Aït-Sahalia, Y. ; Jacod, J. Analyzing the spectrum of asset returns: Jump and volatility components in high frequency data. 2012 J. Econ. Lit.. 50 1007-1050
Aït-Sahalia, Y. ; Jacod, J. High-Frequency Financial Econometrics. 2014 Princeton University Press:
Aït-Sahalia, Y. ; Mykland, P.A. ; Zhang, L. Ultra high frequency volatility estimation with dependent microstructure noise. 2011 J. Econometrics. 160 160-175
Aït-Sahalia, Y. ; Xiu, D. Principal component analysis of high-frequency data. 2019 J. Amer. Statist. Assoc.. 114 287-303
Aït-Sahalia, Y. ; Xiu, D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data. 2017 J. Econometrics. 201 384-399
Andersen, T. ; Bollerslev, T. ; Diebold, F.X. ; Labys, P. The distribution of realized exchange rate volatility. 2001 J. Amer. Statist. Assoc.. 96 42-55
Andersen, T.G. ; Bollerslev, T. ; Diebold, F.X. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. 2007 Rev. Econ. Stat.. 89 701-720
Andersen, T.G. ; Bollerslev, T. ; Diebold, F.X. ; Labys, P. Modeling and forecasting realized volatility. 2003 Econometrica. 71 579-625
Andersen, T.G. ; Bollerslev, T. ; Meddahi, N. Analytical evaluation of volatility forecasts. 2004 Internat. Econom. Rev.. 45 1079-1110
Andersen, T.G. ; Bollerslev, T. ; Meddahi, N. Realized volatility forecasting and market microstructure noise. 2011 J. Econometrics. 160 220-234
Audrino, F. ; Hu, Y. Volatility forecasting: Downside risk, jumps and leverage effect. 2016 Econometrics. 4 1-24
- Audrino, F. ; Sigrist, F. ; Ballinari, D. The impact of sentiment and attention measures on stock market volatility. 2019 Int. J. Forecast.. -
Paper not yet in RePEc: Add citation now
Bai, J. ; Ng, S. Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. 2006 Econometrica. 74 1133-1150
Bai, J. ; Ng, S. Determining the number of factors in approximate factor models. 2002 Econometrica. 70 191-221
Bai, J. ; Ng, S. Evaluating latent and observed factors in macroeconomics and finance. 2006 J. Econometrics. 131 507-537
Bai, J. ; Ng, S. Forecasting economic time series using targeted predictors. 2008 J. Econometrics. 146 304-317
Barndorff-Nielsen, O.E. ; Graversen, S.E. ; Jacod, J. ; Shephard, N. Limit theorems for bipower variation in financial econometrics. 2006 Econometric Theory. 22 677-719
Barndorff-Nielsen, O.E. ; Shephard, N. Power and bipower variation with stochastic volatility and jumps. 2004 J. Financ. Econ.. 2 1-37
Bollerslev, T. ; Patton, A.J. ; Quaedvlieg, R. Exploiting the errors: A simple approach for improved volatility forecasting. 2016 J. Econometrics. 192 1-18
Brandt, M.W. ; Jones, C.S. Volatility forecasting with range-based EGARCH models. 2006 J. Bus. Econom. Statist.. 24 470-486
Brownlees, C.T. ; Gallo, G.M. Financial econometric analysis at ultra-high frequency: Data handling concerns. 2006 Comput. Statist. Data Anal.. 51 2232-2245
Campbell, J.Y. ; Thompson, S.B. Predicting excess stock returns out of sample: Can anything beat the historical average?. 2008 Rev. Financ. Stud.. 21 1509-1531
Carrasco, M. ; Rossi, B. In-sample inference and forecasting in misspecified factor models. 2016 J. Bus. Econom. Statist.. 34 313-338
- Corradi, V. ; Distaso, W. ; Fernandes, M. Testing for jump spillovers without testing for jumps. 2019 J. Amer. Statist. Assoc.. 1-27
Paper not yet in RePEc: Add citation now
Corradi, V. ; Distaso, W. ; Swanson, N.R. Predictive density estimators for daily volatility based on the use of realized measures. 2009 J. Econometrics. 150 119-138
Corradi, V. ; Distaso, W. ; Swanson, N.R. Predictive inference for integrated volatility. 2011 J. Amer. Statist. Assoc.. 106 1496-1512
Corsi, F. A simple approximate long-memory model of realized volatility. 2009 J. Financ. Econ.. 7 174-196
Corsi, F. ; Pirino, D. ; Renò, R. Threshold bipower variation and the impact of jumps on volatility forecasting. 2010 J. Econometrics. 159 276-288
Duong, D. ; Swanson, N.R. Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction. 2015 J. Econometrics. 187 606-621
Fan, J. ; Ke, Y. ; Sun, Q. ; Zhou, W.-X. Farmtest: Factor-adjusted robust multiple testing with approximate false discovery control. 2019 J. Amer. Statist. Assoc.. 1-29
Fernandes, M. ; Medeiros, M.C. ; Scharth, M. Modeling and predicting the CBOE market volatility index. 2014 J. Bank. Financ.. 40 1-10
Fuentes, J. ; Poncela, P. ; Rodríguez, J. Sparse partial least squares in time series for macroeconomic forecasting. 2015 J. Appl. Econometrics. 30 576-595
Ghysels, E. ; Santa-Clara, P. ; Valkanov, R. Predicting volatility: Getting the most out of return data sampled at different frequencies. 2006 J. Econometrics. 131 59-95
Ghysels, E. ; Sinko, A. Volatility forecasting and microstructure noise. 2011 J. Econometrics. 160 257-271
Giacomini, R. ; White, H. Tests of conditional predictive ability. 2006 Econometrica. 74 1545-1578
Groen, J.J. ; Kapetanios, G. Revisiting useful approaches to data-rich macroeconomic forecasting. 2016 Comput. Statist. Data Anal.. 100 221-239
Hansen, P.R. ; Lunde, A. A forecast comparison of volatility models: Does anything beat a GARCH (1, 1)?. 2005 J. Appl. Econometrics. 20 873-889
Hansen, P.R. ; Lunde, A. ; Nason, J.M. The model confidence set. 2011 Econometrica. 79 453-497
Jacod, J. Limit of random measures associated with the increments of a Brownian semimartingale. 2018 J. Financ. Econ.. 16 526-569
Jacod, J. ; Li, Y. ; Mykland, P.A. ; Podolskij, M. ; Vetter, M. Microstructure noise in the continuous case: The pre-averaging approach. 2009 Stochastic Process. Appl.. 119 2249-2276
- Jacod, J. ; Rosenbaum, M. Quarticity and other functionals of volatility: Efficient estimation. 2013 Ann. Statist.. 41 1462-1484
Paper not yet in RePEc: Add citation now
- Jolliffe, I.T. ; Trendafilov, N.T. ; Uddin, M. A modified principal component technique based on the LASSO. 2003 J. Comput. Graph. Statist.. 12 531-547
Paper not yet in RePEc: Add citation now
- Mancini, C. Disentangling the jumps of the diffusion in a geometric jumping brownian motion. 2001 G. Ist. Italiano degli Attuari. LXIV 19-47
Paper not yet in RePEc: Add citation now
Mancini, C. Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. 2009 Scand. J. Stat.. 36 270-296
Meddahi, N. An eigenfunction approach for volatility modeling. 2001 Univ. Montréal. Dép. Sci. Économ.. -
Patton, A.J. ; Sheppard, K. Good volatility, bad volatility: Signed jumps and the persistence of volatility. 2015 Rev. Econ. Stat.. 97 683-697
Podolskij, M. ; Ziggel, D. New tests for jumps in semimartingale models. 2010 Stat. Inference Stoch. Process.. 13 15-41
Racine, J. Consistent cross-validatory model-selection for dependent data: hv-block cross-validation. 2000 J. Econometrics. 99 39-61
Stock, J.H. ; Watson, M.W. Forecasting using principal components from a large number of predictors. 2002 J. Amer. Statist. Assoc.. 97 1167-1179
Stock, J.H. ; Watson, M.W. Forecasting with many predictors. 2006 Handb. Economic Forecast.. 1 515-554
Stock, J.H. ; Watson, M.W. Macroeconomic forecasting using diffusion indexes. 2002 J. Bus. Econom. Statist.. 20 147-162
- Stock, J.H., Watson, M.W., 1998. Diffusion indexes. NBER Working Paper 6702.
Paper not yet in RePEc: Add citation now
Swanson, N.R. ; Xiong, W. Big data analytics in economics: What have we learned so far, and where should we go from here?. 2018 Can. J. Econ.. 51 695-746
- Tibshirani, R. Regression shrinkage and selection via the lasso. 1996 J. R. Stat. Soc. Ser. B Stat. Methodol.. 58 267-288
Paper not yet in RePEc: Add citation now
- Wold, H. Estimation of principal components and related models by iterative least squares. 1966 Multivariate Anal.. 391-420
Paper not yet in RePEc: Add citation now
Zou, H. ; Hastie, T. Regularization and variable selection via the elastic net. 2005 J. R. Stat. Soc. Ser. B Stat. Methodol.. 67 301-320
- Zou, H. ; Hastie, T. ; Tibshirani, R. Sparse principal component analysis. 2006 J. Comput. Graph. Statist.. 15 265-286
Paper not yet in RePEc: Add citation now