login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A254601
Numbers of n-length words on alphabet {0,1,...,6} with no subwords ii, where i is from {0,1,2}.
5
1, 7, 46, 304, 2008, 13264, 87616, 578752, 3822976, 25252864, 166809088, 1101865984, 7278432256, 48078057472, 317582073856, 2097804673024, 13857156333568, 91534156693504, 604633565495296, 3993938019745792, 26382162380455936, 174268726361718784
OFFSET
0,2
FORMULA
G.f.: (1 + x)/(1 - 6*x - 4*x^2).
a(n) = 6*a(n-1) + 4*a(n-2) with n>1, a(0) = 1, a(1) = 7.
a(n) = ((3-r)^n*(-4+r) + (3+r)^n*(4+r)) / (2*r), where r=sqrt(13). - Colin Barker, Jan 22 2017
a(n) = A135032(n-1)+A135032(n). - R. J. Mathar, Apr 07 2022
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 7, a[n] == 6 a[n - 1] + 4 a[n - 2]}, a[n], {n, 0, 25}]
LinearRecurrence[{6, 4}, {1, 7}, 30] (* Harvey P. Dale, Oct 10 2017 *)
PROG
(Magma) [n le 1 select 7^n else 6*Self(n)+4*Self(n-1): n in [0..25]]; // Bruno Berselli, Feb 03 2015
(PARI) Vec((1 + x)/(1 - 6*x - 4*x^2) + O(x^30)) \\ Colin Barker, Jan 22 2017
CROSSREFS
Cf. A055099, A126473, A126501, A126528, A135032, A190976 (shifted bin. trans).
Sequence in context: A081894 A128597 A190972 * A258340 A244265 A240722
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 02 2015
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy