About the Project
19 Elliptic IntegralsSymmetric Integrals

§19.28 Integrals of Elliptic Integrals

In (19.28.1)–(19.28.3) we assume σ>0. Also, B again denotes the beta function (§5.12).

19.28.1 01tσ1RF(0,t,1)dt =12(B(σ,12))2,
19.28.2 01tσ1RG(0,t,1)dt =σ4σ+2(B(σ,12))2,
19.28.3 01tσ1(1t)RD(0,t,1)dt=34σ+2(B(σ,12))2.
19.28.4 01tσ1(1t)c1Ra(b1,b2;t,1)dt=Γ(c)Γ(σ)Γ(σ+b2a)Γ(σ+ca)Γ(σ+b2),
c=b1+b2>0, σ>max(0,ab2).

In (19.28.5)–(19.28.9) we assume x,y,z, and p are real and positive.

19.28.5 zRD(x,y,t)dt=6RF(x,y,z),
19.28.6 01RD(x,y,v2z+(1v2)p)dv=RJ(x,y,z,p).
19.28.7 0RJ(x,y,z,r2)dr=32πRF(xy,xz,yz),
19.28.8 0RJ(tx,y,z,tp)dt=6pRC(p,x)RF(0,y,z).
19.28.9 0π/2RF(sin2θcos2(x+y),sin2θcos2(xy),1)dθ=RF(0,cos2x,1)RF(0,cos2y,1),
19.28.10 0RF((ac+bd)2,(ad+bc)2,4abcdcosh2z)dz=12RF(0,a2,b2)RF(0,c2,d2),
a,b,c,d>0.

See also (19.16.24). To replace a single component of 𝐳 in Ra(𝐛;𝐳) by several different variables (as in (19.28.6)), see Carlson (1963, (7.9)).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy