DLMF
Index
Notations
Search
Help?
Citing
Customize
Annotate
UnAnnotate
About the Project
20
Theta Functions
Properties
20.3
Graphics
20.5
Infinite Products and Related Results
§20.4
Values at
z
= 0
ⓘ
Keywords:
derivatives
,
theta functions
,
values at
z
=
0
Permalink:
http://dlmf.nist.gov/20.4
See also:
Annotations for
Ch.20
Contents
§20.4(i)
Functions and First Derivatives
§20.4(ii)
Higher Derivatives
§20.4(i)
Functions and First Derivatives
ⓘ
Notes:
See
Walker (
1996
, pp. 90–92)
,
Whittaker and Watson (
1927
, pp. 470–471)
, and
Lawden (
1989
, pp. 12–15)
. Note that these are special cases of (
20.5.1
)–(
20.5.4
).
Permalink:
http://dlmf.nist.gov/20.4.i
See also:
Annotations for
§20.4
and
Ch.20
20.4.1
θ
1
(
0
,
q
)
=
θ
2
′
(
0
,
q
)
=
θ
3
′
(
0
,
q
)
=
θ
4
′
(
0
,
q
)
=
0
,
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
and
q
: nome
Permalink:
http://dlmf.nist.gov/20.4.E1
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(i)
,
§20.4
and
Ch.20
20.4.2
θ
1
′
(
0
,
q
)
=
2
q
1
/
4
∏
n
=
1
∞
(
1
−
q
2
n
)
3
=
2
q
1
/
4
(
q
2
;
q
2
)
∞
3
,
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
,
(
a
;
q
)
n
:
q
-Pochhammer symbol (or
q
-shifted factorial)
,
n
: integer
and
q
: nome
Referenced by:
Erratum (V1.0.28) for Equation (
20.4.2
)
Permalink:
http://dlmf.nist.gov/20.4.E2
Encodings:
TeX
,
pMML
,
png
Addition (effective with 1.0.28):
The representation in terms of
(
q
2
;
q
2
)
∞
3
was added to this equation.
See also:
Annotations for
§20.4(i)
,
§20.4
and
Ch.20
20.4.3
θ
2
(
0
,
q
)
=
2
q
1
/
4
∏
n
=
1
∞
(
1
−
q
2
n
)
(
1
+
q
2
n
)
2
,
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
,
n
: integer
and
q
: nome
Referenced by:
(20.10.3)
Permalink:
http://dlmf.nist.gov/20.4.E3
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(i)
,
§20.4
and
Ch.20
20.4.4
θ
3
(
0
,
q
)
=
∏
n
=
1
∞
(
1
−
q
2
n
)
(
1
+
q
2
n
−
1
)
2
,
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
,
n
: integer
and
q
: nome
Referenced by:
(20.10.2)
Permalink:
http://dlmf.nist.gov/20.4.E4
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(i)
,
§20.4
and
Ch.20
20.4.5
θ
4
(
0
,
q
)
=
∏
n
=
1
∞
(
1
−
q
2
n
)
(
1
−
q
2
n
−
1
)
2
.
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
,
n
: integer
and
q
: nome
Referenced by:
(20.10.1)
Permalink:
http://dlmf.nist.gov/20.4.E5
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(i)
,
§20.4
and
Ch.20
Jacobi’s Identity
ⓘ
Keywords:
Jacobi’s identity
,
Jacobi’s triple product
,
theta functions
See also:
Annotations for
§20.4(i)
,
§20.4
and
Ch.20
20.4.6
θ
1
′
(
0
,
q
)
=
θ
2
(
0
,
q
)
θ
3
(
0
,
q
)
θ
4
(
0
,
q
)
.
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
and
q
: nome
A&S Ref:
16.28.6
Referenced by:
§20.9(i)
Permalink:
http://dlmf.nist.gov/20.4.E6
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(i)
,
§20.4(i)
,
§20.4
and
Ch.20
§20.4(ii)
Higher Derivatives
ⓘ
Keywords:
theta functions
,
values at
z
=
0
Notes:
See
Whittaker and Watson (
1927
, p. 471)
.
Permalink:
http://dlmf.nist.gov/20.4.ii
See also:
Annotations for
§20.4
and
Ch.20
20.4.7
θ
1
′′
(
0
,
q
)
=
θ
2
′′′
(
0
,
q
)
=
θ
3
′′′
(
0
,
q
)
=
θ
4
′′′
(
0
,
q
)
=
0
.
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
and
q
: nome
Permalink:
http://dlmf.nist.gov/20.4.E7
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(ii)
,
§20.4
and
Ch.20
20.4.8
θ
1
′′′
(
0
,
q
)
θ
1
′
(
0
,
q
)
=
−
1
+
24
∑
n
=
1
∞
q
2
n
(
1
−
q
2
n
)
2
.
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
,
n
: integer
and
q
: nome
Referenced by:
§23.12
Permalink:
http://dlmf.nist.gov/20.4.E8
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(ii)
,
§20.4
and
Ch.20
20.4.9
θ
2
′′
(
0
,
q
)
θ
2
(
0
,
q
)
=
−
1
−
8
∑
n
=
1
∞
q
2
n
(
1
+
q
2
n
)
2
,
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
,
n
: integer
and
q
: nome
Permalink:
http://dlmf.nist.gov/20.4.E9
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(ii)
,
§20.4
and
Ch.20
20.4.10
θ
3
′′
(
0
,
q
)
θ
3
(
0
,
q
)
=
−
8
∑
n
=
1
∞
q
2
n
−
1
(
1
+
q
2
n
−
1
)
2
,
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
,
n
: integer
and
q
: nome
Permalink:
http://dlmf.nist.gov/20.4.E10
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(ii)
,
§20.4
and
Ch.20
20.4.11
θ
4
′′
(
0
,
q
)
θ
4
(
0
,
q
)
=
8
∑
n
=
1
∞
q
2
n
−
1
(
1
−
q
2
n
−
1
)
2
.
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
,
n
: integer
and
q
: nome
Permalink:
http://dlmf.nist.gov/20.4.E11
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(ii)
,
§20.4
and
Ch.20
20.4.12
θ
1
′′′
(
0
,
q
)
θ
1
′
(
0
,
q
)
=
θ
2
′′
(
0
,
q
)
θ
2
(
0
,
q
)
+
θ
3
′′
(
0
,
q
)
θ
3
(
0
,
q
)
+
θ
4
′′
(
0
,
q
)
θ
4
(
0
,
q
)
.
ⓘ
Symbols:
θ
j
(
z
,
q
)
: theta function
and
q
: nome
Permalink:
http://dlmf.nist.gov/20.4.E12
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§20.4(ii)
,
§20.4
and
Ch.20