# Using Neural Networks to Improve Atmospheric Model Physics

### **Vladimir Krasnopolsky**

**NOAA/NCEP/EMC & University of Maryland/ESSIC** 

In collaboration with:

M. Fox-Rabinovitz, and A. Belochitski (ESSIC)

#### **Acknowledgements:**

NCEP: S. Lord, Yu-Tai,

DOE PNNL: P. Rasch,

SUNY: M. Khairoutdinov,

**UWA: P. Blossey** 







### Special Acknowledgement

The presenter thanks Alexei Belochitski for providing unpublished results of his research and some figures included in his thesis (to be defended shortly).

### **Outline**

- Background
  - GCM
    - Radiation
    - Convection
  - Neural Networks
- NN Emulations of Existing Model Physics:
  - Accurate and Fast NN Emulations of LWR and SWR Parameterizations
  - Validation in NCEP CFS
- New NN Parameterizations of Model Physics:
  - Stochastic NN ensemble Convection Parameterization
  - Validation in NCAR CAM
- Conclusions

### GCM Background

### Global Climate/Circulation Model (GCM)

The set of conservation laws (mass, energy, momentum, water vapor, ozone, etc.)

 Deterministic First Principles Models, 3-D Partial Differential Equations on the Sphere:

the Sphere: 
$$\frac{\partial \psi}{\partial t} + D(\psi, x) = P(\psi, x)$$

- W a 3-D prognostic/dependent variable, e.g., temperature
- x a 3-D independent variable: x, y, z & t
- D dynamics (spectral)
- P physics or parameterization of physical processes (1-D vertical r.h.s. forcing)
- Continuity Equation
- Thermodynamic Equation
- Momentum Equations

### GCM (2)

#### Physics – P, currently represented by 1-D (vertical) parameterizations

- Major components of P = {R, W, C, T, S, CH}:
  - R radiation (long & short wave processes): AER Inc. rrtm, ncep0, and ncep1
  - W convection, large scale precipitation processes & clouds
  - T turbulence
  - S land, ocean, ice air interaction
  - CH chemistry (aerosols)
- Components of P are 1-D parameterization of complicated set of multi-scale theoretical and empirical physical process models <u>simplified for computational reasons</u>
- P is the <u>most time consuming and uncertain</u> part of climate/weather models!
- W is one of the most uncertain parts of physics

### **Distribution of NCEP CFS Calculation Time**

#### NCEP CFS T126L64

Radiation is calculated every hour; however, the integration step is 10 min.



### NN Background

### **Mapping and NNs**

 MAPPING (continuous or almost continuous) is a relationship between two vectors: a vector of input parameters, X, and a vector of output parameters, Z,

$$Z = F(X); X \in \mathbb{R}^n \text{ and } Z \in \mathbb{R}^m$$

 NN is a generic approximation for any continuous or almost continuous mapping given by a set of its input/output records:

SET = 
$$\{X_i, Z_i\}_{i=1,...,N}$$

### **NN - Continuous Input to Output Mapping**

Multilayer Perceptron: Feed Forward, Fully Connected





$$t_{j} = \phi(b_{j} + \sum_{i=1}^{n} \Omega_{ji} \cdot x_{i}) =$$

$$= \tanh(b_{j} + \sum_{i=1}^{n} \Omega_{ji} \cdot x_{i})$$

$$Y = F_{NN}(X)$$

Jacobian!

$$y_q = a_{q0} + \sum_{j=1}^k a_{qj} \cdot t_j = a_{q0} + \sum_{j=1}^k a_{qj} \cdot \phi(b_j + \sum_{i=1}^n \Omega_{ji} \cdot x_i) = 0$$

$$= a_{q0} + \sum_{j=1}^{k} a_{qj} \cdot \tanh(b_j + \sum_{i=1}^{n} \Omega_{ji} \cdot x_i); \quad q = 1, 2, K, m$$

## NN as a Universal Tool for Approximation of Continuous & Almost Continuous Mappings Some Basic Theorems:

- Any function or mapping Z = F (X), continuous on a compact subset, can be approximately represented by a p (p ⋈ 3) layer NN in the sense of uniform convergence (e.g., Chen & Chen, 1995; Blum and Li, 1991, Hornik, 1991; Funahashi, 1989, etc.)
- The error bounds for the uniform approximation on compact sets (Attali & Pagès, 1997):

 $||Z - Y|| = ||F(X) - F_{NN}(X)|| \sim O(1/k)$ 

k -number of neurons in the hidden layer

### **NN** Training

### **One Training Iteration**



12

### **Major Advantages of NNs:**

- NNs are generic, very accurate and convenient mathematical (statistical) models which are able to emulate complicated nonlinear input/output relationships (continuous or almost continuous mappings).
- NNs are robust with respect to random noise and faulttolerant.
- NNs are analytically differentiable (training, error and sensitivity analyses): almost free Jacobian!
- NNs emulations are accurate and fast but NO FREE LUNCH!
  - Training is complicated and time consuming nonlinear optimization task; <u>however, training should be done</u> <u>only once for a particular application!</u>
- NNs are well-suited for parallel and vector processing

## I. NN Emulations of Model Physics

- Major Benefit:
   Significant speeding up model integration
- Auxiliary Benefit:
   Improving Model Physics

### Motivation for Developing NN Emulations

- Calculation of model radiation is <u>always</u> a trade-off between the accuracy and computational efficiency:
  - NCEP and UKMO models reduce the frequency of calculations
  - ECMWF model reduces horizontal resolution of radiation calculations in climate and NWP models
  - Canadian Meteorological Service model reduces vertical resolution of radiation calculations
- All these approaches introduce additional significant errors in model physics

# Basis for Accurate and Fast NN Emulations of Model Physics

 Any parameterization of model physics is a continuous or almost continuous mapping

$$Z = F(X); X \in \mathbb{R}^n \text{ and } Z \in \mathbb{R}^m$$

NN is a generic tool for emulating such mappings

### **NN Emulations of Model Physics Parameterizations**

Learning from Data



### The Magic of NN Performance



## NCEP CFS LW (SW) Radiation and NN Characteristics

- 612 (650) Inputs:
  - 10 Profiles: temperature, humidity, ozone, pressure, cloudiness, CO<sub>2</sub>, etc
  - Relevant surface and scalar characteristics
- 69 (73) Outputs:
  - Profile of heating rates (64)
  - 5 (9) LW (SW) radiation fluxes
- Hidden Layer: One layer with 50 to 300 neurons
- Training: nonlinear optimization in the space with dimensionality of 15,000 to 100,000
  - Training Data Set: Subset of about 200,000 instantaneous profiles simulated by CFS for 17 years
  - Training time: about 1 to several days
  - Training iterations: 1,500 to 8,000
- Validation on Independent Data:
  - Validation Data Set (independent data): about 200,000 instantaneous profiles simulated by CFS

## NN Approximation Accuracy and Performance vs. Original Parameterization (on independent data set)

| Parameter               | Model                    | Bias                        | RMSE | RMSE <sub>t</sub> | RMSE <sub>b</sub> | Performance              |
|-------------------------|--------------------------|-----------------------------|------|-------------------|-------------------|--------------------------|
| LWR<br>(WK/day)         | NCEP CFS<br>AER rrtm     | <b>2.</b> 10 <sup>-3</sup>  | 0.40 | 0.09              | 0.64              | <b>I</b> 12 times faster |
|                         | NCAR CAM<br>W.D. Collins | 3. 10-4                     | 0.28 | 0.06              | 0.86              |                          |
| SWR<br>( <b>K</b> /day) | NCEP CFS<br>AER rrtm     | <b>5.</b> 10 <sup>-3</sup>  | 0.20 | 0.21              | 0.22              | ~45<br>times faster      |
|                         | NCAR CAM<br>W.D. Collins | <b>-4.</b> 10 <sup>-3</sup> | 0.19 | 0.17              | 0.43              | <b>図 20</b> times faster |

### Individual Profiles (NCEP CFS)



### Climate Simulation 17 years: 1990 – 2006

### Validation of Full NN Radiation in CFS

- The Control CFS run with the original LWR and SWR parameterizations is run for 17 years (1990 – 2006).
- The NN Full Radiation run: CFS with LWR and SWR NN emulations is run for 17 years.
- Another Control CFS Run after updates of FORTRAN compiler and libraries
- Validation of the NN Full Radiation run is done against the Control run. The differences/biases are less than/within observation errors and uncertainties of reanalysis
- The differences between two controls ("butterfly" or "round off" differences or "model internal variability") have been also calculated and shown for comparison.

## Zonal and time mean Top of Atmosphere Upward Fluxes (Winter)



The solid line – the difference (the full radiation NN run – the control (CTL)), the dash line – the background differences (the differences between two control runs). All in W/m<sup>2</sup>.

## The time mean (1990-2006) SST statistics for summer



The contour intervals for the SST fields are 5° K and for the SST differences are 0.5° K.



## The time mean (1990-2006) total precipitation rate (PRATE) statistics for summer



The contour intervals for the PRATE fields are 1 mm/day for the 0 – 6 mm/day range and 2 mm/day for the 6 mm/day and higher; for the PRATE differences the contour intervals are 1 mm/day



## The time mean (1990-2006) total) total clouds statistics for winter



The contour intervals for the total clouds fields the cloud fields are 10% and for the differences – 5%.



## NN Emulations of Model Physics Conclusions – 1

- NN is a powerful tool for speeding up calculations of model physics through developing NN emulations
  - Accurate and fast NNs emulations have been successfully developed for:
    - NCEP LWR & SWR parameterizations
    - NCAR CAM LWR & SWR parameterizations
    - NASA LWR parameterization
  - The simulated diagnostic and prognostic fields are very close for the parallel climate (and seasonal prediction) runs performed with NN emulations and the original parameterizations
- NN emulations approach also can improve model physics allowing to use new, more advanced and complex parameterizations that are otherwise

computationally prohibitive.

4/28/2011 Network for Model Physics

# II. New NN Based Parameterizations of Model Physics

- Major Benefit : Improving Model Physics
- Auxiliary Benefit: Significant speeding up model integration

### **Motivations for Using NNs**

- Uncertainty in convection, large scale precipitation processes & clouds is high:
  - Existing parameterization are simplified
  - Vast range of time and space scales involved
- Alternative approaches are prohibitively time consuming:
  - Global Cloud System Resolving Models (GCSRMs or GCRM): 10<sup>5</sup> 10<sup>7</sup> more expensive than regular parameterizations
  - Multiscale Modeling Framework (MMF) or "Superparameterization" – 2D CRM imbedded into GCM: still 10<sup>2</sup> – 10<sup>3</sup> more expensive than parameterizations

### **New NN Parameterization**

- New NN parameterizations of model physics can be developed based on:
  - Data simulated by first principles models like CRM (e.g., Khairoutdinov and Randall 2003)).
  - Observations (e.g., ARM, TOGA COARE)
- Our approach is aimed at developing new more sophisticated and fast model convection schemes based on using NNs for direct learning cloud physics from simulated CRM and observed data.
- NN serves as an interface transferring information about sub-grid scale processes from fine scale data or models (CRM) into GCM (upscaling)
  V. Krasnopolsky, Neural Network for Model Physics

### Creating Development Set for Stochastic Parameterization



- Horizontal resolution 1 km < r ≤ R</li>
- Vertical resolution 96 layers < I ≤ L</li>
- Averaging time  $-\tau < t \le T$
- Projecting reducing the number of variables
   4/28/2011 V. Krasnopolsky, Neural Network for Model Physics

## Data Evolution and Emerging Uncertainties

We start with:  $y = M_{CRM}(x)$ , x and y are high resolution CRM simulated data (in CRM space)

We (1) reduce resolution to *r*, *l*, and *t*; (2) reduce the number of variables (project). Thus, we get "pseudo-observations" *X* and *Y* (in GCM space)

 $Y = M_{GCM}(X) + \varepsilon$   $\varepsilon$  is uncertainty and  $M_{GCM}(X)$  is a <u>stochastic mapping</u>

### **Mapping & NN Emulation**

Exact Mapping: Y = M(X)



Mapping with uncertainty (stochastic):

$$Y = M(X) + \varepsilon$$

Requires an ensemble of emulating NNs:

$$Y = M^{i}_{NN}(X), i = 1,2, ...$$

### **NN Convection Parameterization**

- Data (for CRM initialization and forcing): TOGA-COARE
- CRM: SAM CRM (Khairoutdinov and Randall, 2003).
  - Hourly data: over 120 days for TOGA-COARE
  - Resolution: 1 km over the domain of 256 x 256 km
  - 96 vertical layers (0 28 km)
- "Pseudo-observations"
  - Resolution of (averaged CRM data) over TOGA COARE location:
    - Horizontal: 256 x 256 km (close to NCAR CAM)
    - Vertical: 26 vertical layers (as in NCAR CAM)
  - a limited training data set (120 days, over one location) used for the initial development of NN convection
- NN inputs: temperature and water vapor profiles;
- NN outputs: the tendencies of T and q, or "apparent heat source" (Q1C), "apparent moist sink" (Q2), precipitation & cloud fractions (CLD)
- Ensemble of NNs has been trained (10 NN members)

## Validation of NN convection in NCAR CAM

- NN convection was introduced in CAM and run during a 10-year period (1990 – 2001, excluding TOGA COARE winter) in a diagnostic mode and analyzed for winters, NDJF:
  - Over a TOGA COARE location
  - Over the 120° x 30° area in the Tropical Pacific
- At each time step in at each grid point all 10 NN ensemble members were applied and averaged.
- Results are compared with a parallel CAM run and with the NCEP reanalysis

## Decadal mean total cloudiness (in fractions) for the TOGA-COARE location



Decadal mean cloudiness distribution (in fractions)



### Decadal mean precipitation distribution (in mm/day)



## Conclusions: new NN parameterizations

- Approach has been conceptually formulated:
  - "Pseudo-observations"
  - Stochastic parameterization/mapping
  - NN ensemble as a tool for approximating stochastic mapping
  - Correcting biases between CRM and GCM
- A prototype NN convection parameterization has been developed and tested in NCAR CAM
- Further plans:
  - Validate NN convection in the prognostic mode
  - Simulate data using CRM forced by CAM
    - Broader/global geographical representation
    - Broader/all seasons range of regimes
    - Longer period of integration
  - GOAL: Develop a new NN convection parameterization for global applications in GCMs.