provides an analysis
that suggests ocean initial condi-
tions are an important factor for
ENSO predictability. Lisa
Goddard and Marty Hoerling
describe current practices of
seasonalto-interannual climate
forecasting and then go on to
explore methodologies for veri-
fying and quantifying climate
prediction skill in a probabilistic
sense for seasonal forecasts.

For longer time scales, the
predictability of decadal, multi-
decadal, and trend-like climate
variations is increasingly recog-
nized as an important research
frontier. John Marshall’s article
reports on a predictability work-
shop exploring Atlantic region
predictability and the elements
required for initiating experi-
mental decadal predictions.

Lastly, other articles report
on several US CLIVAR activities.
The most important of these sum-
marizes the outcomes of the
recent (July 2006) US CLIVAR
Summit where drought and
decadal variability/predictability
were recognized to be in need
of further coordination.

Variations
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practices using fully coupled Earth
System models, the notion of such a 2-
tiered system with external forcings van-
ishes, and predictability is of the "first
kind" arising solely from the initial Earth
System conditions. It is important to note
here that for seasonal prediction, longer-
term changes of external forcing that are
affecting the climate system, especially
increasing greenhouse gasses, may be
considered constant over the season,
although their changes from year to year
should probably be included in dynamical
models.

We will subsequently examine the
skill of forecasts generated from both 1-
tier and 2-tier systems. But, for purposes
of discussing seasonal predictability, it is
helpful to first consider the 2-tier system.
The climate responses to the specified
external forcings constitutes the "signal",
whose probability of occurrence (i.e. ver-
ification) depends upon the signal
strength relative to seasonal "noise" aris-
ing from internal atmospheric variability.
Two approaches have been used to esti-
mate such signals, and both focus on the
contribution of SST anomalies to season-
al variability. One involves analysis of
historically observed SST anomalies and
the accompanying global circulation and
surface climate impacts. This approach is
illustrated in the studies by Barnett
(1981), Horel and Wallace (1981), Ward
and Folland (1991), Barnston and Smith
(1996), to name only a few. An approxi-
mately correct atmospheric signal can be
identified forced by the ENSO-related
SST anomaly pattern, and to a lesser
extent by one or two more localized trop-
ical SST patterns (Hastenrath, 1995;
Anderson et al. 1999). The period of glob-
ally adequate observational analyses is
just long enough to resolve differences in
the relationships between different "fla-
vors" of ENSO SST forcing and climate
over the US (Larkin and Harrison, 2005),
but the record is not long enough to
robustly connect presently unrecognized
non-ENSO-related SST forcings and US
climate. In a second approach, atmos-
pheric models are used to simulate US
seasonal climate variations during the
past half century These find that ENSO
SSTA is the primary source of forecast

skill related to ocean influences, and that
in ENSO's absence skill is largely absent
(e.g. Goddard & Dilley 2005; Quan et al.
2006) (Figure 1).  Further research is
required to better understand the role of
non-ENSO ocean states in US climate
variability.

Additional open questions concern the
signals related to land boundary condi-
tions, sea ice states, and the influence of
anomalous atmospheric chemical compo-
sitions on US seasonal climate.
Especially noteworthy is that no current
dynamical practice for seasonal forecast-
ing incorporates the direct effect of anom-
alous chemical composition, and it is
unclear to what extent their implicit effect
is already incorporated via ocean states.
Among a suite of empirical tools
employed by NCEP in their operational
seasonal forecasts, the trend of surface
temperature has been found to explain a
large fraction of US seasonal temperature
variations during the past decades (Huang
et al. 1996), and this tool explains the
majority of US temperature forecast skill
at lead times greater than 1 season. Yet,
neither the strength, seasonality, nor
regionality of such trends have been dis-
tinguished from possible transient
decadal variations. This leaves open the
question on the best practice for including
trends and their climatic forcings into sea-
sonal prediction practices.

Current prediction tools and
methodologies

The tools used for prediction, as men-
tioned above, include empirical models
and dynamical models. Individually,
empirical models continue to be competi-
tive with dynamical models, which attests
to the dominance of the linear ENSO sig-
nal as the primary skill source over the
US. It is not clear if this will continue to
be the case if anthropogenically induced
changes in the mean state impact the
expression of climate variability, such as
the teleconnection responses to El Nifio
conditions in the tropical Pacific or even
the expression of ENSO itself.
Conversely, the extrapolation of trends by
the empirical models has kept pace with
the recent increases in the strength and
spatial coverage of above-normal temper-
atures over the US better than the dynam-
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ical models used for seasonal predic-
tion (not shown). The most notable
change in the armory of prediction
tools has been the increasing use of
coupled general circulation models
(CGCMs) over atmospheric general
circulation models (AGCMs). In theory
CGCMs are superior to AGCMs
because the two-way interaction
between ocean and atmosphere can
proceed realistically; whereas in an
AGCM the ocean does not respond to
the atmosphere, which leads to unreal-
istic air-sea heat fluxes over most
regions. One exception is the ENSO
region (i.e. near-equatorial Pacific)
where the ocean largely forces the
atmosphere interannually. US seasonal
forecast skill obtained with AGCMs is
expected to be comparable to that from
CGCMs, because the currently realized
skill in US terrestrial climate derives
primarily from ENSO SSTA, To date,
CGCMs still contain substantial biases
in their representation of important
boundary fields, such as SSTs. As a
result, CGCMs currently do not out-
perform AGCMs. That they have the
potential to do so suggests possible
future improvements to climate predic-
tions as biases in CGCMs are diag-

nosed and minimized.

Given the existing biases in predic-
tion tools, considerable effort has gone
into methodologies that can identify
and reduce them. The simplest of these
removes the mean bias of the model cli-
matology, and casts the prediction as
anomalies relative to some base period.
More complex, though less generaliz-
able methods attempt to spatially cor-
rect patterns of anomalous climate due
to inadequately resolved topography, or
poorly captured  teleconnection
responses (Landman & Goddard 2002,
Tippett et al. 2003). Recently, efforts
have focused on attempting to recali-
brate the probabilistic response of the
model (Doblas-Reyes et al. 2005).

While these methodologies do
improve individual model performance,
one still finds that some climate signals
are captured by some models and not
others. This suggests that in addition to
sampling the uncertainty arising from
imperfect knowledge of initial condi-
tions, the uncertainty arising from
imperfect knowledge of the physical
processes must also be sampled, specif-
ically those represented through para-
meterizations. Substantial improve-

ments in overall “predictionability” have
been achieved through the combination of
several models, so called multi-model
ensembling (e.g. Robertson et al. 2004).
As will be shown below, since all models
do not always share the same strengths
and weaknesses, by combining them into
a single probabilistic forecast the spatial
coverage of positive skill increases, and
negative skill is reduced. This improve-
ment in skill has been shown explicitly to
result from the increase in model number
rather than just the increase in realizations
(Palmer et al. 2000). Another important
result of multi-model ensembling is the
dramatic improvement in the reliability in
probabilistic forecasts.

One implicit criterion for combining
multiple models is that they all perform
‘adequately’. If one model were found to
be measurably worse than the others, it
should be dropped. In some cases, the
combination algorithm considers past
performance of the models, assigning
weights accordingly (Rajagopalan et al.
2001).  Unfortunately  performance
weighting requires long histories (40+
years) of model forecasts in order to
determine relative model performance
robustly. This becomes a problem for
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Figure 2. . ROC areas for DJF temperature forecasts at 1-month lead for
the period 1981-2001. The AGCM was forced by predicted SSTs. The
multi-model forecast is based on equal weighting of 3-category proba-
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most CGCMs used for seasonal predic-
tion because the observational data
required for their initialization does not
exist prior to the 1980s. With only 20+
years of retrospective forecast data, it
becomes difficult to assign meaningful
weights  to  individual = models.
Methodologies for synthetically extend-
ing a retrospective forecast history or for
combining models that could circumvent
the limited model history and still allow
for performance weighting could greatly
improve the skill of the resulting fore-
casts.

Forecast system validation

Several measures of forecast valida-
tion exist, sometimes giving a different
picture of where, when, and which pre-
diction practice yields the most accurate
forecasts. In general the use of more than
one measure of validation is desirable,
and in Figure 1 we have already shown
skill based on the rank probability skill
score. In this section we highlight addi-
tional measures that provide valuable
information about US prediction skill.
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The first is the area under the relative
operating characteristic (ROC) curve. For
a particular grid point or region, these
curves indicate the percentage of hits and
false alarms yielded by the forecast sys-
tem for a given event (e.g. above-normal
tercile category), under varying levels of
confidence in the forecast. If the event
were perfectly predictable by the forecast
system, it would have a hit rate of 1.0 and
no false alarms. The area under the curve
would be 1.0. If the system were unable
to distinguish between a hit and a false
alarm, those rates would be equal, and the
area under the curve would be 0.5, which
is considered the level of no skill.
Negative skill is indicated by values less
than 0.5. What is particularly useful about
ROC areas is that they can indicate con-
dition skill, for instance, higher hit rates
for the upper tercile category than the
lower one. An example is shown in
Figure 2, which illustrates that forecasts
of above-normal temperature have wit-
nessed higher skill than below-normal
temperatures for the Dec-Jan-Feb season
during the 1981-2001 period. Figure 2

also illustrates some of the other points
raised in the previous section regarding
AGCMs, CGCMs and multi-model
ensembles. In particular, there is little
difference in skill of the AGCM versus
CGCM practices, and the multi-model
combination of all dynamical systems
exhibits the greatest skill.

The second validation diagnostic of
forecast performance we demonstrate is
reliability. This measure is particularly
important as it indicates the extent to
which forecast probabilities mean what
they say. A striking characteristic of all
dynamical models is that their probabili-
ty forecasts are over-confident (Figure
3). There is no distinction between
AGCMs and CGCMs in this shortcom-
ing. Some improvement can be achieved
by recalibrating the probability distribu-
tions of the individual models (not
shown). The greatest improvements are
obtained by combining the models, here
accomplished by simply averaging the 3-
category probabilities of the 8 CGCMs
and the 3 AGCMs. There is a negative
consequence of such a process, namely
that the sharpness of the resulting fore-
casts is reduced (i.e., fewer high proba-
bility forecasts are indicated). Ideally,
one wishes to retain as sharp as possible
a forecast while ensuring reliability.
Work continues towards this goal.

Outstanding questions and
room for improvement

What are core activities for improv-
ing climate forecasting practices?
Developing new models of the atmos-
phere-ocean-cryosphere-land system,
ensuring sustained long term observa-
tions, enhancing data assimilation tech-
niques, and improving understanding of
seasonal climate variability are essential.
A commonly used metric for measuring
the impact of such activities is the skill
and reliability of forecasts. In this report
the skill attributes of existing and emerg-
ing dynamical methods of seasonal pre-
dictions have been examined.

A relevant question concerns whether
U.S. seasonal prediction skill is advanc-
ing with newer generation models.
Considerable investment has been devot-
ed towards improving climate models, in
part for the purpose of advancing season-
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al predictions. Recent examples include
new efforts to implement an updated
global coupled forecast system with
increased resolution and improved
atmospheric and oceanic components at
NCEP (to be called the Coupled
Forecast System (CFS03)), with similar
efforts underway at NASA/GMAO
including their plan to use a global 1°
resolution atmospheric model. An
implicit assumption behind such efforts
is that newer generation dynamical
models will lead to improved skill. We
know, for example, that predictability
exists in the extra-tropical climate that
the current generation of models are not
realizing (Anderson et al. 1999).
Analogies may also be drawn from
weather forecasting experience where
steady improvements in models and
data assimilation techniques resulted in
progressively improved weather predic-
tions. It may be that the seasonal predic-
tion models are presently neglecting
some important external forcings, such
as the increasing greenhouse gasses in
the atmosphere, which can affect the
characterization (and bias corrections)
of the model climate over periods of
years. Poorly represented interactions of
the atmosphere with the land surface
and with the cryosphere may also ham-
per the skill of seasonal predictions over
the US. Another aspect of the climate
system that is typically not well repre-
sented in the seasonal prediction models
is the interaction between the strato-
sphere and troposphere (Baldwin and
Dunkerton, 1999), which has demon-
strated occasions of predictable evolu-
tion and subsequent influence on the ter-
restrial climate over the northern mid-
latitudes. Even if the model develop-
ment improves simulations of seasonal
climate variability, seasonal prediction
skill will nonetheless be limited by
inherent signal-to-noise considerations.
The relevant question becomes whether
the new generation of dynamical models
yield signal-to-noise ratios that more
accurately reproduce those in nature. It
is therefore important to continually
document and analyze the seasonal pre-
diction skill from the improved dynami-
cal prediction systems, and to cast those
performances within improved knowl-
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U.S. CLIVAR Madden-Julian
Oscillation (MJO)Working Group

Meeting Summary

Duane Waliser, NASA Jet Propulsion Laboratory
Ken Sperber, Lawrence Livermore National Laboratory

n July 2006, the U.S. CLIVAR

Madden-Julian Oscillation (MJO)

Working Group (MJOWG) held its
first working group (WG) meeting in
association with the U.S. CLIVAR
Summit in Breckenridge, CO. The first
meeting followed up on a series of month-
ly telecons in which the objectives of the
WG were discussed and agreed upon. In
addition, the website associated with the
group’s activities was formulated and
developed:

(http://www.usclivar.org/Organization/M
JO_WG.html), and substantial headway
was made in regards to one of the chief
goals of the WG, namely, the formulation
of MJO metrics that can be applied to
model simulation assessments of the
MJO. The one and a half day meeting
was attended by six of the ten WG mem-
bers Maloney, Moncrieff, Sperber,
Waliser, Weickmann, and Zhang), two
substitute members (Higgins for Wang,
Stern for Donner), and two international
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participants (Hendon and Woolnough).

The workshop agenda was largely
devoted to the further development and
refinement of a set of metrics for validat-
ing climate model simulations of the
MIJO. In addition, there was discussion of
metrics for MJO forecasts, follow-on
objectives for the WG in terms of model
experimentation, future workshops and/or
WG meetings. The workshop also provid-
ed a venue for the participants to become
more familiar with how the applications
community views prediction/simulation
of the MJO. To this end, two formal pre-
sentations were given (both posted on the
MIJOWG web site). The first presentation
was given by W. Higgins on the Climate
Prediction Center’s (NCEP/NOAA)
Experimental Global Benefits and
Hazards Assessment, particularly in
regards to the role the MJO plays in this
assessment. The second was by Andrea
Ray on Applications at the Climate-
Weather Interface that included discus-
sions on potential users and applications
of subseasonal forecast information, par-
ticularly in relation to the US and
NOAA’s Regional Integrated Sciences
and Assessments (RISA) program.

To summarize the efforts of the
MIJOWG, the figure below provides a
summary to date of the past and future
activities. Notable was the momentum
the WG received from a number of
recently held meetings. These included
the: 1) WCRP/THORPEX meeting on the
MJO and Tropical Convection in Trieste,
Italy in March, 2006, 2) the AGU session
on subseasonal variability in Baltimore in
May, 2006, and the NCAR/TIIMES
Retreat on Convection in Boulder in July,
2006. Expectations for the future are that
the metrics for the assessment of model
simulations of the MJO will be completed
late in 2006, with the discussion and
development of metrics for model fore-
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casts of the MJO being a primary activity
in late 2006 and early 2007. The
MJOWG intends to post onto the
MJOWG web site the metric calculations
as applied to the observations in the form
of both the data and graphs/maps (and
possibly sample code for the more com-
plex metrics), as well as their application
to a small set of model simulations.
Subsequent to the development of the
metrics, the WG will hold a second meet-
ing to discuss plans for specific model
simulation and/or forecast experimenta-
tion that would form the basis for a work-
shop in late 2007 or early 2008. The pro-
posed theme for the workshop is “New
Thinking, Tools and Resources for
Assessing and Improving the MJO”. The
workshop would stress: 1) new thinking,
in terms of: multi-scale structure of the
MJO, emphasis on its vertical structure,
utility of the forecast framework for
model diagnosis, and the weather-climate
interface, and 2) new tools and resources,
in terms of the wide range of new satellite
data, in-situ resources (e.g., GOOS,
Indian Ocean Array), and multi-scale
modeling approaches (e.g., MMEF, large-
scale/global CRMs) that have become
available/feasible. For continued updates
of the activities and plans of the MJOWG,
please visit the MJOWG web site.m

New U.S. CLIVAR Chair

by David M. Legler

The end of 2006 marks the end of an era as Bob Weller (below left),
chair of the U.S. CLIVAR Comnmittee, takes a well-deserved rest as chair
of U.S. CLIVAR. Bob served on the U.S. CLIVAR SSC since its inception
(T1999), and has been its co-chair/chair for the past 5 years (starting in
2001). Despite his numerous obligations to lead scientific cruises and
serve on other panels, committees, and study groups, Bob could be
counted on to always be out front pushing U.S. CLIVAR forward within
the scientific and programmatic communities. Bob - we will miss your spir-
it and positive can-do attitude - job well done!

I'm excited to be able to introduce Marty Hoerling (below right)
who has agreed to serve as the new U.S. CLIVAR Chair effective at the
beginning of 2007. Marty’s expertise and interest in global climate
changes and their prediction and attribution bodes well for U.S. CLIVAR.
Although Marty does not relish cruising to remote parts of the ocean, |
am confident that under his leadership we’ll take exciting voyages
through some interesting places!
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Atlantic Decadal Predictability potenily b predintle

Workshop Summary

John Marshall
Massachusetts Institute of Technology

c. Discuss strategies for initializing
models for decadal prediction

d. Initiate efforts to catalyze US
research on Atlantic predictability and

bservations are showing that

major shifts in regional climate

in the Atlantic sector have
occurred on time scales as short as
decades, and are likely impacting hurri-
cane activity, droughts, sea ice, rainfall,
the Arctic and ecosystems. The invest-
ments the community has made in paleo-
climate research, climate dynamics, cli-
mate modeling, and observing systems
are providing the tools needed to better
understand and ultimately predict such
shifts.

predictions.
Workshop presentations

Workshop presentations addressed the
degree to which observed Atlantic
decadal and longer fluctuations are
anthropogenically forced; decadal-scale
fluctuations in Gulf Stream circulation
characteristics, and their climatic rele-
vance; the influence of Atlantic SST
changes associated with the Atlantic
Multi-decadal Oscillation (AMO) versus
remote ocean basins on regional Atlantic
and North American climate fluctua-
tions; (continued on page 11)

A workshop was held at GFDL in
June, 2006, to explore community
interest in the development of an exper-
imental decadal prediction capability
with an Atlantic focus. Some 25
researchers actively involved in
decadal variability and predictability
came together for a 2-day meeting.

The goals of the workshop were to:
a. Summarize aspects of what is
known about decadal Atlantic variabili-

ty, both in terms of observational analy-
ses and physical mechanisms
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U.S. CLIVAR

The Predictability of ENSO

Ben Kirtman

George Mason University and the Center for Ocean Land Atmosphere Studies

here is currently a debate

regarding the processes that

ultimately limit the pre-

dictability of the EI Nifo-
Southern Oscillation (ENSO). According
to this debate, ENSO may be in one of
three regimes. In first regime, ENSO is
intrinsically chaotic due to the non-linear
dynamics of the coupled system. The
loss of predictability is primarily due to
the uncertainty in the initial conditions.
In the second regime, ENSO is self-sus-
tained (due to weak non-linearity) and is
periodic, i.e., perfectly predictable. The
irregularity of ENSO is due to external
weather noise and the loss of predictabil-
ity is primarily due to this external sto-
chastic forcing. In the third regime,
ENSO is damped and stochastically
forced by external weather noise. The
non-normality of the coupled system
allows for limited time super-exponen-
tial perturbation growth, and the pre-
dictability is limited by the stochastic
forcing exciting these optimally growing
modes or how efficiently initial condi-
tion errors project onto the optimally
growing modes. Put simply, the current
debate is that ENSO predictability is
either limited by initial condition uncer-
tainty or uncertainty as the forecast
evolves (i.e., weather noise).

The limit of ENSO predictability is
highly dependent on which regime is
correct. For example, in the damped
regime, the limit of predictability is on
the order of 9-15 months, whereas in the
chaotic regime the limit is considerably
longer (15-24 months). In the self-sus-
tained and stochastically forced regime
ENSO appears to vacillates between
highly predictable regimes (oscillatory
and self-sustained) and periods of low
predictability when the variability is
driven by the noise. In this case, whether
ENSO resides in the predictable or the
unpredictable regime is determined by
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low frequency variability in the back-
ground state. Conversely, in the damped
regime the background state changes are
merely a sampling issue and changes in
predictability are associated with how the
stochastic forcing projects onto the opti-
mally growing modes. In this case, varia-
tions in predictability are a random walk
process.

Here we show an example using a rel-
atively simple model of ENSO how the
system can vacillate from highly pre-
dictable epochs to periods of relatively
low predictability. Figure 1 shows the
evolution of Nino3.4 SST from a coupled
model of ENSO for two different epochs
(red curve). These periods were chosen
from a long simulation of the model. The

dashed green curves show predictability
calculations where we have assumed no
initial condition error, but there is uncer-
tainty as the forecast evolves. The “fore-
cast (green curves)” and “observations
(red curves)” have different weather
noise. How closely the green curves
track the red curves indicates the limit of
predictability. Although not shown here,
this can be quantified by calculating the
correlation and the root mean square
error. By visual inspection of Fig. 1, it is
clear that there is much less predictability
in the upper panel relative to the lower
panel. The point to emphasize with Fig. 1
is that predictability is limited by uncer-
tainty as the forecast evolves (i.e., weath-
er noise) without initial condition error.

o NINO3 Predictions Years 171-180 (a)

. 5

T ¥

g 13 .

e WP W /\m RN/

L -NOLAK g | AS Y

5 " s

B -15

E- -2

ﬁ Al%th 2072 2073 '_'Ell?l 2075 2076 ?EII?? 2078 2073 2080 2081 2082 2083
Time (years)

(S NINO3 Predictions Years 151-160 (b)

e 25

i 2

g

[=]

=

<<

[

[

=]

-

L=

=

]

&

a _2.gC51 2052 2053 2054 2055 2056 2057 2058 2059 2060 2081 2062 2063

Time (years)

Figure 1. Evolution of the Nino3.4 SSTA from the simulation (red curve) and
from the predictability experiments (green dotted lines). The predictability
experiments and the simulation have different weather noise realizations. The
initial conditions for the predictability calculations are identical to the simula-

tion.
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Figure 2. NOAA Coupled Forecast System (CFS) predictability calculations. The solid curves show the root mean square error and the
dashed curves show the ensemble forecast root mean square spread. The predictability calculation is based on using one ensemble
member at the “truth” for verification. The blue curves in both A and B are the same and indicated the predictability assuming no initial
condition error and much reduced weather noise as the forecast evolves. The yellow curves in A show the predictability assuming both
initial condition uncertainty and uncertainty as the forecast evolves. The yellow curves in B show the predictability assuming no initial
condition uncertainty, but continued weather noise as the forecast evolves.

Even with perfect initial conditions there
will be periods (upper panel) where pre-
dictability is relatively low (i.e., early
1990s) and periods where predictability is
relatively high (i.e., 1980s). Part of the
debate is whether the predictable and
unpredictable periods are, in fact, them-
selves predictable.

It is important to note that all of our
estimates of ENSO predictability are
model-based estimates and that model
error significantly impacts these esti-
mates. For example, if the model of
ENSO is a simple sine wave, then esti-
mates of predictability would indicate
that ENSO is perfectly predictable. We
know this is not the case. On the other
hand, if the model of ENSO is persist-
ence, then we expect that the estimates of
the limit of predictability would be much
too short. In other words, we cannot
ignore the impact of model error on the
estimates of the limit of predictability,
and this is why model fidelity and actual
prediction skill assessments need to be
married to predictability studies. The
simple model results noted above are very
useful for understanding and formulating
hypotheses, but these ideas must be tested

in models that have realistic ENSO vari-
ability and produce credible ENSO pre-
dictions

Predictability Using Coupled
Models.

From the perspective of making
ENSO predictions with state-of-the-art
coupled general circulation models
(CGCMs), it is not obvious whether it
matters which regime is correct.
Presumably, the CGCMs include the
possibility of all three regimes.
However, in terms of improving predic-
tions and realizing predictability, we
need to quantify the mechanisms than
limit predictability in CGCMs. Here we
show results from the new NOAA cou-
pled forecast system (CFS).

The NOAA CFS coupled model is
among the best in world in terms of
ENSO prediction. In the example shown
here, we diagnose how both initial con-
dition uncertainty and uncertainty as the
forecast evolves impacts the estimate of
the limit of predictability. Figures 2A and
2B show the Nino3.4 SST root mean
square (rms) error for a set of pre-
dictability calculations with CFS. The

rms spread of the ensemble is also shown
in Figure 2. Both the spread and the error
are reasonable metrics for estimating the
limit of predictability and closely track
one another here. The predictability cal-
culation is based on the ensemble CFS
forecasts where we have used one of the
ensemble members to represent the
“truth.” In order to reduce the impact of
weather noise as the forecast evolves, we
have applied the interactive ensemble
coupling strategy to the CFS and have
performed a sequence of prediction
experiments that mimic the CFS control
forecast. The interactive ensemble cou-
pling strategy uses an ensemble of atmos-
pheric model realizations coupled to a
single ocean model realization. The
atmospheric realizations only differ by
small perturbations in the initial condi-
tions. Ensemble averaging is applied to
the air-sea fluxes felt by the ocean model
thereby reducing the effect of atmospher-
ic noise on the ocean. Each atmospheric
realization feels the same SST produced
by the ocean component. Relatively large
values of the rms error (Figure 2) indicate
that predictability is lost. The yellow rms
error curve in Figure 2A corresponds to
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Calendar of CLIVAR and CLIVAR-related meetings

Further details are available on the U.S. CLIVAR and International CLIVAR web sites: www.usclivar.org and www.clivar.org

The Humboldt Current System:
Climate, ocean dynamics, ecosystem
processes, and fisheries

27 November-1 December 2006
Lima, Peru

Attendance: Open

Contact: http://irdal.ird.fr/hcs-confer-
ence.imarpe.fao.ird.php3

GSOP-Il Meeting

8-9 December 2006

La Jolla, California
Attendance: Invited
Contact: www.clivar.org

AGU Fall Meeting

11-15 December 2006
San Francisco, California
Attendance: Open
Contact: www.agu.org

U.S. CLIVAR Predictability, Predictions
and Applications Interface Panel
Meeting

14 December 2006

San Francisco, California

Attendance: Invited

Contact: www.usclivar.org

Meridional Overturning Circulation
Observational Meeting

10-12 January 2007

Miami, Florida

Attendance: Open

Contact: www.ametsoc.org

AMS Annual Meeting

14-18 January 2007

San Antonio, Texas

Attendance: Invited

Contact: Chris Meinen (NOAA AOML)

The Workshop on Monsoon Climate
Variability and Change, and Their
Impacts on Water, Food, and Health in
Western India

5-7 February 2007

Ahmedabad, Gujarat India

Attendance: Open

Contact: http://www.decvar.org/work-
shops_conferences.php

3rd WGNE Workshop on Systematic
Errors in Climate and NWP Models
12-16 February 2007

San Francisco, California

Attendance: Open

Contact: http://www-
pemdi.llnl.gov/wgne2007

SOLAS Open Science Conference

6-9 March 2007

Xiamen Province, China

Attendance: Open

Contact: http://www.solas2007.confman-
ager.com/main.cfm?cid=457

CEOP Implementation Planning
Meeting

12-14 March 2007

Washington, DC

Attendance: Open

Contact: http://www.gewex.org

4th International CLIVAR Climate of the
20th Century workshop

13-15 March 2007

Exeter, United Kingdom

Attendance: Limited

Contact: http://www.iges.org/c20c/

North Atlantic Subpolar Gyre
Workshop

19-20 March 2007

Kiel, Germany

Attendance: Open

Contact: http://www.ifm-
geomar.de/index.php?id=subpolar-gyre

Climate Prediction Applications Science
Workshop

20-23 March 2007

Seattle, Washington

Attendance: Open

Contact:
http://www.cses.washington.edu/cig/out-
reach/workshopfiles/cpasw07/

Int'l Oceanographic Data and
Informatino Exchange (IODE)
16-20 April 2007

Trieste, Italy

Attendance: Open

Contact: http://www.iode.org

CLIVAR Indian Ocean Panel Meeting
23-25 April 2007

South Africa

Attendance: Invited

Contact: http://www.clivar.org

Seventh Workshop on Decadal
Climate Variability

30 April-3 May 2007

Kona, Hawaii

Attendance: Open

Contact: http://www.decvar.org/work-
shops_conferences.php

WCRP Workshop on Seasonal
Prediction

4-6 June 2007

Barcelona, Spain

Attendance: Open

Contact:
http://www.wmo.ch/web/wcrp/AP_Seas
onalPrediction.html

IEEE Oceans ‘07

18-21 June 2007

Aberdeen, Scotland

Attendance: Open

Contact: http://www.oceans07iceeab-
erdeen.org/

U.S. CLIVAR Summit
23-25 July 2007
Annapolis, Maryland
Attendance: Invited
Contact: www.usclivar.org
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assuming that there is both uncertainty
in the initial condition and uncertainty
as the forecast evolves. The blue rms
error curve in both Figure 2A and 2B
corresponds to the case of no initial
conditions uncertainty and much
reduced uncertainty as the forecast
evolves. The blue curves in both pan-
els are identical. Finally, the yellow
curve in Fig. 2b corresponds to the rms
error assuming no initial condition
uncertainty, but with uncertainty as the
forecast evolves. By comparing both
sets of yellow curves with the blue we
conclude the following:

(1) Initial condition uncertainty
leads to a very rapid initial loss of pre-
dictability (Figure 2A yellow compared
to Figire 2B yellow).

(i1)) Uncertainty as the forecast
evolves clearly limits predictability
(Figure 2B yellow vs. blue), but initial
condition uncertainty is the dominating
factor.

(iii) The predictability curves lie
considerable below the errors in actual
forecasts (not shown). This indicates
that the model estimate of the limit of
predictability is much longer than is
currently realized in actual forecast
mode.

As noted earlier, despite the fact
that this one of the best ENSO forecast
models, the argument that initial condi-
tion uncertainty dominates is a model
dependent result, and is highly influ-
enced by model error. In fact, current
thinking suggest the “ENSO mode” of
the coupled model is significantly dif-
ferent from the “ENSO mode” of
nature; therefore, the rapid rms error
growth at the initial time may be influ-
enced disconnect between the model
and observed “ENSO mode.”
Nevertheless, these results do suggest
that reducing initial condition uncer-
tain, particularly in the ocean, will
improve prediction, and that correctly
initializing the “ENSO mode” of the
coupled model will also have a signifi-
cant impact on forecast skill. In addi-
tion, correctly representing the statis-
tics of weather noise in climate forecast
models is likely to improve ENSO pre-
diction skill. All of these results indi-
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cate significant potential to improve
ENSO forecast, however, the impor-
tance of model error in this regards can-
not be overstated. m

(Decadal Workshop continued-
from page 7)

the tropical Atlantic and the possibility
of atmospheric predictability on season-
al and longer timescales; and dynamics
and predictability of the ocean and its
meridional overturning circulation.

Discussions of a research pro-
gram for moving forward

It was argued that three significant
investments made by the climate com-
munity over the past decades make a
focus on Atlantic decadal predictability
timely. Firstly, TOGA and post-TOGA
research has: refined our understanding
of the role of coupled interactions on the
tropical Pacific in global climate; led to
the development of improved coupled
climate models; led to the implementa-
tion of operational seasonal forecast sys-
tems, a climate ocean observing system
in the Pacific, and ocean data assimila-
tion systems for the initialization of the
forecasts. Secondly, the IPCC process
has led to the development of a genera-
tion of models which are starting to give
information about the regional impacts
of global warming and are capable of
simulating global climate variability and
associated regional impacts of this on
seasonal to decadal timescales. Thirdly,
the basics of a global climate ocean
observing and synthesis system are
being put in place as a legacy of WOCE.
This global observing/analysis system
provides the foundation for developing a
nowcasting capability for decadal vari-
ability, providing the initial conditions
for predictability studies, improvements
in the required models, and refinements
in the observing capability required for
this task.

It was recognized that ultimately a
decadal prediction system needs to
account for global interactions associat-
ed with climate variability and change
(indeed the models and data assimilation
systems which would be used would be
global from the start). However, recent

events such as the onset of a decade of
active Atlantic hurricane activity since
1995, which has been linked both to the
AMO and to anthropogenic forcing,
indicates a need for a special focus on
the Atlantic. Moreover, the latest gener-
ation of climate models is leading to
new insights into both the regional and
global impacts of decadal Atlantic tem-
perature changes.

The primary components of such a
decadal prediction program would be:
A) a diagnostics program including
data-model comparisons; B) predictabil-
ity studies; C) a program of experimen-
tal decadal predictions; D) tools for
decadal predictions — ocean/coupled
models, ocean/ice state estimations test-
ed against data, and evaluation/design of
ocean observations system; and E) pro-
totype outlooks.

Outcomes of such a program would
include: 1) an improved understanding
of the roles and mechanisms of natural
and anthropogenically produced decadal
variability in the Atlantic and its global
impacts; ii) an evaluation of the poten-
tial predictability of aspects of this
decadal variability; iii) a prototype sys-
tem for decadal predictions — this would
include an ocean nowcasting capability
and design of the required observing
system; iv) ensemble decadal outlooks
for the next decades. These outlooks
would be for the MOC, SST, heat con-
tent, and perhaps for sea ice, sea level,
and temperature and precipitation over
adjacent continents. A special focus
would be on the decadal outlook for
Atlantic hurricane activity. Ocean state
projections could also be used to drive
models of ocean ecosystems with appli-
cations to marine conservation and fish-
eries.

Next Steps

A meeting on the Atlantic observ-
ing/synthesis system for the Atlantic
ocean circulation and its meridional
overturning circulation at AOML,
Miami in January, 2007, and a Climate
Decadal Variability workshop with
potential international partners in Kona,
Hawaii in April/May 2007. m



2006 Summit Meeting Highlights:

Increasing Importance of Extremes and Decadal Variability/Predictability

The 2006 U.S. CLIVAR Summit, held in

Breckinridge, CO, focused on identifying a few sci-
entific challenges that warrant increased levels of
coordination and community planning/organization. In
addition, during breakout meetings, the three U.S. CLI-
VAR Panels addressed Panel-specific issues. For exam-
ple, the Process Studies and Model Improvement
(PSMI) Panel developed initial ideas on “best prac-
tices” for intensive field campaigns in order to
enhance their legacy and develop constructive link-
ages to model evaluation and development activities.
They also discussed ongoing needs and opportunities
for systematically evaluating and improving (through
process-oriented research) climate models. The
Predictability Prediction, and Applications Interface
(PPAI) Panel continued developing plans and activities
(including a session at the Fall AGU meeting) to best
characterize climate predictability on a range of time
scales (from seasonal through decadal). Their efforts
were highlighted during the recent Climate Diagnostics
and Prediction Workshop. The Phenomenaq,
Observations, and Syntheses (POS) Panel addressed
observational needs for decadal variability/prediction
systems as well as heard several updates on ocean
observation system development and data manage-
ment issues. In Plenary, the first two US CLIVAR
Working Groups, Ocean Salinity and MJO, reported

on their activities.
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U.S. CLIVAR OFFICE

1717 Pennsylvania Avenue, NW
Suite 250

Washington, DC 20006

Subscription requests, and changes of address
should be sent to the attention of the
U.S. CLIVAR Office (cstephens@usclivar.org)

One of the objectives of the Summit was to iden-
tify a few strongly compelling scientific areas of
research that would attract the interest of agencies and
the scientific community, for which improved coordina-
tion (through U.S. CLIVAR) would accelerate the rate of
discovery, knowledge, and communication of research
findings to other communities and U.S. CLIVAR “cus-
tomers”. These research areas should be strongly be
motivated by societally relevant questions; be respon-
sive to one or more agency’s immediate mission needs
or interests; attract the participation by the broader
research community and U.S. CLIVAR Panels and
Working Groups; and leverage existing U.S. and inter-
national research investments.

After extensive discussion, two such research
areas were identified: a) decadal variability and its pre-
diction; and b) exireme events - drought. A Drought
Working Group within U.S. CLIVAR is now being
formed to coordinate and analyze model experiments
aimed at identifying important mechanisms related to
multi-year droughts. Additionally, an informal group
organized by John Marshall (and others - see related
article), is focusing on developing experimental decadal
forecasts. These initial activities, although small, bring
early focus to these important research areas. As the
new year approaches, U.S. CLIVAR will better crystal-
lize the motivation, outlook, and research strategies tar-
geting these research areas.

A U.S. contribution to the CLIVAR Program



