About the Project
5 Gamma FunctionProperties

§5.17 Barnes’ G-Function (Double Gamma Function)

5.17.1 G(z+1) =Γ(z)G(z),
G(1) =1,
5.17.2 G(n)=(n2)!(n3)!1!,
n=2,3,.
5.17.3 G(z+1)=(2π)z/2exp(12z(z+1)12γz2)k=1((1+zk)kexp(z+z22k)).
5.17.4 LnG(z+1)=12zln(2π)12z(z+1)+zLnΓ(z+1)0zLnΓ(t+1)dt.

In this equation (and in (5.17.5) below), the Ln’s have their principal values on the positive real axis and are continued via continuity, as in §4.2(i).

When z in |phz|πδ(<π),

5.17.5 LnG(z+1)14z2+zLnΓ(z+1)(12z(z+1)+112)lnzlnA+k=1B2k+22k(2k+1)(2k+2)z2k.

For error bounds and an exponentially-improved extension, see Nemes (2014a). Here B2k+2 is the Bernoulli number (§24.2(i)), and A is Glaisher’s constant, given by

5.17.6 A=eC=1.28242 71291 00622 63687,

where

5.17.7 C=limn(k=1nklnk(12n2+12n+112)lnn+14n2)=γ+ln(2π)12ζ(2)2π2=112ζ(1),

and ζ is the derivative of the zeta function (Chapter 25).

For Glaisher’s constant see also Greene and Knuth (1982, p. 100) and §2.10(i).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy