About the Project
19 Elliptic IntegralsLegendre’s Integrals

§19.6 Special Cases

Contents
  1. §19.6(i) Complete Elliptic Integrals
  2. §19.6(ii) F(ϕ,k)
  3. §19.6(iii) E(ϕ,k)
  4. §19.6(iv) Π(ϕ,α2,k)
  5. §19.6(v) RC(x,y)

§19.6(i) Complete Elliptic Integrals

Exact values of K(k) and E(k) for various special values of k are given in Byrd and Friedman (1971, 111.10 and 111.11) and Cooper et al. (2006).

§19.6(ii) F(ϕ,k)

§19.6(iii) E(ϕ,k)

§19.6(iv) Π(ϕ,α2,k)

Circular and hyperbolic cases, including Cauchy principal values, are unified by using RC(x,y). Let c=csc2ϕα2 and Δ=1k2sin2ϕ. Then

19.6.11 Π(0,α2,k) =0,
Π(ϕ,0,0) =ϕ,
Π(ϕ,1,0) =tanϕ.
19.6.12 Π(ϕ,α2,0) =RC(c1,cα2),
Π(ϕ,α2,1) =11α2(RC(c,c1)α2RC(c,cα2)),
Π(ϕ,1,1) =12(RC(c,c1)+c(c1)1).
19.6.13 Π(ϕ,0,k) =F(ϕ,k),
Π(ϕ,k2,k) =1k2(E(ϕ,k)k2Δsinϕcosϕ),
Π(ϕ,1,k) =F(ϕ,k)1k2(E(ϕ,k)Δtanϕ).
19.6.14 Π(12π,α2,k) =Π(α2,k),
limϕ0Π(ϕ,α2,k)/ϕ =1.

For the Cauchy principal value of Π(ϕ,α2,k) when α2>c, see §19.7(iii).

§19.6(v) RC(x,y)

19.6.15 RC(x,x) =x1/2,
RC(λx,λy) =λ1/2RC(x,y),
RC(x,y) +,
y0+ or y0, x>0,
RC(0,y) =12πy1/2,
|phy|<π,
RC(0,y) =0,
y<0.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy