About the Project
24 Bernoulli and Euler PolynomialsProperties

§24.13 Integrals

Contents
  1. §24.13(i) Bernoulli Polynomials
  2. §24.13(ii) Euler Polynomials
  3. §24.13(iii) Compendia

§24.13(i) Bernoulli Polynomials

24.13.1 Bn(t)dt =Bn+1(t)n+1+const.,
24.13.2 xx+1Bn(t)dt =xn,
n=1,2,,
24.13.3 xx+(1/2)Bn(t)dt =En(2x)2n+1,
24.13.4 01/2Bn(t)dt =12n+12nBn+1n+1,
24.13.5 1/43/4Bn(t)dt =En22n+1.

For m,n=1,2,,

24.13.6 01Bn(t)Bm(t)dt=(1)n1m!n!(m+n)!Bm+n.

For integrals of the form 0xBn(t)Bm(t)dt and 0xBn(t)Bm(t)Bk(t)dt see Agoh and Dilcher (2011).

§24.13(ii) Euler Polynomials

24.13.7 En(t)dt=En+1(t)n+1+const.,
24.13.8 01En(t)dt=2En+1(0)n+1=4(2n+21)(n+1)(n+2)Bn+2,
24.13.9 01/2E2n(t)dt=E2n+1(0)2n+1=2(22n+21)B2n+2(2n+1)(2n+2),
24.13.10 01/2E2n1(t)dt=E2nn22n+1,
n=1,2,.

For m,n=1,2,,

24.13.11 01En(t)Em(t)dt=(1)n4(2m+n+21)m!n!(m+n+2)!Bm+n+2.

§24.13(iii) Compendia

For Laplace and inverse Laplace transforms see Prudnikov et al. (1992a, §§3.28.1–3.28.2) and Prudnikov et al. (1992b, §§3.26.1–3.26.2). For other integrals see Prudnikov et al. (1990, pp. 55–57).

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy