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Introduction


 

Substantial increase of atmospheric CO2 caused by human 
activities


 
About half of anthropogenic CO2 emission has sunk into land 
and ocean


 
The capacity of the land and ocean CO2 uptake varies 
substantially with time and space, and is strongly dependent on 
climate anomalies (e.g. El Nino-drought and fire, changes in balance 
between plant growth and death, etc) 

http://earthobservatory.nasa.gov/Library/CarbonCycle/carbon_cycle4.html 
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Introduction


 

In order to understand the carbon cycle and its impact on 
climate change, we need to quantify the temporal and 
spatial CO2 sources and sinks at the Earth’s surface


 
Difficulties:


 
Lack of the spatial coverage of direct carbon flux 
measurements


 
Lack of the sophistication of numerical models of the 
carbon cycle
 Atmospheric CO2 mixing ratio measurements are used for 

estimating surface CO2 fluxes: “top-down approach”
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Inversion Problem: top-down approach


 

Inversion modeling (e.g. Gurney et al., 2004; Rodenbeck et al., 2003)


 

in-situ & flask atmospheric CO2 observations


 
Sub-continental and sub-seasonal scales


 
Inverse of transport model: difficult and ill-posed


 
Computationally impractical for high-density data


 

Data Assimilation (DA) (e.g. Peters et al., 2007; Baker et al., 2010; Feng et al., 2009)


 

Satellite CO2 observations in addition to in-situ & flask data


 
Model-grid scale and weekly estimates (e.g. Carbon Tracker)
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Inversion Problem: Issues


 

A prior estimate of surface CO2 fluxes


 
It should be pre-calculated by independent observations or 
another model simulation


 

Transport errors (for several weeks window)


 

It is one of critical factors to degrade the flux estimation (e.g. 
Stephens et al.; 2007; Miyazaki, 2009; Liu et al., 2011)

A-priori fields of surface CO2 fluxes, S0

Atmospheric CO2 observation, O

 Require a prior estimate of 
surface CO2 flux fields
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Minimizing the difference between the simulated CO2 
concentration and the observed CO2 , prior errors of 
CO2 variables

 Require a prior estimate of 
surface CO2 flux fields
 Don’t account for the 
transport errors explicitly
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Objectives of our study


 

Explore the feasibility of estimating surface CO2 
fluxes at the model-grid scale by assimilating 
atmospheric variables (U, V, T, q, Ps) and atmospheric 
CO2 simultaneously


 
Consider transport errors in analyzing CO2 variables


 
No a-priori information for CO2

“Carbon Data Assimilation with a Coupled Ensemble Kalman Filter”
Supported by Climate Change Prediction Program in Department of Energy

Realistic System (CAM/CLM)
Assimilating real observation of GOSAT & AIRS

UC BerkeleyUC Berkeley
Prof. Inez Fung

Simulation mode (SPEEDY)
Develop new methodologies
University of MarylandUniversity of Maryland

Prof. Eugenia Kalnay
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Local Ensemble Transform Kalman Filter 
(Hunt et al., 2007)


 

Analysis=(1-K)*background + K*obs


 
K (Kalman gain) is determined by the error statistics of 
ensemble forecast (background) and observations


 
EnKF provides background and analysis uncertainty 
estimation in every analysis step (Pb, Pa)


 
LETKF assimilates the observations locally
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UMD-Berkeley LETKF-C System


 

Parameter estimation: state vector augmentation


 
Append CF (surface CO2 fluxes)


 
Update CF as part of the data assimilation process


 

Simultaneous analysis of carbon and meteorological 
variables


 
Multivariate analysis with a localization of the 
variables (Kang et al., 2011)


 
Update all variables at every six hours











CF
X

Xb
: model state vector

(U, V, T, q, Ps, C)

: surface CO2 flux

Observations
U, V, T, q, Ps, C

Forecast
U, V, T, q, Ps, C

LETKF (analysis)
U, V, T, q, Ps, C, CF
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(1) Localization of Variables


 

If variables in the state vector are not physically correlated each 
other, error covariance between those variables can introduce a 
sampling error into the analysis system
 Zeroing out the background error covariance between those 

variables improves the result of the analysis

CF C U V T q Ps
CF
C
U
V
T
q
Ps

yes

CF C U V T q Ps
CF
C
U
V
T
q
Ps yes

yes no

no

without variable localization with variable localizationBackground error covariance matrix

(Kang et al., 2011, JGR)
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Observing System Simulation Experiments 
(OSSEs)


 

We assume that we know the true state!


 
True state (nature run) is generated by a simulation of the 
model


 
Observations are simulated from the true state


 
Forecast starts from perturbed/random initial guess
 See if our new data assimilation techniques or new 

datasets improve the analysis compared with the truth


 
Test of three data assimilation techniques


 
Localization of variables – (1)


 
Advanced inflation methods – (2) 


 
Vertical localization of column mixed CO2 data – (3) 


 

Test of impact of CO2 observations on surface CO2 flux 
estimation


 
in-situ & flasks, GOSAT (OCO-2) and AIRS – (4)
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OSSEs – (1)


 

Nature run: assumed true state in the experiments


 
SPEEDY-C: the modified version of SPEEDY (Molteni, 2003)

– AGCM with a tracer gas of atmospheric CO2 (C)
– Spectral model with T30L7
– Prognostic variables: U, V, T, q, Ps, C 
– No diurnal cycle


 

True CO2 fluxes (true CF)
– A constant fossil fuel emission (Andres et al., 1996)


 

Forecast model


 
SPEEDY-C with persistence forecast of surface CO2 fluxes (CF)

– CF is updated only by the data assimilation


 
Initial condition: random (no a-priori information)

– Ensemble mean of initial CF is close to zero
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Simulated Observations – (1)


 
Meteorological variables (U, V, T, q, Ps)


 
Rawinsonde 

– Every six hours


 

Atmospheric CO2 concentrations


 
in-situ & flask observations

– Weekly records: black dots (107) 
– Hourly records: gray dots (18) 


 

Satellite data from GOSAT
– GOSAT provides column mixed CO2 

information which has a sensitivity near the 
surface: gray squares


 

No direct measurement of surface CO2 
fluxes
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Results: Impact of variable localization


 

The experiments only with a fossil fuel 
emission


 
Variable localization 
significantly reduce sampling errors 

True CO2 fluxes 

Analysis of CO2 fluxes
with variable localization



Analysis of CO2 fluxes
without variable localization





Nature with Nature with ““evolvingevolving”” CFCF

In order to estimate surface CO2 fluxes evolving in time, 
we need more advanced data assimilation techniques.

 Advanced inflation methods
 Vertical localization of column mixing CO2 data
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(2) Inflation Methods


 

Background uncertainty tends to be underestimated with a 
limited ensemble size due to the imperfection of the model and 
nonlinearity of the system. 


 
Underestimation of background uncertainty is more serious over 
the observation-rich area.
 EnKF needs “inflation”

Multiplicative inflation Additive inflation

Multiply (1.0+α) to the 
background variance

Add perturbations to the 
background/analysis state


 

The choice of inflation parameter


 
α

 
for the multiplicative inflation


 

Scaling factor for the additive perturbation in additive inflation
 Manual tuning: very expensive or often infeasible!
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Experiments for inflation methods


 

Fixed multiplicative inflation (FixedM)


 
Standard method


 
Fixed multiplicative inflation parameter (α) in time and 
space


 

FixedM + Additive inflation (FixedM + Addi)


 
Add perturbations to analysis of CO2 variables


 

Adaptive multiplicative inflation + Additive inflation 
(AdaptM + Addi)


 
Estimates multiplicative inflation parameter at each grid 
point at every analysis step adaptively (Miyoshi, 2011)
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OSSEs – (2) & (3)


 

Nature run: assumed true state in the experiments


 
SPEEDY-C: the modified version of SPEEDY (Molteni, 2003)

– AGCM with a tracer gas of atmospheric CO2 (C)
– Spectral model with T30L7
– Prognostic variables: U, V, T, q, Ps, C 
– No diurnal cycle


 

“True” CO2 fluxes (true CF)
– A constant fossil fuel emission (Andres et al., 1996)
– CASA terrestrial CO2 fluxes (Gurney et al., 2004)
– Oceanic CO2 fluxes (Takahashi et al., 2002)


 

Forecast model


 
SPEEDY-C with persistence forecast of surface CO2 fluxes (CF)

– CF is updated only by the data assimilation
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Simulated Observations – (2) & (3)


 
Meteorological variables (U, V, T, q, Ps)


 
Conventional data

– U, V, T, q: black dots (every 12 hours)
– Ps: gray boxes (every 6 hours)


 

Atmospheric CO2 concentrations


 
in-situ & flask observations

– Weekly records: black dots (107) 
– Hourly records: gray dots (18) 


 

Satellite data from GOSAT
– GOSAT provides column mixed CO2 

information which has a sensitivity near the 
surface: gray boxes


 

No direct measurement of surface CO2 
fluxes
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Initial Conditions for Carbon Variables

True CO2 fluxes @ initial time
True atmospheric CO2 near surface

@ initial time

Initial condition of surface CO2 fluxes
Initial condition 

of atmospheric CO2 near surface

No a-priori information!
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Results: Impact of the inflation methods


 

Fixed multiplicative inflation fails to estimate seasonal changes of CO2 
fluxes due to a serious underestimation of background uncertainty.

Time series of surface CO2 fluxes over East of North America

adaptM+addi
fixedM+addi
fixedM

Black: nature
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Results: Impact of the inflation methods


 

Fixed multiplicative inflation fails to estimate seasonal changes of CO2 
fluxes due to a serious underestimation of background uncertainty.


 
Additive inflation and adaptive inflation improve the representation of 
background uncertainty significantly so that the analysis maintains 
the quality till the end of one-year data assimilation

Time series of surface CO2 fluxes over East of North America

adaptM+addi
fixedM+addi
fixedM

Black: nature
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Results: Impact of the inflation methods


 

Global maps of surface CO2 fluxes in different seasons

April

August

January

A: True fluxes D: FixedM
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Results: Impact of the inflation methods


 

Global maps of surface CO2 fluxes in different seasons

April

August

January

A: True fluxes C: FixedM+Addi D: FixedM
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Results: Impact of the inflation methods


 

Global maps of surface CO2 fluxes in different seasons

April

August

January

A: True fluxes B: AdaptM+Addi C: FixedM+Addi D: FixedM
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Impact of the inflation methods on errors


 

Analysis errors of 
atmospheric CO2 near the surface 
at the end of one-year DA


 
Adaptive and additive inflations 
reduce the atmospheric CO2 errors 
caused by the imperfection of CF 
forecast

-

+
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(Wang et al., 2009)

(3) Vertical Localization


 

Vertical localization of column mixing CO2 observation 
from remote sensing (e.g. GOSAT, OCO-2)


 
Averaging kernel is nearly uniform in the
vertical, although the forcing term (our 
ultimate estimate) is at the surface


 
We have localized the column CO2 data, 
updating only lower atmospheric CO2
rather than a full column of CO2

– Calculating innovation based on the 
averaging kernel

(Kang et al., in prep.) Forcing is at the surface 


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Results: Impact of vertical localization


 

This method improves analysis of CF mainly over where 
there are few observations and where there is strong 
variability of CF


 
We need a careful localization on column mixing CO2 
observations
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(4) Observation Impact on errors


 
Impact of CO2 observations on surface CO2 flux estimation


 
SFC: in-situ & flask data


 
SFC + AIRS


 
SFC + GOSAT


 
SFC + GOSAT + AIRS
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(4) Observation Impact on errors


 
Impact of CO2 observations on surface CO2 flux estimation


 
SFC: in-situ & flask data


 
SFC + AIRS


 
SFC + GOSAT


 
SFC + GOSAT + AIRS

RMSE of surface CO2 fluxes 
over globe
(gC/m2/yr)

RMSE of surface-layer 
atmospheric CO2 over globe
(ppmv)
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Results: Observation Impacts


 

Global maps of surface CO2 fluxes in different seasons

April

August

January

A: True fluxes D: SFC
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Results: Observation Impacts


 

Global maps of surface CO2 fluxes in different seasons

April

August

January

A: True fluxes C: SFC+GOSAT D: SFC
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Results: Observation Impacts


 

Global maps of surface CO2 fluxes in different seasons

April

August

January

A: True fluxes C: SFC+GOSATB: SFC+GOSAT+AIRS D: SFC
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Summary of Carbon Cycle DA


 

We succeed in estimating surface CO2 fluxes with the 
advanced LETKF-C system, even without a-priori 
information (OSSEs)


 
Localization of variables

– reduces sampling errors from the correlation between the 
variables which are not physically correlated


 

Advanced inflation methods
– represents background uncertainty well


 

Vertical localization of column mixing CO2 data
– better estimate surface CO2 flux changes rather than updating 

full column of CO2


 

Dedicated CO2 monitoring satellite (GOSAT) contributes 
to the surface CO2 flux estimation significantly


 
AIRS CO2 retrievals help CO2 flux estimation due to better 
analysis of atmospheric CO2 circulation
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How about heat/moisture fluxes?


 

Can we estimate surface moisture/heat fluxes by 
assimilating atmospheric moisture/temperature 
observations? We can use the same methodology!


 
OSSEs


 
Nature: SPEEDY


 
Forecast model: SPEEDY with persistence forecast of 
Sensible/Latent heat fluxes (SHF/LHF)


 
Observations: conventional observations of (U, V, T, q, Ps) 
and AIRS retrievals of (T, q)


 
Analysis: U, V, T, q, Ps + SHF & LHF


 

Fully multivariate data assimilation


 
Adaptive multiplicative inflation + additive inflation


 
Initial conditions: random (no a-priori information)
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Result: Analysis of SHF

True SHF in FEB True SHF in JUL True SHF in DEC

Analysis of SHF in FEB

W/m2
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Result: Analysis of SHF

True SHF in FEB True SHF in JUL True SHF in DEC
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W/m2
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Result: Analysis of LHF

True LHF in FEB True LHF in JUL True LHF in DEC

Analysis of LHF in FEB

W/m2
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Result: Analysis of LHF

True LHF in FEB True LHF in JUL True LHF in DEC

Analysis of LHF in FEB Analysis of LHF in JUL

W/m2
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Result: Analysis of LHF

True LHF in FEB True LHF in JUL True LHF in DEC

Analysis of LHF in FEB Analysis of LHF in JUL Analysis of LHF in DEC

W/m2
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1 2Time series of LHF/SHF


 
Black: nature


 
Color: analysis of LHF (blue)/SHF(red)

Recall that LHF & SHF 
are updated only by the 
data assimilation here!

unit: W/m2

Promising results from the 
estimation of “evolving 
parameters” with data 
assimilation
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Future Plans


 

More CO2 datasets


 
HIAPER Pole to Pole Observations (HIPPO) data (Wofsy, 
2011)


 
Orbiting Carbon Observatory (OCO-2) data


 

The advanced LETKF + CAM3.5 or CAM5 model with real 
observations


 
On-going project


 

Imperfect model experiments for both CO2 fluxes and 
SHF/LHF


 
Impact of model error on flux estimation


 
Bias estimation and correction
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
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The End
Thank you for your attention!
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Observation error of CO2
3.0 ppmv for GOSAT
2.0 ppmv for AIRS
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LETKF with SHF/LHF


 

No a-priori 
information











F
X

Xb : model state vector (U, V, T, q, Ps)

: sensible & latent heat fluxes (SHF, LHF)
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