About the Project
4 Elementary FunctionsLogarithm, Exponential, Powers

§4.8 Identities

Contents
  1. §4.8(i) Logarithms
  2. §4.8(ii) Powers

§4.8(i) Logarithms

In (4.8.1)–(4.8.4) z1z20.

4.8.1 Ln(z1z2)=Lnz1+Lnz2.

This is interpreted that every value of Ln(z1z2) is one of the values of Lnz1+Lnz2, and vice versa.

4.8.2 ln(z1z2)=lnz1+lnz2,
πphz1+phz2π,
4.8.3 Lnz1z2=Lnz1Lnz2,
4.8.4 lnz1z2=lnz1lnz2,
πphz1phz2π.

In (4.8.5)–(4.8.7) and (4.8.10) z0.

4.8.5 Ln(zn)=nLnz,
n,
4.8.6 ln(zn)=nlnz,
n, πnphzπ,
4.8.7 ln1z=lnz,
|phz|π.
4.8.8 Ln(expz)=z+2kπi,
k,
4.8.9 ln(expz)=z,
πzπ,
4.8.10 exp(lnz)=exp(Lnz)=z.

If a0 and az has its general value, then

4.8.11 Ln(az)=zLna+2kπi,
k.

If a0 and az has its principal value, then

4.8.12 ln(az)=zlna+2kπi,

where the integer k is chosen so that (izlna)+2kπ[π,π].

4.8.13 ln(ax)=xlna,
a>0.

§4.8(ii) Powers

4.8.14 az1az2 =az1+z2,
a0,
4.8.15 azbz =(ab)z,
πpha+phbπ,
4.8.16 ez1ez2 =ez1+z2,
4.8.17 (ez1)z2 =ez1z2,
πz1π.

The restriction on z1 can be removed when z2 is an integer.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy