Skip to content

A Tensorflow implementation of CycleGAN using Eager Execution, tf.keras.layers, and tf.data.

License

Notifications You must be signed in to change notification settings

herbiebradley/CycleGAN-Tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CycleGAN-Tensorflow

A Tensorflow implementation of Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks using Eager Execution, tf.keras.layers, and tf.data.

Requirements:

  • Tensorflow 1.11

Thanks to the original authors PyTorch implementation for inspiration: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

Project Organization

├── README.md
├── requirements.txt   <- Use `pip install -r requirements.txt`
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── LICENSE
└── src                <- Source code for use in this project
    ├── __init__.py    <- Makes src a Python module
    │
    ├── train.py       <- Run this to train
    │
    ├── test.py        <- Run this to test
    │
    ├── data           <- Code for downloading or loading data  
    │   ├── data.py         <- Dataset class
    │   └── download_data.py
    │
    ├── models         <- Code for defining the network structure and loss functions
    │   ├── cyclegan.py     <- CycleGAN model class
    │   ├── networks.py
    │   └── losses.py
    │
    └── utils          <- Utility files
        ├── options.py      <- Class for command line options
        └── image_history_buffer.py

Project organisation based on the cookiecutter data science project template. #cookiecutterdatascience

About

A Tensorflow implementation of CycleGAN using Eager Execution, tf.keras.layers, and tf.data.

Topics

Resources

License

Stars

Watchers

Forks

Languages

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy