About the Project
33 Coulomb FunctionsVariables ρ,η

§33.6 Power-Series Expansions in ρ

33.6.1 Fℓ⁑(Ξ·,ρ)=Cℓ⁑(Ξ·)β’βˆ‘k=β„“+1∞Akℓ⁒(Ξ·)⁒ρk,
33.6.2 Fℓ′⁑(Ξ·,ρ)=Cℓ⁑(Ξ·)β’βˆ‘k=β„“+1∞k⁒Akℓ⁒(Ξ·)⁒ρkβˆ’1,

where Aβ„“+1β„“=1, Aβ„“+2β„“=Ξ·/(β„“+1), and

33.6.3 (k+β„“)⁒(kβˆ’β„“βˆ’1)⁒Akβ„“=2⁒η⁒Akβˆ’1β„“βˆ’Akβˆ’2β„“,
k=β„“+3,β„“+4,…,

or in terms of the hypergeometric function (§§15.1, 15.2(i)),

33.6.4 Akℓ⁒(Ξ·)=(βˆ’i)kβˆ’β„“βˆ’1(kβˆ’β„“βˆ’1)!⁒F12⁑(β„“+1βˆ’k,β„“+1βˆ’i⁒η;2⁒ℓ+2;2).
33.6.5 Hℓ±⁑(Ξ·,ρ)=eΒ±i⁒θℓ⁑(Ξ·,ρ)(2⁒ℓ+1)!⁒Γ⁑(βˆ’β„“Β±i⁒η)Γ—(βˆ‘k=0∞(a)k(2⁒ℓ+2)k⁒k!⁒(βˆ“2⁒i⁒ρ)a+kΓ—(ln⁑(βˆ“2⁒i⁒ρ)+ψ⁑(a+k)βˆ’Οˆβ‘(1+k)βˆ’Οˆβ‘(2⁒ℓ+2+k))βˆ’βˆ‘k=12⁒ℓ+1(2⁒ℓ+1)!⁒(kβˆ’1)!(2⁒ℓ+1βˆ’k)!⁒(1βˆ’a)k⁒(βˆ“2⁒i⁒ρ)aβˆ’k),

where a=1+β„“Β±i⁒η and ψ⁑(x)=Γ′⁑(x)/Γ⁑(x) (Β§5.2(i)).

The series (33.6.1), (33.6.2), and (33.6.5) converge for all finite values of ρ. Corresponding expansions for Hℓ±′⁑(Ξ·,ρ) can be obtained by combining (33.6.5) with (33.4.3) or (33.4.4).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy