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GCM Background  
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Global Climate/Circulation Model (GCM)  
The set of conservation laws (mass, energy, 

momentum, water vapor, ozone, etc.) 
•  Deterministic First Principles Models, 3-D Partial Differential 

Equations on the Sphere: 
 
 

–    - a 3-D prognostic/dependent variable, e.g., temperature  
–  x - a 3-D independent variable: x, y, z & t 
–  D  - dynamics (spectral) 
–  P  - physics or parameterization of physical processes (1-D vertical 

r.h.s. forcing) 

•  Continuity Equation 
•  Thermodynamic Equation 
•  Momentum Equations 

( , ) ( , )D x P x
t
ψ ψ ψ∂ + =
∂
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GCM (2) 
Physics – P, currently represented  
by 1-D (vertical) parameterizations  

 
•  Major components of P = {R, W, C, T, S, CH}: 

–  R - radiation (long & short wave processes): AER Inc. 
rrtm, ncep0, and ncep1 

–  W – convection, large scale precipitation processes & 
clouds 

–  T – turbulence  
–  S – land, ocean, ice – air interaction 
–  CH – chemistry (aerosols) 

•  Components of P are 1-D parameterization of complicated 
set of multi-scale theoretical and empirical physical process 
models simplified for computational reasons  

•  P is the most time consuming and uncertain part of 
climate/weather models! 

•  W is one of the most uncertain parts of physics 
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Distribution of NCEP CFS Calculation Time 
NCEP CFS T126L64 

 

Radiation Dynamics Other

~60% 

~20% 

~20% 

Radiation is  
calculated  
every hour; 
however, the 

integration step 
is 10 min. 
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NN Background 
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Mapping and NNs 
•  MAPPING (continuous or almost 

continuous) is a relationship between two 
vectors: a vector of input parameters, X, 
and a vector of output parameters, Z, 

•  NN is a generic approximation for any 
continuous or almost continuous mapping 
given by a set of its input/output records: 

SET = {Xi, Zi}i = 1, …,N  

mn ZandXXFZ ℜ∈ℜ∈= );(



4/28/2011 V. Krasnopolsky, Neural Network for Model Physics 10 

Linear part Nonlinear part

   x1  
   

   xn  
   

   xi   
  

   x2  
   

   xn-1
     

NN - Continuous Input to Output Mapping 
Multilayer Perceptron: Feed Forward, Fully Connected 
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NN as a Universal Tool for Approximation of 
Continuous & Almost Continuous Mappings 

Some Basic Theorems: 

" Any function or mapping Z = F (X), continuous 
on a compact subset, can be approximately 
represented by a p (p  3) layer NN in the 
sense of uniform convergence (e.g., Chen & 
Chen, 1995; Blum and Li, 1991, Hornik, 1991; 
Funahashi, 1989, etc.)  

"   The error bounds for the uniform 
approximation on compact sets (Attali & Pagès, 
1997):                         

                ||Z -Y|| = ||F (X) - FNN (X)|| ~ O(1/k)                   
k -number of neurons in the hidden layer  
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NN Training 
One Training Iteration 

W 

E ≤  
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Major Advantages of NNs: 
"   NNs are generic, very accurate and convenient 

mathematical (statistical) models which are able to 
emulate complicated nonlinear input/output relationships 
(continuous or almost continuous mappings ). 

"   NNs are robust with respect to random noise and fault- 
tolerant. 

"   NNs are analytically differentiable (training, error and 
sensitivity analyses): almost free Jacobian! 

"   NNs emulations are accurate and fast but NO FREE 
LUNCH! 
" Training is complicated and time consuming nonlinear 

optimization task; however, training should be done 
only once for a particular application! 

"   NNs are well-suited for parallel and vector processing   
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I.  NN Emulations of 
Model Physics 

• Major Benefit :         
Significant speeding up 
model integration 

• Auxiliary Benefit : 
Improving Model Physics 
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Motivation for Developing NN 
Emulations 

•  Calculation of model radiation is always  
a trade-off between the accuracy and 
computational efficiency: 
–  NCEP and UKMO models reduce the frequency of 

calculations 
–  ECMWF model reduces horizontal resolution of 

radiation calculations in climate and NWP models  
–   Canadian Meteorological Service model reduces 

vertical resolution of radiation calculations 

•  All these approaches introduce additional 
significant errors in model physics 
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Basis for Accurate and Fast  
NN Emulations of  

Model Physics  
•  Any parameterization of model physics 

is a continuous or almost continuous 
mapping 

•  NN is a generic tool for emulating such 
mappings 

mn ZandXXFZ ℜ∈ℜ∈= );(
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NN Emulations of Model Physics Parameterizations 
 Learning from Data 

GCM 

X Y 

Original 
Parameterization 

F 

X Y 

NN Emulation 

FNN 

Training 
Set …, {Xi, Yi}, …  Xi 

Dphys 

NN Emulation 

FNN 
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NN Emulation of Input/Output Dependency: 
YNN = FNN(X) 

 
Input/Output Dependency:  

The Magic of NN Performance 

Xi 
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Parameterization Yi 

Y = F(X) 

Xi 
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NCEP CFS LW (SW) Radiation  
and NN Characteristics 

•  612 (650) Inputs: 
–  10 Profiles: temperature, humidity, ozone, pressure, cloudiness, 

CO2, etc 
–  Relevant surface and scalar characteristics 

•  69 (73) Outputs: 
–  Profile of heating rates (64) 

–  5 (9) LW (SW) radiation fluxes  
•  Hidden Layer: One layer with 50 to 300 neurons  
•  Training: nonlinear optimization in the space with 

dimensionality of 15,000 to 100,000 
–  Training Data Set: Subset of about 200,000 instantaneous profiles 

simulated by CFS for 17 years 
–  Training time: about 1 to several days 
–  Training iterations: 1,500 to 8,000 

•  Validation on Independent Data: 
–  Validation Data Set (independent data): about 200,000 

instantaneous profiles simulated by CFS  
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NN Approximation Accuracy and Performance 
vs. Original Parameterization 

(on independent data set) 
Parameter Model Bias RMSE RMSEt RMSEb Performance 

LWR 
(K/day) 

NCEP CFS 
AER rrtm 

2. 10-3 0.40 0.09 0.64  12  
times faster 

NCAR CAM 
W.D. Collins  

3. 10-4 0.28 0.06 0.86  150  
times faster  

SWR 
(K/day) 

NCEP CFS 
AER rrtm 

 
5. 10-3 0.20 0.21 0.22 ~45 

times faster  

NCAR CAM 
W.D. Collins  

-4. 10-3 0.19 0.17 0.43  20  
times faster 
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Individual Profiles (NCEP CFS) 
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Climate Simulation 
17 years: 

1990 – 2006  
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Validation of Full NN Radiation in CFS 
•  The Control CFS run with the original LWR and 

SWR parameterizations is run for 17 years 
(1990 – 2006).   

•  The NN Full Radiation run: CFS with LWR and 
SWR NN emulations is run for 17 years.  

•  Another Control CFS Run after updates of 
FORTRAN compiler and libraries  

•  Validation of the NN Full Radiation run is done 
against the Control run. The differences/biases 
are less than/within observation errors and 
uncertainties of reanalysis 

•  The differences between two controls 
(“butterfly” or ”round off” differences or “model 
internal variability”) have been also calculated 
and shown for comparison.  
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Zonal and time mean Top of 
Atmosphere Upward Fluxes (Winter) 

The solid line – the difference (the full radiation NN run – the control (CTL)),  
the dash line – the background differences (the differences between two  

control runs).  All in W/m2. 

LWR 

SWR 
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The time mean (1990-2006) SST 
statistics for summer 

Control Run 
NN Full  

Radiation 
 Run 

NN - Control Control1 –  
Control2 

The contour intervals for the SST fields are 5º K  
and for the SST differences are 0.5º K.  

Fields 

Differences 



4/28/2011 V. Krasnopolsky, Neural Network for Model Physics 26 

CTL NN FR 

NN - CTL 

CTL_O – 
CTL_N 

JJA 

CTL1 – CTL2 
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The time mean (1990-2006) total 
precipitation rate (PRATE) statistics 

for summer 

Control Run 
NN Full  

Radiation 
 Run 

NN - Control Control1 –  
Control2 

The contour intervals for the PRATE fields are 1 mm/day for the  
0 – 6 mm/day range and 2 mm/day for the 6 mm/day and higher;  
for the PRATE differences the contour intervals are 1 mm/day  

Fields 

Differences 



4/28/2011 V. Krasnopolsky, Neural Network for Model Physics 28 

CTL NN FR 

NN - CTL 

JJA 

CTL1 – CTL2 
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The time mean (1990-2006) total) total 
clouds statistics for winter 

Control Run 
NN Full  

Radiation 
 Run 

NN - Control Control1 –  
Control2 

The contour intervals for the total clouds fields the cloud fields  
are 10% and for the differences – 5%.  

Fields 

Differences 
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DJF 
CTL NN FR 

NN - CTL CTL1 – CTL2 
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NN Emulations of Model Physics 
Conclusions – 1  

•  NN is a powerful tool for speeding up 
calculations of model physics through 
developing NN emulations 
–  Accurate and fast NNs emulations have been 

successfully developed for: 
•  NCEP LWR & SWR parameterizations  
•  NCAR CAM LWR & SWR parameterizations 
•  NASA LWR parameterization 

–  The simulated diagnostic and prognostic fields are 
very close for the parallel climate (and seasonal 
prediction) runs performed with NN emulations and 
the original parameterizations 

•  NN emulations approach also can improve model 
physics allowing to use new, more advanced and 
complex parameterizations that are otherwise 
computationally prohibitive.  
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II.  New NN Based 
Parameterizations of Model 

Physics 

• Major Benefit : Improving Model 
Physics  

• Auxiliary Benefit: Significant 
speeding up model integration 
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Motivations for Using NNs  
•  Uncertainty in convection, large scale 

precipitation processes & clouds is high: 
–  Existing parameterization are simplified 
–  Vast range of time and space scales involved 

•  Alternative approaches are prohibitively time 
consuming: 
–  Global Cloud System Resolving Models (GCSRMs or 

GCRM): 105 – 107 more expensive than regular 
parameterizations 

–  Multiscale Modeling Framework (MMF) or “Super-
parameterization” – 2D CRM imbedded into GCM: 
still 102 – 103 more expensive than parameterizations 
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New NN Parameterization 
•  New NN parameterizations of model physics can 

be developed based on: 
–  Data simulated by first principles models like CRM (e. g., 

Khairoutdinov and Randall 2003)).  
–  Observations (e.g., ARM, TOGA COARE) 

•  Our approach is aimed at developing new more 
sophisticated and fast model convection 
schemes based on using NNs for direct learning 
cloud physics from simulated CRM and 
observed data. 

•  NN serves as an interface transferring information 
about sub-grid scale processes from fine scale data 
or models (CRM) into GCM (upscaling) 
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Creating Development Set for Stochastic 
Parameterization 

•  Horizontal resolution 1 km < r ≤ R  
•  Vertical resolution 96 layers < l ≤ L 
•  Averaging time – τ < t ≤ T 
•  Projecting – reducing the number of variables 
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Data Evolution and Emerging 
Uncertainties 

We start with:  y = MCRM(x), 
x and y are high resolution CRM 
simulated data (in CRM space) 

We (1) reduce resolution to r, l, and t; 
(2) reduce the number of variables 
(project).  Thus, we get “pseudo-

observations” X and Y  (in GCM space) 

Y = MGCM(X) + ε 
ε is uncertainty and  

MGCM(X) is a stochastic mapping  
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D nℜ X R mℜY 
M 

Exact Mapping: Y = M(X) 
Mapping & NN Emulation 

MNN NN Emulation 

Mapping with uncertainty (stochastic):  
Y = M(X) + ε   

Requires an ensemble of emulating NNs:  
Y = Mi

NN(X), i = 1,2, … 
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NN Convection Parameterization 
•  Data (for CRM initialization and forcing): TOGA-COARE 
•  CRM: SAM CRM (Khairoutdinov  and Randall, 2003).   

–  Hourly data: over 120 days for TOGA-COARE 
–  Resolution: 1 km over the domain of 256 x 256 km 
–  96 vertical layers (0 – 28 km)  

•  “Pseudo-observations”  
–  Resolution of (averaged CRM data) over TOGA COARE 

location:  
•  Horizontal: 256 x 256 km (close to NCAR CAM) 
•  Vertical: 26 vertical layers (as in NCAR CAM) 

–  a limited training data set (120 days, over one location) used for 
the initial development of NN convection 

•  NN inputs: temperature and water vapor profiles;  
•  NN outputs: the tendencies of T and q, or “apparent heat 

source” (Q1C), “apparent moist sink” (Q2), precipitation & 
cloud fractions (CLD)  

•  Ensemble of NNs has been trained (10 NN members)  
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Validation of NN convection  
in NCAR CAM 

•  NN convection was introduced in CAM and run 
during a 10-year period (1990 – 2001, excluding 
TOGA COARE winter) in a diagnostic mode and 
analyzed for winters, NDJF: 
–  Over a TOGA COARE location 
–  Over the 120° x 30° area in the Tropical Pacific 

•  At each time step in at each grid point all 10 NN 
ensemble members were applied and averaged. 

•  Results are compared with a parallel CAM run 
and with the NCEP reanalysis 
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Decadal mean total cloudiness (in fractions) 
for the TOGA-COARE location  
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Decadal mean cloudiness distribution  
(in fractions)  

TOGA COARE 
location 
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Decadal mean precipitation distribution 
(in mm/day) 

TOGA COARE 
location 
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Conclusions:  
new NN  parameterizations 

•  Approach has been conceptually formulated: 
–  “Pseudo-observations” 
–  Stochastic parameterization/mapping 
–  NN ensemble as a tool for approximating stochastic mapping 
–  Correcting biases between CRM and GCM 

•  A prototype NN convection parameterization has been 
developed and tested in NCAR CAM  

•  Further plans: 
–  Validate NN convection in the prognostic mode 
–  Simulate data using CRM forced by CAM 

•  Broader/global geographical representation 
•  Broader/all seasons range of regimes 
•  Longer period of integration 

–  GOAL: Develop a new NN convection parameterization for global 
applications in GCMs. 


