Saltar para o conteúdo

Teorema de Ptolomeu

Origem: Wikipédia, a enciclopédia livre.

O teorema de Ptolomeu refere-se a qualquer quadrilátero inscritível por uma circunferência, e pode ser enunciado da seguinte forma:

"O produto das diagonais é igual a soma dos produtos dos lados opostos". Isto é, sendo m e n suas diagonais, a,b,c e d seus lados, vale que: . Este teorema pode ser demonstrado da seguinte maneira:

Ilustração do teorema
Construção do teorema.

Seja, como na figura ao lado, um quadrilátero ABCD inscrito numa circunferência de centro O. Vamos provar que , isto é, provar que o produto das diagonais é igual a soma dos produtos dos lados opostos. Para isso, a partir do vértice A traçamos uma semirreta que intersecciona a semirreta num ponto P tal que. Dado que o quadrilátero ABCD é inscritível, podemos dizer que seus ângulos opostos são suplementares ( ver [1]). Assim, é verdade que é suplementar a . Da mesma maneira, temos que é suplementar a , o que segue daí que são iguais: . Assim, observe então que os triângulos BAC e DAP têm dois ângulos congruentes e podemos concluir que estes são semelhantes entre si pelo caso ângulo-ângulo (ver [2]). Disto é válido dizer que , que é o mesmo que . Como construímos que , segue que e, da semelhança de triângulos que acabamos de mostrar, que . Então, pelo caso lado-ângulo-lado de semelhança de triângulos (ver [3]), dizemos que os triângulos ABD e ACP são semelhantes. Por conseguinte, também podemos inferir disso que , que é o mesmo que . Mas perceba pela figura ao lado que . Substituindo tudo que já encontramos nessa expressão, teremos que . Resolvendo a expressão, podemos concluir então que, como queríamos.

Ícone de esboço Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy