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Abstract Significant advances have been made over the
past decades in capabilities to simulate diurnal and sea-

sonal variation of leaf-level and canopy-scale photosyn-

thesis in temperate and boreal forests. However, long-term
prediction of future forest productivity in a changing cli-

mate may be more dependent on how climate and biolog-

ical anomalies influence extremes in interannual to decadal
variability of canopy ecosystem carbon exchanges. These

exchanges can differ markedly from leaf level responses,

especially owing to the prevalence of long lags in nutrient
and water cycling. Until recently, multiple long-term

(10? year) high temporal frequency (daily) observations of

canopy exchange were not available to reliably assess this
claim. An analysis of one of the longest running North

American eddy covariance flux towers reveals that single

climate variables do not adequately explain carbon
exchange anomalies beyond the seasonal timescale. Daily

to weekly lagged anomalies of photosynthesis positively

autocorrelate with daily photosynthesis. This effect sug-
gests a negative feedback in photosynthetic response to

climate extremes, such as anomalies in evapotranspiration
and maximum temperature. Moisture stress in the prior

season did inhibit photosynthesis, but mechanisms are

difficult to assess. A complex interplay of integrated and
lagged productivity and moisture-limiting factors indicate a

critical role of seasonal thresholds that limit growing sea-

son length and peak productivity. These results lead toward
a new conceptual framework for improving earth system

models with long-term flux tower observations.
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Introduction

Every year in modern times, photosynthetic organisms on land

and in the ocean assimilate around 120,000,000,000,000 kg of

carbon dioxide from the atmosphere, a process which drives
the entire cycle of biosphere metabolism, production, and

decomposition (Beer et al. 2010). Variation of photosynthetic

rates across space is strongly a function of adaptation of spe-
cies to climatic, geological, and biological limiting factors of

temperature, light, soil nutrients, moisture, disturbance, and

competition. These adaptations are often manifested in dif-
ferences in plant functional form, such as leaf shape, leaf

longevity, tree heights, root depths, etc. Similarly, variation of

photosynthesis in time is governed by how species in an
ecosystem respond and adapt to diurnal, seasonal, and inter-

annual changes in limiting factors.

Today, society faces a grand challenge as feedbacks
between carbon dioxide uptake by photosynthetic organisms

and the climate system are a leading source of uncertainty in
the magnitude and severity of future climatic change, on the

same order as scenarios of future anthropogenic emissions

and aerosol or cloud feedbacks (Booth et al. 2012). Coupled
carbon-climate models show a large range of future climate

states depending on assumptions built into models about

biospheric uptake, particular in the terrestrial biosphere
(Friedlingstein et al. 2006). Extreme interannual anomalies

in biospheric uptake have been linked to large-scale climate

features like El Niño Southern Oscillation (ENSO), and
recent increasing trends in the fraction of fossil fuel emis-

sions that remain in the atmosphere point to troubling
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concerns about the state of the biospheric carbon sink (Le

Quéré et al. 2009).
Quantifying these variations and improving predictive

ecosystem models at the scale of regions to the globe over

time periods of days to decades requires careful lab
experimentation and long-term field observations (Moor-

croft 2006). Early experiments in the late 1970s and into

the 1980s that included careful monitoring of leaf photo-
synthesis and isotopic discrimination in controlled envi-

ronments along with theoretical thermodynamic and
biochemical arguments led to the first successful repre-

sentation of leaf photosynthesis through the simplified

equations for C3 (and later C4) assimilation as reviewed in
Farquhar and Sharkey (1982) and co-occurring develop-

ment of leaf-atmosphere canopy conductance coupling as

reviewed in Collatz et al. (1991). While major advances
have been made on understanding the biochemistry of

photosynthesis at the genomic, cellular, and leaf level,

many reported in this journal, most of these have not sig-
nificantly altered these equations and similar formulations

that are prevalent in most sophisticated ecosystem models

(Schaefer et al. 2012).
The reason for the lack of more sophisticated leaf-level

photosynthesis models is partly a question of computa-

tional resources in that models can not simulate every leaf
in an ecosystem, let alone every cell. But a larger source of

uncertainty rests in how one goes from the leaf-level model

to an ecosystem patch or grid box. Early attempts focused
on the issue of scaling of canopy radiative transfer, given

that the variation of light through a canopy is the dominant

mode of variability of limiting factors within an ecosystem
patch to be simulated. Original models include the ‘‘big-

leaf’’ representation of the average semi-transparent leaf

(e.g., Sellers 1985), partly owing its success to the ability to
characterize vegetation fraction and photosynthesis through

satellite remote sensing of visible and infrared canopy

reflectance (Kumar and Monteith 1981). However, field
observations noted that canopy radiative transfer may not

necessarily scale so neatly (Baldocchi et al. 1985), leading

to development of multiple canopy layer models (e.g., De
Pury and Farquhar 1997). At the minimum, sunlit/shaded

fractions of the canopy have to be treated separately in

models for accurate simulation of photosynthesis (Sprintsin
et al. 2012). More sophisticated models now allow for

multiple cohorts of interactively competing and shading

species with varying plant functional types (Medvigy et al.
2009).

The primary production model in most ecosystem

models now consists of a leaf-level photosynthesis mech-
anism, embedded within a leaf boundary-layer coupling,

leaf energy balance model, canopy-scaling algorithm, a soil

water and humidity-sensitive transpiration model, and
sometimes a nutrient transformation and transport model,

primarily for nitrogen. Despite the apparent complete

description of canopy photosynthesis, interactions, and

small changes in parameters of these components cause
ecosystem models to predict widely divergent estimates of

the sensitivity of canopy photosynthesis to climatic and

biotic changes, even when they’re using the same equations
(Schaefer et al. 2012). Differences in parameters that

control rates of leaf respiration, canopy architecture, or

microclimate variation have large effects on canopy pho-
tosynthesis rates and sensitivity.

Uncertainties also arise in our understanding of variation

in radiation quality and sun flecks, multiple interacting
species, age-dependent changes in photosynthesis and

transpiration, moisture and nitrogen availability in soil,

transformation of assimilated carbon into storage pools,
and canopy-scale stomatal and photosynthetic rate

responses to atmospheric CO2 enrichment (e.g., Fig. 1).

Models tend to underestimate variability in canopy pho-
tosynthesis in response to climatic anomalies, but overes-

timate threshold responses to climate and biospheric state

shifts. On the one hand, ecosystems, as an assemblage of
species, and hence composed of species that are adapted to

have compensating responses to environmental change are

more conservative that the single ‘‘model’’ species repre-
sented by the typical plant functional type approach in

models. On the other hand, overall ecosystem variance is

large and since species present on the landscape are partly a
function of local climate and soils, they may show additive

effects in response to climate anomalies that exceed the a

threshold (i.e., an extreme).
Consequently, there is a role for long-term canopy-scale

observations of photosynthesis toward evaluating and

Fig. 1 Examples of processes that affect photosynthesis in the
environment that make canopy-scale photosynthesis differ from leaf-
level photosynthesis, superimposed on a photo taken from an eddy
covariance flux tower overlooking a temperate hardwood forest
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improving these kinds of model responses. The rise of

canopy-scale observations of net ecosystem exchange of
CO2 (NEE) and inference of gross primary productivity

(GPP) through tower-based eddy covariance methods

(Baldocchi 2008) and other canopy-scale experiments have
expanded our ability to make claims of model fidelity and

sensitivity. For example, recent articles have focused on

dryness (Yi et al. 2010), temperature (Niu et al. 2012), light
response (Schaefer et al. 2012), phenology (Richardson

et al. 2012), short-term climate fluctuations (Medvigy et al.
2010), interannual variations (Keenan et al. 2012a), dis-

turbance (Amiro et al. 2010), and CO2 enrichment (Norby

and Zak 2011). Still, many of these studies are limited by
short time series at most sites. Advanced methods to link

anomalies of environmental drivers to fluxes have only

been applied in limited cases.
In this manuscript, I focus on the value of longer-term

observations of high-frequency photosynthetic flux obser-

vations at the canopy scale. Are there effects of lagged
environmental drivers that are masked at shorter time

scales? Can ecosystem adaptation and community reorga-

nization responses from extremes be detected? Hypotheses
have been put forward suggesting that canopy-scale pro-

ductivity may be linked to prior season carbon storage of

non-structural or labile carbohydrates (Carbone et al. 2007)
and also antecedent moisture availability in mesic forests

(Ricciuto et al. 2008; Desai et al. 2010). These lagged

responses would not be seen at the leaf level, where direct
controls of moisture availability and leaf carbon content

influence photosynthesis strongly by limiting rates of light

harvesting and total leaf area.
The purpose of the analysis here is not to put forth brand

new models of canopy photosynthesis, but rather to high-

light the path forward with long-term observations. As
such, my goals are twofold: (1) to demonstrate advanced

statistical methods to evaluate modes of variation of long-

term environmental data and (2) observe how these meth-
ods provide new insight into lags and switches of canopy

photosynthesis that make it so hard to model and so dif-

ferent from leaf-level responses. In particular, I use a
15-year record of regional NEE from a very tall tower in

the north central US to test which of antecedent soil

moisture availability and prior productivity most influence
canopy productivity. Moisture lags likely represent the

accumulation and storage of available water that allows a

canopy to respond to periods of high water demand or
physiological stress. Similarly, prior carbon accumulation

influences current carbon uptake both in changes in allo-

cation and development of carbohydrate reserves. Can
these effects be seen in observations and if so, which is the

most relevant to include in models?

I hypothesize that short-term (daily) drivers of photo-
synthesis are primarily light and temperature, but longer-

term (weekly to annual) is limited primarily by moisture

and internal storage of prior photosynthate. These
hypotheses are tested against the landscape-scale observa-

tions of net carbon uptake and associated surface and

meteorological forcing.

Methods

Analysis framework

Many of the analyses described in the prior section

attempted to use many short-term (2–5 year) ecosystem
flux observations to improve prediction or modeling by

substituting space for time (e.g., Yi et al. 2010). Many sites

each with a few years of data are analyzed to make infer-
ences about long-term evolution of biosphere to climate

and environmental drivers. However, there is some evi-

dence that predictions made in this form across sites do not
necessarily map well onto long-term predictions at a single

site (Desai 2010; Keenan et al. 2012a). The limiting factor

is the lack of long-term high-frequency observation of the
state of the biosphere.

Short-term measurements are difficult to use for diag-

nosing anomalies and extremes. Short-term multi-site
studies can diagnose mean state and mean variability of

carbon fluxes, but may underestimate the true level of

variability over years and how extremes in climate and
biotic disturbance (including both large short-term pulse

and long-term press (steady pressure) disturbances) can

drive carbon assimilation differently than short-term
responses. For example, many eddy covariance flux tower

studies focus on a few years of data to identify particular

climate responses (e.g., wet versus dry year), but are likely
to have confounded co-variability among climate factors,

to miss multi-year responses, or have low probability of

capturing extreme climate events and the role of pre-con-
ditioning of ecosystem states. Community-scale response

from changes in resource availability and competitive

advantages to these can occur in forest ecosystems at
timescales of years to decades (Gellesch et al. 2013).

While some processes like photosynthetic acclimation

have been well captured in lab experiments, they are harder
to diagnose with short-term environmental data, even with

a decade long record from enriched CO2 experiments

(Norby and Zak 2011). The statistical sample for envi-
ronmental observations of low probability, high impact

events is too small.

A benefit of an evolving measurement network is that
over time there are sites that start having long records

where one can look closely at features like memory effects

(long-lag relationships), decadal trends, and state shifts that
would not be easily noted across space. Instead, the
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challenge is addressing the data deluge. A decade long flux

tower record of half-hourly NEE observations and related
climate drivers can easily exceed 106 observations. More-

over, the data are strongly auto-correlated and may suffer

from harmonization issues related to changes in instru-
ments, measurement height, and so forth. As a conse-

quence, many analyses, even at long-term tower sites, limit

their analyses to subsets of the data. For example, Keenan
et al. (2012b) found no suitable combination of parameters

of a simple model could adequately explain three separate
5-year periods in NEE observed over the 18-year record at

Harvard forest.

There is ongoing work on improving harmonization of
long-term datasets like decadal eddy covariance and the

evolving National Ecological Observatory Network

(NEON), which will include nearly 60 sites across North
America with eventually 30? years of carbon cycle and

biological observations. These observations provide a

suitable data tested if and only if the community first
develops reliable and usable statistical metrics and model-

data evaluation. Therefore, in this study, I specifically

focus on the more than 15-year record of eddy covariance
carbon and water regional flux observations at a forested

site in the north central US (Figs. 2, 3).

Site description and data

I analyzed 15-years of flux tower observations of CO2 and
H2O flux from one of the longest continuously running eddy

covariance flux towers in the U.S., the WLEF Park Falls

tower (US-PFa) (Davis et al. 2003), where fluxes have been
measured since late 1996 with minimal disruptions, except in

2002 (Fig. 2). Meteorological variables were also observed

at the site (Fig. 3; Table 1). WLEF is unique for being the
tallest flux tower across the Fluxnet network, allowing us to

observe the impact of patchy landscapes and canopy inter-

actions on carbon assimilation. My collaborators and I have
observed fluxes at three heights (30, 122, 396 m) and use

these to develop a single ‘‘preferred’’ flux product (Davis

et al. 2003), based on boundary-layer turbulence conditions.
The tower samples a fetch on the order of 1–5 km depending

on atmospheric stability and wind speed.

Unlike canopy-scale towers, tall-towers sample fluxes
that represent many species and many soil types. However,

an advantage of these observations is they are at a similar

scale to that which ecosystem models represent canopies
and plant functional types (10–100 s of km). Schaefer et al.

(2012) noted that ecosystem model estimates of daily GPP

were surprisingly well simulated at this site in a large flux

Fig. 2 Nearly 15-year time
series of a net ecosystem
exchange of CO2 (NEE), and
b evapotranspiration flux (ET)
at hourly (black crosses) and
biweekly (red line) timescales
as observed from the WLEF
Park Falls, WI very tall eddy
covariance flux tower from
1997 to 2012. Long-term
datasets like these on canopy-
scale carbon and water fluxes
are starting to be made available
in the eddy covariance
community. The large
variability at multiple
timescales presents a significant
opportunity and challenge for
improving predictions of
ecosystem fluxes
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tower-model intercomparison of GPP, either because modelers

have used this site significantly for calibration, or, that the
fluxes better represent the ‘‘model organism’’ being repre-

sented by the single plant functional types used in most models.

The site samples carbon and water fluxes from a tem-
perate mixed forest landscape that consists of approxi-

mately 3/4 forest equal parts young to intermediate age

commercially harvested aspen, mature northern hardwood
(sugar maple, ash, basswood), and red pine plantations

(Desai et al. 2007). The remaining 1/4 is primarily a mosaic

of wetlands and shrub areas, including black spruce and

peat bogs, cedar swamps, sedge wetlands, and shrub fens.
Spatial variability occurs in relatively small scales, driven

by microtopography and land management, while the

overall landscape topography is flat and density of human
settlement in the tower footprint is minimal.

Estimating canopy-scale photosynthesis

Eddy covariance towers observe the net exchange of trace

gases, heat, and momentum from the surface to atmo-
sphere, based on well-established micrometeorological

theory (Baldocchi 2008). Turbulence properties of the

atmospheric surface layer allows one to take the 30–60 min
mean covariance of high-frequency ([10 Hz) observations

of vertical wind and the flux tracer of interest (e.g., carbon

dioxide, water, temperature) summed with below-sensor
net tracer storage and vertical flux divergence to represent

the net surface flux. Sonic anemometry (measuring vertical

and horizontal wind components with sound pulses) and
infrared gas analyzers sampling air near the anemometer

are typically used to measure this net covariance. Contri-

butions from low-frequency transport (advection) are usu-
ally neglected, but tend to be small, of the same magnitude

as the 10–20 % inherent random flux error (Yi et al. 2000).

Over the years, researchers have instrumented nearly 500
of these sites for carbon and water cycle observations and

general quality control approaches have been identified for

instrument noise, lag, and spectral corrections, coordinate
geometry rotation for wind velocity, low turbulence

screening, and other turbulence statistics, which are applied
here (Berger et al. 2001; Foken et al. 2012).

Fig. 3 Time series of daily
a air temperature (Tair),
b precipitation (Precip), c soil
moisture (Qsoil) and biweekly,
d MODIS-enhanced vegetation
index (EVI), and e MODIS land
surface temperature (LST). To
allow comparisons to the
quality-controlled flux data,
2002 was also removed from
these data

Table 1 Abbreviations used in this paper

Abbreviation Description Source

NEE Net ecosystem
exchange of CO2

Flux tower

GPP Gross primary production Flux tower

Pd Photosynthetic drawdown Flux tower

EVI Enhanced Vegetation
Index, 8-day average

MODIS
TERRA/AQUA

ET Evapotranspiration Flux tower

WUE Water use efficiency (Pd/ET) Flux tower

Precip Daily precipitation NCDC ? NARR
reanalysis

Qsoil 10 cm soil moisture NARR reanalysis

Tmean Daily temperature Flux tower ? NCDC

Tmin Minimum daily temperature Flux tower ? NCDC

Tmax Maximum daily temperature Flux tower ? NCDC

Trange Daily temperature range
(max–min)

Flux tower ? NCDC

LST Land surface temperature,
8-day day/night average

MODIS
TERRA/AQUA
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The focus of this analysis of the effect of climate

anomalies on photosynthesis, not net exchange (which
includes respiration and decomposition processes). There-

fore, I developed a method to represent this photosynthesis

from net ecosystem exchange of CO2 (NEE). Unfortu-
nately, there is no single accepted method for doing so, and

all require some level of empirical assumptions or statis-

tical inference that partly takes advantage of the lack of
GPP at night. Consequently, methods diverge on estimates

of GPP by more than 20 % and can include artifacts from
fitting NEE to respiration models (Desai et al. 2008).

Since I want to focus on the value of NEE to models, I

developed an alternate metric of the effect of canopy pho-
tosynthesis on NEE, termed net photosynthetic drawdown

(Pd), a daily metric of canopy photosynthesis that removes

assumptions used in many GPP models. Pd was estimated at
a daily timescale from the hourly flux data as the difference

in nighttime to daytime NEE. Maximum nighttime NEE was

identified at night when more than 4 h of good observations
were available. Maximum is used over mean since it has

been shown to be closer to the advection corrected obser-

vations at night (Van Gorsel et al. 2009). This estimate of
nighttime NEE is then differenced with the mean daytime

gap-filled NEE between 10 and 14 local time if there are

more than 4 h of good observations during that day (when
the sun is up). Here I use gap-filled NEE to avoid biasing the

mean NEE, which exhibits a strong diurnal cycle. Gap-fill-

ing errors tend to be much smaller than GPP uncertainty
(Moffat et al. 2007). The Pd time series is shown in Fig. 4a.

The Pd time series has 5,490 days of data, with 37 % of data

missing.
Further analysis showed that use of Pd instead of GPP

does not significantly change the results or conclusions of

this study and presents a novel way to understand the effect
of climate on photosynthesis. The correlation of Pd to GPP

is high, particularly for maximum daily GPP (r2 = 0.81)

and greater at the monthly timescale (r2 = 0.96). The fit is
linear for GPP, with an intercept of 0 (Fig. 5). Since Pd is a

detector of maximum daily photosynthetic uptake and has a

greater dynamic range than GPP, it is likely that Pd is better
at detecting extreme photosynthesis responses to climate

anomalies. While this method is conceptually analog to

atmospheric CO2 ‘‘drawdown’’ (e.g., Desai et al., 2010), it is
different as the flux drawdown does not include covariation

with boundary-layer depth and represents a much smaller

footprint.

Statistical analysis

I tested the hypotheses mentioned above by testing for both

direct and lagged relationships between Pd and climate

forcing factors (Table 1) at multiple time scales and
compared them to the autocorrelation of Pd. A number of

studies have identified characteristic timescales of vari-

ability in flux data using wavelet, single spectrum, or
Fourier time-series analysis (e.g., Baldocchi et al. 2001;

Mahecha et al. 2007; Stoy et al. 2009), which have all

noted characteristic peaks of variability in NEE especially
at the diurnal, synoptic (3–4 day), seasonal, and interan-

nual timescale. Similarly, frequency-dependent model-data

comparisons (e.g., Dietze et al. 2011; Mahecha et al. 2010;
Keenan et al. 2012a) have all found deficiencies of models

in representing many of these modes of variability.
I identified these scales in daily Pd and evapotranspira-

tion (ET) flux using a similar analysis of empirical model

decomposition (EMD), whose results are fed into the Hil-
bert–Huang spectral transformation (HHT) (Huang and Wu

2008). EMD is an empirical approach to time series

deconvolution that does not require assumptions of cyclical
behavior (as needed by Fourier) or stationarity and does not

require determination of the shape of the weighting kernel

or wavelet. The discontinuous EMD (Barnhart et al. 2012)
further extends the application to time series with missing

data by applying a mirroring approach to fill the data gaps.

EMD decomposes a time series into a series of intrinsic
mode functions (IMF) also in the time dimension, which

when fed to the HHT algorithm that outputs a time by

frequency power spectrum.
Timescales for analysis were determined from the HHT

of Pd and ET (Fig. 4). Both signals have a number of

similar modes of variability, especially at the synoptic,
monthly, and seasonal timescale. ET has greater temporal

variations in these modes and greater signal on long-time

scales ([100 days). Longer timescale variability is present
in the growing season more than outside of it. HHT iden-

tified strong monthly peaks that were not previously

identified and suggests that interannual variability explains
less of the signal than other methods have previously

shown (e.g., Baldocchi et al. 2001). Methodologically,

I used this analysis to select averaging timescales of
1, 3, 8, 15, 30, 90, 180, 360, 720, and 1440 day, as

described next.

The HHT analysis also identified the importance of
normalizing variability across timescale to best identify

climatic and internal controls on Pd. For example, there is a

variety of literature that will show high correlation of GPP
to other variables, solely because the main modes of var-

iability (e.g., the annual solar cycle) are strong in both, not

because one truly explains the other. This method of ana-
lysis is disingenuous when it comes to the question I seek

to answer here.

One of the benefits of long-term data is the ability to
remove much of this co-variability and look at how anom-

alies or extremes manifest themselves in the data and how

they are correlated to anomalies or extremes in another
variable. If a daily time series signal X(day,year) is
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stationary (as it mostly appears to be in this case and dis-

cussed more in the discussion), then an anomaly time series
Xan(day,year) can be simply constructed by removing the

ensemble mean:

Xanðday; yearÞ ¼ Xðday; yearÞ % XðdayÞ
!!!
year
; ð1Þ

where X(day)|Y is the daily time series of variable X
ensemble averaged across all years. To test across multiple

timescales, I applied a forward averaging filter across the

time series (e.g., Fig. 6b), avoiding forecasting by

removing the end of the data series:

Xanðday; yearÞjtimescale¼
1

timescale

Xt¼dayþtimescale

t¼day

Xanðt; yearÞ;

ð2Þ

where timescale is the number of days to average. One

issue that arises when analyzing this variable across sea-

sonal to interannual timescales is the need for averages to

Fig. 4 Hilbert–Huang power
spectral transformation of a net
canopy carbon uptake (Pd), and
b daily evapotranspiration (ET)
derived from empirical mode
decomposition of the tall tower
fluxes. Raw daily time series are
shown below each
transformation and marginal
power spectrum on the right. To
improve clarity of higher
frequency variation, the
transform is cut-off at 400-day
wavelength. The time–
frequency decomposition
reveals that both carbon and
water exchange exhibit a
number of characteristic
timescales of variability,
including substantial peaks at
the monthly and seasonal
timescale. Longer-term
variability is much weaker,
especially for carbon, but
growing season signals of
variability on the 100–200 day
wavelength exist and strong
coherence among water and
carbon are also noted
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stay aligned with the solar orbital forcing cycle, so that
averages in any 1 year can comparable to other years. To

do this, I reduced each year to 360 day length by removing

the first few and last few days of data for each year and
choosing averaging scales which share divisors with 360.

The choice of timing has relatively minimal effect and the
choice of winter, where carbon fluxes are near zero is ideal.

A second issue involves gaps in the data. For gaps, I

sampled the data with replacement, filling gaps linearly
across small gaps (days) and taking long-term means for

longer gaps (weeks).

To remove the previously discussed solar forcing
driven artificial correlation among variables, I normalized

the time series. Flux anomalies (e.g., Fig. 6c) display a

strong seasonality given the change in variability from
winter to summer (Fig. 3). Relative anomalies

Xrel,an(day,year)|timescale were derived from averaged

anomalies by dividing the time series by the ensemble
average standard deviation across all years for a given

averaging timescale:

Xrel;anðday; yearÞ
!!
timescale

¼ Xanðday; yearÞjtimescale

r Xanðday; yearÞð Þjtimescale

!!
year

:

ð3Þ

The remaining time series appears stationary and random
(Fig. 6c), and reflects a statistically defensible view of

relative anomalies of the time series as a function of

averaging filter. Relative anomalies in this fashion were
computed for Pd (Fig. 6) and a variety of observations to

test hypotheses including variables related to canopy

physiology and structure such as remotely sensed vegeta-
tion index (EVI) and minimum, maximum, mean, and

diurnal range of air temperature, remotely sensed land

surface temperature (LST), and variables related to canopy
moisture availability including ET, water use efficiency

(WUE, GPP divided by ET), precipitation, and soil mois-

ture, as noted in Table 1 and shown in Fig. 3. Remotely
sensed variables were derived from the NASA MODIS

TERRA and AQUA reflectance properties and down-

loaded from the ORNL MODIS land product subset server

Fig. 5 Scatterplot of flux
tower-derived GPP (based on fit
of nighttime NEE to
temperature to estimate
respiration) to Pd for a mean
daily GPP, b maximum daily
GPP, c mean monthly GPP, and
d mean monthly maximum
daily GPP. 1:1 fit line shown on
all four and shows that Pd is
closely related to maximum
daily GPP. Correlation at daily
scale is r2 = 0.81 and monthly
r2 = 0.96
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(http://daac.ornl.gov/MODIS/), while other variables were
directly observed by the tower with gaps filled from har-

monized daily climate data downloaded from the National

Climatic Data Center archive of National Weather Service
co-operative observer stations and weather forecast

reanalysis from the NOAA North American Regional
Reanalysis (NARR).

I compared relative anomalies of all variables to relative

anomalies of Pd at all averaging timescales both with direct
linear correlation and with lagged correlation where cli-

mate factors were lagged against Pd at a range of lags

equivalent to the averaging timescales. A two-tailed t test
for significance was applied to all correlation coefficients

and only those coefficients that were significant at the 90 %

level were saved.
The significance test was modified to account for the

autocorrelation present in all environmental time series.

Consequently, the degrees of freedom to apply to signifi-
cance tests should be much smaller than the total number of

samples. I reduced the degrees of freedom using a modified

effective degrees of freedom (EDOF) approach of Breth-
erton et al. (1999):

N' ¼
N

PN
t¼N=2 1% t

N

" #
qX

t qY
t

$ % ; ð4Þ

where N* is the reduced degrees of freedom for signifi-

cance testing of correlation of two time series X and Y with
N samples. qt

X represents the autocorrelation of time series

X at lag t. Though most of the autocorrelation is in the first

few lags, I included all lags to N/2 to account for long-lead
correlations. Further, only those correlations of variables to

Pd that exceeded the lagged autocorrelation of Pd are used

as a test to compare moisture versus carbon storage control
as predictors of current Pd.

The EDOF of Pd (Fig. 7) reveals that while daily Pd has

over 3400 observations, the EDOF at daily scale is only
slightly above 600, and decreases nearly linearly with

logarithmic increases in averaging timescale, such that

interannual analysis is limited to EDOF in the few tens to
single digits. As shown in the results, this limits the ability

of this analysis to diagnose correlations of anomalies at

multi-year timescales and highlights how even a 15 year
time series may be unreliable for detecting interannual and

longer trends and correlations. The results here shows that

Fig. 6 Example of generating
relative anomalies for lag-
correlation analysis. Raw daily
time series of a net
photosynthetic drawdown (Pd),
were b de-seasonalized by
removal of the ensemble
average daily time series and
then averaged to the appropriate
averaging timescale, in this
example, monthly (red line),
and finally c normalized to
relative values. The final signal
represents the true anomalies of
variation across time and has
successfully removed the
seasonal variability of solar
forcing

Photosynth Res (2014) 119:31–47 39

123

Author's personal copy

http://daac.ornl.gov/MODIS/


a few time series were able to meet significance threshold,

but multi-year correlation analysis with flux tower data
requires sufficiently long data sets because of high auto-

correlation.

