login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022086
Fibonacci sequence beginning 0, 3.
28
0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165, 267, 432, 699, 1131, 1830, 2961, 4791, 7752, 12543, 20295, 32838, 53133, 85971, 139104, 225075, 364179, 589254, 953433, 1542687, 2496120, 4038807, 6534927, 10573734, 17108661, 27682395, 44791056, 72473451, 117264507
OFFSET
0,2
COMMENTS
First differences of A111314. - Ross La Haye, May 31 2006
Pisano period lengths: 1, 3, 1, 6, 20, 3, 16, 12, 8, 60, 10, 6, 28, 48, 20, 24, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
For n>=6, a(n) is the number of edge covers of the union of two cycles C_r and C_s, r+s=n, with a single common vertex. - Feryal Alayont, Oct 17 2024
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17.
FORMULA
a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = 3*F(n). Also, a(n) = F(n-2) + F(n+2) for n>1, with F=A000045.
a(n) = A119457(n+1,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 3*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = A187893(n) - 1. - Filip Zaludek, Oct 29 2016
E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Oct 29 2016
a(n) = F(n+4) + F(n-4) - 4*F(n). - Bruno Berselli, Dec 29 2016
MAPLE
BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L), BB(k)]: od: L; # Zerinvary Lajos, Mar 19 2007
with (combinat):seq(sum((fibonacci(n, 1)), m=1..3), n=0..32); # Zerinvary Lajos, Jun 19 2008
MATHEMATICA
LinearRecurrence[{1, 1}, {0, 3}, 40] (* Arkadiusz Wesolowski, Aug 17 2012 *)
Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *)
Table[3 Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Dec 31 2016 *)
PROG
(PARI) a(n)=3*fibonacci(n) \\ Charles R Greathouse IV, Nov 06 2014
(Magma) [3*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
CROSSREFS
Essentially the same as A097135. Cf. A026390, A036999.
Cf. sequences with formula Fibonacci(n+k)+Fibonacci(n-k) listed in A280154.
Sequence in context: A050337 A299473 A355906 * A097135 A293677 A293679
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy