About the Project
Notations

Notations P

PI, PII, PIII, PIII, PIV, PV, PVI
Painlevé transcendents; §32.2(i)
p k ( n )
total number of partitions of n into at most k parts; §26.9(i)
P ( z ) = 1 2 erfc ( z / 2 )
alternative notation for the complementary error function; §7.1
(with erfcz: complementary error function)
p k ( n )
number of partitions of n into at most k parts; §26.9(i)
P n ( x )
Legendre polynomial; Table 18.3.1
P n ( x )
shifted Legendre polynomial; Table 18.3.1
𝖯 ν ( x ) = 𝖯 ν 0 ( x )
Ferrers function of the first kind; §14.2(ii)
(with 𝖯νμ(x): Ferrers function of the first kind)
P ν ( z ) = P ν 0 ( z )
Legendre function of the first kind; §14.2(ii)
(with Pνμ(z): associated Legendre function of the first kind)
P z ( a ) = γ ( a , z )
notation used by Batchelder (1967, p. 63); §8.1
(with γ(a,z): incomplete gamma function)
𝖯 1 2 + i τ μ ( x )
conical function; §14.20(i)
P n ( α , β ) ( x )
Jacobi polynomial; Table 18.3.1
P n ( λ ) ( x ) = C n ( λ ) ( x )
notation used by Szegő (1975, §4.7); §18.1(iii)
(with Cn(λ)(x): ultraspherical (or Gegenbauer) polynomial)
P ν ( γ , δ ) ( 𝐓 )
Jacobi function of matrix argument; (35.7.2)
P ν μ ( x ) = 𝖯 ν μ ( x )
notation used by Erdélyi et al. (1953a), Olver (1997b); §14.1
(with 𝖯νμ(x): Ferrers function of the first kind)
𝖯 ν μ ( x )
Ferrers function of the first kind; (14.3.1)
P ν μ ( x ) = 𝖯 ν μ ( x )
notation used by Magnus et al. (1966); §14.1
(with 𝖯νμ(x): Ferrers function of the first kind)
P ν μ ( z )
associated Legendre function of the first kind; §14.21(i)
𝔓 ν μ ( z ) = P ν μ ( z )
notation used by Magnus et al. (1966); §14.1
(with Pνμ(z): associated Legendre function of the first kind)
P ( a , z )
normalized incomplete gamma function; (8.2.4)
p ( condition , n )
restricted number of partitions of n; §26.10(i)
(z) (= (z|𝕃) = (z;g2,g3))
Weierstrass -function; (23.2.4)
p k ( m , n )
number of partitions of n into at most k parts, each less than or equal to m; §26.9(i)
p k ( 𝒟 , n )
number of partitions of n into at most k distinct parts; §26.10(i)
P ( ϵ , r ) = ( 2 + 1 ) ! f ( ϵ , ; r ) / 2 + 1
notation used by Curtis (1964a); item Curtis (1964a):
(with f(ϵ,;r): regular Coulomb function and !: factorial (as in n!))
H n ( x ; c )
associated Hermite polynomial; §18.30(iv)
P n ( x ; c )
associated Legendre polynomial; (18.30.6)
𝒫 n λ ( x ; ϕ , c )
associated Meixner–Pollaczek polynomial; §18.30(v)
P n ( λ ) ( x ; ϕ )
Meixner–Pollaczek polynomial; §18.19
P m , n α , β , γ ( x , y )
triangle polynomial; (18.37.7)
P n ( α , β ) ( x ; c )
associated Jacobi polynomial; (18.30.4)
Π ( n ; ϕ \ α ) = Π ( ϕ , α 2 , k )
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with Π(ϕ,α2,k): Legendre’s incomplete elliptic integral of the third kind)
( z ; g 2 , g 3 )
Weierstrass -function; (23.3.8)
P n ( λ ) ( x ; a , b )
Pollaczek polynomial; (18.35.4)
p n ( x ; a , b ; q )
little q-Jacobi polynomial; (18.27.13)
P n ( α , β ) ( x ; c , d ; q )
big q-Jacobi polynomial; (18.27.6)
p n ( x ; a , b , a ¯ , b ¯ )
continuous Hahn polynomial; §18.19
P n ( x ; a , b , c ; q )
big q-Jacobi polynomial; (18.27.5)
p n ( x ; a , b , c , d | q )
Askey–Wilson polynomial; (18.28.1)
P { α β γ a 1 b 1 c 1 z a 2 b 2 c 2 }
Riemann’s P-symbol for solutions of the generalized hypergeometric differential equation; (15.11.3)
ph
phase; (1.9.7)
ϕ ( n )
Euler’s totient; (27.2.7)
ϕ ( z )
Airy phase function; (9.8.8)
Φ ( z ) = 1 2 erfc ( z / 2 )
alternative notation for the complementary error function; §7.1
(with erfcz: complementary error function)
ϕ k ( n )
sum of powers of integers relatively prime to a number; (27.2.6)
ϕ ν ( x )
phase of derivatives of Bessel functions; (10.18.3)
ϕ λ ( α , β ) ( t )
Jacobi function; (15.9.11)
ϕ ( z , s ) = Li s ( z )
notation used by (Truesdell, 1945); §25.12(ii)
(with Lis(z): polylogarithm)
φ n , m ( z , q )
combined theta function; §20.11(v)
Φ K ( t ; 𝐱 )
cuspoid catastrophe of codimension K; (36.2.1)
Φ ( a ; b ; z ) = M ( a , b , z )
notation used by Humbert (1920); §13.1
(with M(a,b,z): =F11(a;b;z) Kummer confluent hypergeometric function)
ϕ ( ρ , β ; z )
generalized Bessel function; (10.46.1)
Φ ( z , s , a )
Lerch’s transcendent; (25.14.1)
Φ ( E ) ( s , t ; 𝐱 )
elliptic umbilic catastrophe; (36.2.2)
Φ ( H ) ( s , t ; 𝐱 )
hyperbolic umbilic catastrophe; (36.2.3)
Φ ( U ) ( s , t ; 𝐱 )
elliptic umbilic catastrophe for U=E or K; §36.2(i)
Φ ( 1 ) ( a ; b , b ; c ; q ; x , y )
first q-Appell function; (17.4.5)
Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y )
second q-Appell function; (17.4.6)
Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y )
third q-Appell function; (17.4.7)
Φ ( 4 ) ( a , b ; c , c ; q ; x , y )
fourth q-Appell function; (17.4.8)
ϕsr+1(a0,,ar;b1,,bs;q,z) or ϕsr+1(a0,,arb1,,bs;q,z)
basic hypergeometric (or q-hypergeometric) function; (17.4.1)
π
the ratio of the circumference of a circle to its diameter; (3.12.1)
π
set of plane partitions; §26.12(i)
π ( x )
number of primes not exceeding a number; (27.2.2)
Π ( z 1 ) = Γ ( z )
notation used by Gauss; §5.1
(with Γ(z): gamma function)
Π m ( a ) = Γ m ( a + 1 2 ( m + 1 ) )
notation used by Herz (1955, p. 480); §35.1
(with Γm(a): multivariate gamma function)
Π ( α 2 , k )
Legendre’s complete elliptic integral of the third kind; (19.2.8)
Π ( n \ α ) = Π ( α 2 , k )
notation used by Abramowitz and Stegun (1964, Chapter 17); §19.1
(with Π(α2,k): Legendre’s complete elliptic integral of the third kind)
Π 1 ( ν , k ) = Π ( α 2 , k )
notation used by Erdélyi et al. (1953b, Chapter 13); §19.1
(with Π(α2,k): Legendre’s complete elliptic integral of the third kind)
Π ( ϕ , α 2 , k )
Legendre’s incomplete elliptic integral of the third kind; (19.2.7)
Π ( ϕ , ν , k ) = Π ( ϕ , α 2 , k )
notation used by Erdélyi et al. (1953b, Chapter 13); §19.1
(with Π(ϕ,α2,k): Legendre’s incomplete elliptic integral of the third kind)
pp ( n )
number of plane partitions of n; §26.12(i)
p q ( z , k )
generic Jacobian elliptic function; (22.2.10)
𝖯𝗌 n m ( x , γ 2 )
spheroidal wave function of the first kind; §30.4(i)
ps n m ( x , γ 2 ) = 𝖯𝗌 n m ( x , γ 2 )
notation used by Meixner and Schäfke (1954) for the spheroidal wave function of the first kind; §30.1
(with 𝖯𝗌nm(x,γ2): spheroidal wave function of the first kind)
Ps n m ( z , γ 2 ) = 𝑃𝑠 n m ( z , γ 2 )
notation used by Meixner and Schäfke (1954) for the spheroidal wave function of complex argument; §30.1
(with 𝑃𝑠nm(z,γ2): spheroidal wave function of complex argument)
𝑃𝑠 n m ( z , γ 2 )
spheroidal wave function of complex argument; §30.6
ψ ( x )
Chebyshev ψ-function; (25.16.1)
Ψ ( z ) = ψ ( z )
notation used by Davis (1933); §5.1
(with ψ(z): psi (or digamma) function)
Ψ ( z 1 ) = ψ ( z )
notation used by Gauss, Jahnke and Emde (1945); §5.1
(with ψ(z): psi (or digamma) function)
ψ ( z )
psi (or digamma) function; (5.2.2)
Ψ K ( 𝐱 )
canonical integral function; (36.2.4)
Ψ 2 ( 𝐱 )
Pearcey integral; (36.2.14)
Ψ ( E ) ( 𝐱 )
elliptic umbilic canonical integral function; (36.2.5)
Ψ ( H ) ( 𝐱 )
hyperbolic umbilic canonical integral function; (36.2.5)
ψ ( n ) ( z )
polygamma functions; §5.15
Ψ ( U ) ( 𝐱 )
umbilic canonical integral function; (36.2.5)
Ψ K ( 𝐱 ; k )
diffraction catastrophe; (36.2.10)
Ψ ( E ) ( 𝐱 ; k )
elliptic umbilic canonical integral function; (36.2.11)
Ψ ( H ) ( 𝐱 ; k )
hyperbolic umbilic canonical integral function; (36.2.11)
Ψ ( U ) ( 𝐱 ; k )
umbilic canonical integral function; (36.2.11)
Ψ ( a ; b ; 𝐓 )
confluent hypergeometric function of matrix argument (second kind); (35.6.2)
Ψ ( a ; b ; z ) = U ( a , b , z )
notation used by Erdélyi et al. (1953a, §6.5); §13.1
(with U(a,b,z): Kummer confluent hypergeometric function)
ψsr(a1,,ar;b1,,bs;q,z) or ψsr(a1,,arb1,,bs;q,z)
bilateral basic hypergeometric (or bilateral q-hypergeometric) function; (17.4.3)
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy