About the Project
Notations

Notations S

𝔖 n
set of permutations of {1,2,,n}; §26.13
S n ( k ) = s ( n , k )
notation used by Abramowitz and Stegun (1964, Chapter 24), Fort (1948); §26.1
(with s(n,k): Stirling number of the first kind)
𝒮 n ( k ) = S ( n , k )
notation used by Fort (1948); §26.1
(with S(n,k): Stirling number of the second kind)
𝔖 n k = S ( n , k )
notation used by Jordan (1939); §26.1
(with S(n,k): Stirling number of the second kind)
S ( z )
Fresnel integral; (7.2.8)
S 1 ( z ) = S ( 2 / π z )
alternative notation for the Fresnel integral; §7.1
(with S(z): Fresnel integral and π: the ratio of the circumference of a circle to its diameter)
S 2 ( z ) = S ( 2 z / π )
alternative notation for the Fresnel integral; §7.1
(with S(z): Fresnel integral and π: the ratio of the circumference of a circle to its diameter)
S μ , ν ( z )
Lommel function; (11.9.5)
s μ , ν ( z )
Lommel function; (11.9.3)
S n ( x )
dilated Chebyshev polynomial; (18.1.3)
𝒮 ( f ) ( s )
Stieltjes transform; (1.14.47)
s ( n , k )
Stirling number of the first kind; §26.8(i)
S ( n , k )
Stirling number of the second kind; §26.8(i)
S 1 ( n 1 , n k ) = s ( n , k ) / ( 1 ) n k
notation used by Carlitz (1960), Gould (1960); §26.1
(with s(n,k): Stirling number of the first kind)
S 2 ( k , n k ) = S ( n , k )
notation used by Carlitz (1960), Gould (1960); §26.1
(with S(n,k): Stirling number of the second kind)
S n m ( j ) ( z , γ )
radial spheroidal wave function; (30.11.3)
S m n ( 1 ) ( γ , x ) 𝖯𝗌 n m ( x , γ 2 )
alternative notation for the spheroidal wave function of the first kind; §30.1
(with 𝖯𝗌nm(x,γ2): spheroidal wave function of the first kind)
S m n ( 2 ) ( γ , x ) 𝖰𝗌 n m ( x , γ 2 )
alternative notation for the spheroidal wave function of the second kind; §30.1
(with 𝖰𝗌nm(x,γ2): spheroidal wave function of the second kind)
S n m ( z , ξ )
Ince polynomials; §28.31(ii)
S n ( x ; q )
Stieltjes–Wigert polynomial; (18.27.18)
s ( ϵ , ; r )
regular Coulomb function; (33.14.9)
S ( k , h ) ( x )
Sinc function; §3.3(vi)
S n ( x ; a , b , c )
continuous dual Hahn polynomial; Table 18.25.1
sc ( z , k )
Jacobian elliptic function; (22.2.9)
𝑠𝑐𝑑𝐸 2 n + 3 m ( z , k 2 )
Lamé polynomial; (29.12.8)
𝑠𝑐𝐸 2 n + 2 m ( z , k 2 )
Lamé polynomial; (29.12.5)
sd ( z , k )
Jacobian elliptic function; (22.2.7)
𝑠𝑑𝐸 2 n + 2 m ( z , k 2 )
Lamé polynomial; (29.12.6)
Se n ( c , z ) = ce n ( z , q ) ce n ( 0 , q )
notation used by Stratton et al. (1941); §28.1
(with cen(z,q): Mathieu function)
Se n ( s , z ) = ce n ( z , q ) ce n ( 0 , q )
notation used by National Bureau of Standards (1967); §28.1
(with cen(z,q): Mathieu function)
se n ( z , q )
Mathieu function; §28.2(vi)
se ν ( z , q )
Mathieu function of noninteger order; (28.12.13)
Se ν ( z , q )
modified Mathieu function; (28.20.4)
𝑠𝐸 2 n + 1 m ( z , k 2 )
Lamé polynomial; (29.12.2)
sec z
secant function; (4.14.6)
sech z
hyperbolic secant function; (4.28.6)
seh n ( z , q ) = Se n ( z , q )
notation used by Campbell (1955); §28.1
(with Seν(z,q): modified Mathieu function)
Shi ( z )
hyperbolic sine integral; (6.2.15)
Si ( z )
sine integral; (6.2.9)
si ( z )
sine integral; (6.2.10)
Si ( a , z )
generalized sine integral; (8.21.2)
si ( a , z )
generalized sine integral; (8.21.1)
σ n k = S ( n , k )
notation used by Moser and Wyman (1958b); §26.1
(with S(n,k): Stirling number of the second kind)
σ α ( n )
sum of powers of divisors of a number; (27.2.10)
σ ( η )
Coulomb phase shift; (33.2.10)
σ n ( ν )
Rayleigh function; (10.21.55)
σ(z) (= σ(z|𝕃) = σ(z;g2,g3))
Weierstrass sigma function; (23.2.6)
σ ( z ; g 2 , g 3 )
Weierstrass sigma function; §23.3(i)
sign x
sign of; Common Notations and Definitions
sin z
sine function; (4.14.1)
Sin q ( x )
q-sine function; (17.3.4)
sin q ( x )
q-sine function; (17.3.3)
sinh z
hyperbolic sine function; (4.28.1)
sn ( z , k )
Jacobian elliptic function; (22.2.4)
sn ( z | m ) = sn ( z , m )
alternative notation; §22.1
(with sn(z,k): Jacobian elliptic function)
So n ( c , z ) = se n ( z , q ) se n ( 0 , q )
notation used by Stratton et al. (1941); §28.1
(with sen(z,q): Mathieu function)
So n ( s , z ) = se n ( z , q ) se n ( 0 , q )
notation used by National Bureau of Standards (1967); §28.1
(with sen(z,q): Mathieu function)
sup
least upper bound (supremum); Common Notations and Definitions
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy