About the Project
33 Coulomb FunctionsVariables r,Ο΅

Β§33.14 Definitions and Basic Properties

Contents
  1. Β§33.14(i) Coulomb Wave Equation
  2. Β§33.14(ii) Regular Solution f⁑(Ο΅,β„“;r)
  3. Β§33.14(iii) Irregular Solution h⁑(Ο΅,β„“;r)
  4. Β§33.14(iv) Solutions s⁑(Ο΅,β„“;r) and c⁑(Ο΅,β„“;r)
  5. Β§33.14(v) Wronskians

Β§33.14(i) Coulomb Wave Equation

Another parametrization of (33.2.1) is given by

33.14.1 d2wdr2+(Ο΅+2rβˆ’β„“β’(β„“+1)r2)⁒w=0,

where

33.14.2 r =βˆ’Ξ·β’Ο,
Ο΅ =1/Ξ·2.

Again, there is a regular singularity at r=0 with indices β„“+1 and βˆ’β„“, and an irregular singularity of rank 1 at r=∞. When Ο΅>0 the outer turning point is given by

33.14.3 rtp⁑(Ο΅,β„“)=(1+ϡ⁒ℓ⁒(β„“+1)βˆ’1)/Ο΅;

compare (33.2.2).

Β§33.14(ii) Regular Solution f⁑(Ο΅,β„“;r)

The function f⁑(Ο΅,β„“;r) is recessive (Β§2.7(iii)) at r=0, and is defined by

33.14.4 f⁑(Ο΅,β„“;r)=ΞΊβ„“+1⁒MΞΊ,β„“+12⁑(2⁒r/ΞΊ)/(2⁒ℓ+1)!,

or equivalently

33.14.5 f⁑(Ο΅,β„“;r)=(2⁒r)β„“+1⁒eβˆ’r/κ⁒M⁑(β„“+1βˆ’ΞΊ,2⁒ℓ+2,2⁒r/ΞΊ)/(2⁒ℓ+1)!,

where Mκ,μ⁑(z) and M⁑(a,b,z) are defined in §§13.14(i) and 13.2(i), and

33.14.6 ΞΊ={(βˆ’Ο΅)βˆ’1/2,Ο΅<0,r>0,βˆ’(βˆ’Ο΅)βˆ’1/2,Ο΅<0,r<0,Β±iβ’Ο΅βˆ’1/2,Ο΅>0.

The choice of sign in the last line of (33.14.6) is immaterial: the same function f⁑(Ο΅,β„“;r) is obtained. This is a consequence of Kummer’s transformation (Β§13.2(vii)).

f⁑(Ο΅,β„“;r) is real and an analytic function of r in the interval βˆ’βˆž<r<∞, and it is also an analytic function of Ο΅ when βˆ’βˆž<Ο΅<∞. This includes Ο΅=0, hence f⁑(Ο΅,β„“;r) can be expanded in a convergent power series in Ο΅ in a neighborhood of Ο΅=0 (Β§33.20(ii)).

Β§33.14(iii) Irregular Solution h⁑(Ο΅,β„“;r)

For nonzero values of Ο΅ and r the function h⁑(Ο΅,β„“;r) is defined by

33.14.7 h⁑(Ο΅,β„“;r)=Γ⁑(β„“+1βˆ’ΞΊ)π⁒κℓ⁒(WΞΊ,β„“+12⁑(2⁒r/ΞΊ)+(βˆ’1)ℓ⁒S⁑(Ο΅,r)⁒Γ⁑(β„“+1+ΞΊ)2⁒(2⁒ℓ+1)!⁒MΞΊ,β„“+12⁑(2⁒r/ΞΊ)),

where ΞΊ is given by (33.14.6) and

33.14.8 S⁑(Ο΅,r)={2⁒cos⁑(π⁒|Ο΅|βˆ’1/2),Ο΅<0,r>0,0,Ο΅<0,r<0,eΟ€β’Ο΅βˆ’1/2,Ο΅>0,r>0,eβˆ’Ο€β’Ο΅βˆ’1/2,Ο΅>0,r<0.

(Again, the choice of the ambiguous sign in the last line of (33.14.6) is immaterial.)

h⁑(Ο΅,β„“;r) is real and an analytic function of each of r and Ο΅ in the intervals βˆ’βˆž<r<∞ and βˆ’βˆž<Ο΅<∞, except when r=0 or Ο΅=0.

Β§33.14(iv) Solutions s⁑(Ο΅,β„“;r) and c⁑(Ο΅,β„“;r)

The functions s⁑(Ο΅,β„“;r) and c⁑(Ο΅,β„“;r) are defined by

33.14.9 s⁑(Ο΅,β„“;r) =(B⁑(Ο΅,β„“)/2)1/2⁒f⁑(Ο΅,β„“;r),
c⁑(Ο΅,β„“;r) =(2⁒B⁑(Ο΅,β„“))βˆ’1/2⁒h⁑(Ο΅,β„“;r),

where

33.14.10 B⁑(Ο΅,β„“)={A⁑(Ο΅,β„“)⁒(1βˆ’exp⁑(βˆ’2⁒π/Ο΅1/2))βˆ’1,Ο΅>0,A⁑(Ο΅,β„“),ϡ≀0,

and

33.14.11 A⁑(Ο΅,β„“)=∏k=0β„“(1+ϡ⁒k2).

An alternative formula for A⁑(Ο΅,β„“) is

33.14.12 A⁑(Ο΅,β„“)=Γ⁑(1+β„“+ΞΊ)Γ⁑(ΞΊβˆ’β„“)β’ΞΊβˆ’2β’β„“βˆ’1,

the choice of sign in the last line of (33.14.6) again being immaterial.

When Ο΅<0 and β„“>(βˆ’Ο΅)βˆ’1/2 the quantity A⁑(Ο΅,β„“) may be negative, causing s⁑(Ο΅,β„“;r) and c⁑(Ο΅,β„“;r) to become imaginary.

The function s⁑(Ο΅,β„“;r) has the following properties:

33.14.13 ∫0∞s⁑(Ο΅1,β„“;r)⁒s⁑(Ο΅2,β„“;r)⁒dr=δ⁑(Ο΅1βˆ’Ο΅2),
Ο΅1,Ο΅2>0,

where the right-hand side is the Dirac delta (Β§1.17). When Ο΅=βˆ’1/n2, n=β„“+1,β„“+2,…, s⁑(Ο΅,β„“;r) is exp⁑(βˆ’r/n) times a polynomial in r/n, and

33.14.14 Ο•n,ℓ⁑(r)=(βˆ’1)β„“+1+n⁒(2/n3)1/2⁒s⁑(βˆ’1/n2,β„“;r)=(βˆ’1)β„“+1+nnβ„“+2⁒((nβˆ’β„“βˆ’1)!(n+β„“)!)1/2⁒(2⁒r)β„“+1⁒eβˆ’r/n⁒Lnβˆ’β„“βˆ’1(2⁒ℓ+1)⁑(2⁒r/n)

satisfies

33.14.15 ∫0βˆžΟ•m,ℓ⁑(r)⁒ϕn,ℓ⁑(r)⁒dr=Ξ΄m,n.

Note that the functions Ο•n,β„“, n=β„“,β„“+1,…, do not form a complete orthonormal system.

Β§33.14(v) Wronskians

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy