About the Project
9 Airy and Related FunctionsAiry Functions

§9.6 Relations to Other Functions

Contents
  1. §9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions
  2. §9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions
  3. §9.6(iii) Airy Functions as Confluent Hypergeometric Functions

§9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions

For the notation see §§10.2(ii) and 10.25(ii). With

9.6.1 ζ=23z3/2,
9.6.2 Ai(z) =π1z/3K±1/3(ζ)
=13z(I1/3(ζ)I1/3(ζ))
=12z/3e2πi/3H1/3(1)(ζeπi/2)
=12z/3eπi/3H1/3(1)(ζeπi/2)
=12z/3e2πi/3H1/3(2)(ζeπi/2)
=12z/3eπi/3H1/3(2)(ζeπi/2),
9.6.3 Ai(z) =π1(z/3)K±2/3(ζ)
=(z/3)(I2/3(ζ)I2/3(ζ))
=12(z/3)eπi/6H2/3(1)(ζeπi/2)
=12(z/3)e5πi/6H2/3(1)(ζeπi/2)
=12(z/3)eπi/6H2/3(2)(ζeπi/2)
=12(z/3)e5πi/6H2/3(2)(ζeπi/2),
9.6.4 Bi(z) =z/3(I1/3(ζ)+I1/3(ζ))=12z/3(eπi/6H1/3(1)(ζeπi/2)+eπi/6H1/3(2)(ζeπi/2))=12z/3(eπi/6H1/3(1)(ζeπi/2)+eπi/6H1/3(2)(ζeπi/2)),
9.6.5 Bi(z) =(z/3)(I2/3(ζ)+I2/3(ζ))=12(z/3)(eπi/3H2/3(1)(ζeπi/2)+eπi/3H2/3(2)(ζeπi/2))=12(z/3)(eπi/3H2/3(1)(ζeπi/2)+eπi/3H2/3(2)(ζeπi/2)),
9.6.6 Ai(z)=(z/3)(J1/3(ζ)+J1/3(ζ))=12z/3(eπi/6H1/3(1)(ζ)+eπi/6H1/3(2)(ζ))=12z/3(eπi/6H1/3(1)(ζ)+eπi/6H1/3(2)(ζ)),
9.6.7 Ai(z)=(z/3)(J2/3(ζ)J2/3(ζ))=12(z/3)(eπi/6H2/3(1)(ζ)+eπi/6H2/3(2)(ζ))=12(z/3)(e5πi/6H2/3(1)(ζ)+e5πi/6H2/3(2)(ζ)),
9.6.8 Bi(z)=z/3(J1/3(ζ)J1/3(ζ))=12z/3(e2πi/3H1/3(1)(ζ)+e2πi/3H1/3(2)(ζ))=12z/3(eπi/3H1/3(1)(ζ)+eπi/3H1/3(2)(ζ)),
9.6.9 Bi(z)=(z/3)(J2/3(ζ)+J2/3(ζ))=12(z/3)(eπi/3H2/3(1)(ζ)+eπi/3H2/3(2)(ζ))=12(z/3)(eπi/3H2/3(1)(ζ)+eπi/3H2/3(2)(ζ)).

§9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions

Again, for the notation see §§10.2(ii) and 10.25(ii). With

9.6.10 z=(32ζ)2/3,
9.6.11 J±1/3(ζ) =123/z(3Ai(z)Bi(z)),
9.6.12 J±2/3(ζ) =12(3/z)(±3Ai(z)+Bi(z)),
9.6.13 I±1/3(ζ) =123/z(3Ai(z)+Bi(z)),
9.6.14 I±2/3(ζ) =12(3/z)(±3Ai(z)+Bi(z)),
9.6.15 K±1/3(ζ) =π3/zAi(z),
9.6.16 K±2/3(ζ) =π(3/z)Ai(z),
9.6.17 H1/3(1)(ζ) =eπi/3H1/3(1)(ζ)=eπi/63/z(Ai(z)iBi(z)),
9.6.18 H2/3(1)(ζ) =e2πi/3H2/3(1)(ζ)=eπi/6(3/z)(Ai(z)iBi(z)),
9.6.19 H1/3(2)(ζ) =eπi/3H1/3(2)(ζ)=eπi/63/z(Ai(z)+iBi(z)),
9.6.20 H2/3(2)(ζ) =e2πi/3H2/3(2)(ζ)=eπi/6(3/z)(Ai(z)+iBi(z)).

§9.6(iii) Airy Functions as Confluent Hypergeometric Functions

For the notation see §§13.1, 13.2, and 13.14(i). With ζ as in (9.6.1),

9.6.21 Ai(z) =12π1/2z1/4W0,1/3(2ζ)=31/6π1/2ζ2/3eζU(56,53,2ζ),
9.6.22 Ai(z) =12π1/2z1/4W0,2/3(2ζ)=31/6π1/2ζ4/3eζU(76,73,2ζ),
9.6.23 Bi(z) =121/3Γ(23)z1/4M0,1/3(2ζ)+325/3Γ(13)z1/4M0,1/3(2ζ),
9.6.24 Bi(z) =21/3Γ(13)z1/4M0,2/3(2ζ)+3210/3Γ(23)z1/4M0,2/3(2ζ),
9.6.25 Bi(z) =131/6Γ(23)eζF11(16;13;2ζ)+35/622/3Γ(13)ζ2/3eζF11(56;53;2ζ),
9.6.26 Bi(z) =31/6Γ(13)eζF11(16;13;2ζ)+37/627/3Γ(23)ζ4/3eζF11(76;73;2ζ).

To express Airy functions in terms of hypergeometric functions combine §9.6(i) with (10.39.9).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy