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ABSTRACT

A representation of the scattering amplitude,
containing an average Regge behaviour and crossing sym-
metry for linearly rising trajectories, is proposed. It
obeys superconvergence sum rules at all t, exhibits
in a clear way the Regge poles vs. resonances duality

and demands families of parallel daughters.
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Crossing has been tnc L£irst ingredient used to make Regge theory
a predictive concept in high energy physics. However, a complete and
safisfactory way of imposing crossing and crossed chennel unitarity is still
lacking. We can look at the recent investigations on the properties of

Reggeization at t=0 s giving a first encouraging set of results along

a
\
this line of thinking 1/0 A technically different approach, based on super-
convergence, has been also recently investigated 2 ;, and the possibility of
a self-consistent determination of the physical parameters, through the use

of sum rules, has been stressed.

In this note we propose a quite simple expression for the relati-
vistic scattering amplitude, that obeys the requirements of Regge asympto-
tics and crossing symmetry in the case of linearly rising trajectories. Its

3)

explicit form is suggested by the work of Ref. and contains only a few

*
free parameters

Our expression contains automatically Regge poles in families of
parallel trajectories (at 2ll +) with residue in definite ratios. It
furthermore satisfies the conditions of superconvergence 4) and exhibits in
a nice fashion the duality betwee:i Regge poles and rfesonances in the scat-

tering amplitude.

The first example we want to discuss is the scattering W —=TTw
whose convenient properties have been already stressed in Ref. 3)» We
introduce the invariant amplitude A(s,t,u) through the definition of the

T matrix

*) We shall mostliy work here in the approximation of real, linear
trajectories and consequently of narrow resonances. We briefly
discuss the effects of a non-zero imaginary part in the trajectory
function which, in any case, we demand to have a linearly rising real
part.
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where Pi are the pion momenta and ¢ is the ¢» polarization vector.
A(s,t,u) has only dynamical singularities as it is free of kinematical ones.
It is also completely symmetric in the three Mandelstam variables.

3)

It was found in Ref. that a "good" parametrization of A at

high s and fixed t could be written as:

- R ; of (L.} .
Alstw) =~ £ 7Gwn) o) + (S esu)
S0 0 (2)
with ‘@ =constant. We use the word "good" in the sense that Eq. (2), when
used as an imput, is able to reproduce itself quite consistently through

the use of superconvergence sum rules,

What is the amplitude for non-asymptotic values of s? If Eq. (2)
was exact after some s, analyticity in the s plane (at fixed t) would
require it to be valid at all s and Eq. (2) is certainly a solution of
superconvergence. However, Eq. (2) does not satisfy s,t crossing as wvhis
demands poles in s such as those induced in t by the [7(1- (%))
factor. On the other hand these poles in s could in principle destroy
the asymptotic behaviour (2) through the introduction of fixed singularities.
The lowest moment sum rules are just imposing that this is not happening at
the nearest negative integers. TFurthermore, we expect that the presence of
bumps in the low energy region will produce (through analyticity) a modifica-
tion of the high energy form which will not be as smooth as Eq. (2), but will

rather show oscillations in s.
4 v ot (t)-1
Consequently, we take out the factor (- %(s)) and we
symmetrize Eq. (2) multiplying by a factor i"(1- 9(s)) and dividing by

M(2-o(s)-(t)) in order to have the correct asymptotic behaviour. After

symmetrization in s,t,u we have

: . AY ‘:\ ! - O P . y A / . : _]
Albtu)= £ Lt« (1=o(f) | 1= o) & B{i-wfe), 1% 0g) ¢ %{l~—®<<é),’~<&"<u>)_} (3)

68/831/5



where we have introduced the Fuler B function

L (X Y } = i"‘:‘(_)_r_&{,l
(7 {x+Y)
Notice that, in Eq. (3), ;% must be a constant if we want to have a Regge- -
like behaviour which, togefher with crossing, also demands the 1/(M (X)) ¢
dependence of the reducsd residue function. Bquation [3) in fact is hard to
modify if one demands an six-1 behaviour in all channels. The only simple
| generalization of Eq. (3) seems to consist in the addition of non-leading

and similarly structured terms like B(m- X(t),n-A(s)) with m, n 31.
We now discuss some properties of Eq. (3) in detail

1) Behaviour for large positive s and fixed 1

The first two terms (we shall come to the last one in a moment)

give:s

]
!
s 17503
:’ o~
G
T
_’T‘-’i

S T varie) r{&h)+mﬁ}q)~b - Koy '
DL ST M) {2 ol - 3lE; (4)
The second term is purely real (for positive s) and goes like
(o{(s))CX(t)'1. The first term is the one that corresponds to the Regge
term (-!X(s))‘X(t)'1 and has both a real and an imaginary part. Some

trivial algebra shows that, from the whole Eq. (4), we have a real piece

like .
! ’ .),—-._,\){i'l‘. C\(E":)"' —
, W LOLTT S o X P )

a2 (9] s Bw) .

! Sy Tolidd i
as in the Regge theory, while the s discontinuity is all contained in
the form

it
. €1, . oie)~1
A ~S - ::*{z' P L T%(‘&) !'0‘)’“ )1

(5)
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4.

If Im ¢ is strictly zero, Bq. (5) gives just poles in s and ImA

is a sequence of $  functions.  If In o 1s different from zercv and,
for instance, increases with s (this happens if the total width does not
vary strongly with s), ImA will describe bumps for moderate values

of s, but will finally tend tc (-t)(e«‘.(s))"‘*(t)“1 as in the Regge
theory [this is due to cot t(s)—-i]. OFf coursc, the parametrization

of Eq. (3) can be takei as such only for linearly rising trajectories in
which case (r.‘f\’\(s:))""'f‘-(JG is equivalent to (Eff){x(t). However, we only
need a lcading term in ri(s) gouing 1inearly(§n s, and this does nbt
imply Imw =0. If Tmx A0 one probably gets, besides moving poles,

other singularities (cuts?) as well.

2) singularities in the various chamnels
Equation (3) has quite nice analytic features. It has cuts in all
the three Mandelstam variables starting from the 27 threshold, where
X begins to show an imaginary part. However; 1f we restrict to real
linear trajectories, our expression has only poles.whenever A passes
through an integer bigger than 0. Furthermore, because of the
(2~ &(s)~ X (%)) denominator, no double pole appears, in the sense

that the residue in a pole is a polynomial in the other variable.

At first glance our expression shows poles at even values of X
as well, in contrast with invoriance prianciplcs. As these are always
non-leading terms, one can in gencral climinatc them by the addition of
non-leading expressiuns as explained in the beginning. More amusing to
notice is the fact that, at least in this reaction, the elimination of
spurious singularities can be achieved with a single condition on the
trajectory ™ (t). DTake in fact +{(t)=2. The residuc at the pole,
produced there by 7 (1-%(t)) is simply proportional to X (u)+X(s).

68/881/5



We then demand

Leytellul= © for alld=2 (5)

which after some easy algebra gives (always for linear trajectories)

A+ o{(f) + Al = 2
A+ KX(E) + olluy= 2 (7)

Equation (7) can easily be transformed into the prediction

- = J')%%w ):‘J

[comFom™ e
d\. i by R T ) (8)

which was derived in Ref. 2) from the sum rules. The reader can verify
that Eq. (7) is enough to cancel all the undesired poles at the even
integer values of X . A further interesting consequence of Eq. (7)
concerns the third term of Bg. (3) which could in principle violate

the Regge behaviour. Instead, using (7), that term can be rewritten as:

Jc) ol + oliEy - 1)

UL.MH'-’\\'-j f’) {cv_ (Q\) (9)

which is still Regge behaved. The whole Eq. (3) can be rewritten in the

fornm

NTT LTadis .‘_"L";- e
A= {&(’c) Pb} o a\)i et ’+ - o :a({,,-]
‘ s

m) L SRS ST (E) (10)

which shows the automatic cancellation of the poles at the even integer

values of ® . By use ¢f (7) one can also write (3) in the very sym-

‘metric fornm
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10.

As a secoud example let us comsider the process 17T —eTTS? . According

to our prescription the invariant amplitude A defined as in Eq. (1)

will be given by:

n . N NS L e .
T e y S ) S L e ) \!1
Bl it 1gee L ) - Bl 1o
T 2. . i

s

Wﬂ% f (21)

where T —>"/} P is the t channel. Imposing to find no poles at

even integer value for Q\J (t) we obtain:

ol () 4o (ol )= 2
' (22)

Imposing absence of poles at the odd integers for O<A2 we find again
Eq. (22). This demands

ety

i s

Using m; =0.6 GeV2 and Bg. (7) we obtain

. 1 L e L
/ G Mk M e M bty e s
oy oy = | LoD M e LTSI N
A 0= o= : T

) 3
T T g
BAAL T -yl

' o

S

(24)

We thus predict mAz =1350 MeV.

As a third example one could try to build up a scattering amplitude for

s+s—>s+s (s being a scalar particle with the vacuum quantum numbers)
and try to ask dominance of a leading trajectory passing by the
particle itself. This is seen to be impossible with a positive slope

of o , since the equation similar to (7) gives X(0)=1.

68/881/5



11

It is possible to extend the above considerations to the more

P

interesting case of {1 77 scattering and to obtain a crossing symmetric

amplitude in the approximation of ff and f “trajectory dominance and

disregarding the Pomeranchuk, according to a now accepted philoso-

phy 8)’11). We find consistency only if =, =‘¥ﬂf= o and o (0)~1/3.
Furthermore, we can predict TJi'r7 scattering lengths in terms of
g?wn“ and obtain (apart from the Pomeranchuk contribution)

-

Further details as well as applications of this scheme to more

complicated cases will be considered elsewhere.

The author wishes to acknowledge interesting discussions with

D. Amati, S. Fubini and M. Toller,
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We know that, at t=0, a simple (irreducible) Lorentz pole does obey
factorization [@ee Ref. 1%1, It scems also plausible to conjecture
(M. Toller, private communication) that this is the only case in which
factorization is fulfilled. Since our expression does not probably
correspond to a singlwy Lorentz nole, nonnleading terms might be needed
in order to have factorization, We thank M. Toller for a discussion

on this point.

It may be, however, that one runs into difficulties in adding the
Pomeranchuk contribution at the end in a crossing symmetric way. An
alternative interesting possibility would be to consider it as originat-
2d somehow by the other trajectories (through their non-resonating parts)
and not as an independent object. This problem which certainly requires
further study, is closely connected to that of the nature of the

Pomeranchuk singularity.,



	
	
	
	
	
	
	
	
	
	