A second test was also applied for comparing predictive
ability of variables against inherent autocorrelation of Pd,

known as the Granger causality analysis (Detto et al. 2012).

The method originated from economics, but has recently
gained popularity in geophysical time series analysis. The

analysis builds a multiple linear regression of lagged values

of a time series X to predict current values of X. This
regression is then compared iteratively to including an

increasing number of lagged values of time series Y that are

significantly (two-tailed t test at 90 % level) correlated to

X to predict current values of X. When the new regression

significantly improves upon (tested with an F test) the
autocorrelation regression, those lags of Y are retained and

the terminology is that Y ‘‘Granger causes’’ X, or prior values

of X and Y at certain lags explains a significantly larger
fraction of X than the prior values of X does by itself. A minor

modification was made here to include the reduced degrees

of freedom for significance testing and the replacement of the
F test with the more empirical Aikake Information Criterion,

which incorporates both the likelihood of the regression and
penalties for number of parameters. Here, I tested Granger

causality for all variables against Pd (Table 2).

Though all these methods are relatively standard time
series analysis, they have only recently been applied to

carbon flux data, mostly because long-time series of flux

data are only now becoming common. The results show
how the lagged correlation, spectral, and causality analysis

together provide insight on how canopy photosynthesis is

different from leaf photosynthesis and how it can be lev-
eraged to improve canopy photosynthesis models.

Results

Modes of variability in observations

Large variability exists in hourly flux data of NEE and ET

(Fig. 2). Outliers exist in most years, but positive anoma-
lies in ET and NEE decreased after 2005. Diurnal and

seasonal variability dominate the signal and trends. The

decrease in NEE uptake from 2006 to 2010 is visually
evident, but difficult to discern quantitatively against the

variability at the hourly scale (Desai et al. 2010). Not

surprising, hourly data can be challenging when it comes to
statistical data assimilation approaches to constraining

ecosystem models (Zobitz et al. 2011), as these methods

tend to force model parameters toward the dominant modes
of variability (diurnal and seasonal) and limit excursions

away from the mean (over-fitting the mean at the expense

of the extremes) (Desai 2010) especially when data
uncertainty is large, as it is the case for hourly flux

observations (Raupach et al. 2005). Not surprisingly,

models have great difficulty simulating other temporal
modes of variability in photosynthesis (Dietze et al. 2011;

Keenan et al. 2012a). Moreover, many of the anomalies of

photosynthesis that are related to climate anomalies may
exist only at longer timescales.

The EMD analysis directly shows the importance of weekly

to seasonal variability in Pd and ET (Fig. 3), counter to pre-
vious wavelet-based analyses. For example, Baldocchi et al.

(2001) found a spectral gap in flux tower NEE at the 3–4-week

scale. The transformed data and the more empirical approach
of HHT reveal that there are variations present at this scale,

Fig. 7 Degree of freedom analysis for daily net photosynthetic
drawdown from the tall tower fluxes. The total record has 5,490
observation periods (with 37 % of observations missing), but the full
autocorrelation analysis reveals an exponentially declining true
degree of freedom from slightly over 600 for no-averaging, to near
zero above 360 day smoothing of the time series. This reduced N is
used for all correlation significance tests

Table 2 Granger causality analysis for Pd as a function of averaging
period reveals best predictive models generally include temperature
and transpiration observations for daily to weekly averages but pre-
cipitation, soil moisture, and water use efficiency for monthly time
scales, primarily within the first or two lags

Variable/averaging period
(days)

1 3 8 15 30 90 360

EVI 90

Tmean 1 3 8

LST 1 3

ET 1–3 3 8 360

WUE 1–3 3 15–360

Precip

Qsoil

No variables could exceed Pd autoregression in explaining longer
averaging scales ([30 days)
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perhaps more so than at longer scales, and not consistently at a

fixed value. Longer-term variability (90–360 day) is more
present in the growing season (summer) and more distributed

across frequency for ET compared to Pd, suggesting more

coherence in interannual variability of ET than Pd.

Direct relationships

Given the range of variability in flux tower observations and

a general overlap of modes of variability in ET and Pd

anomalies at the daily to seasonal timescales, it should be
expected that some level of correlation exists among these

factors. The strongest direct linear significant correlations

between ET and Pd anomalies exist at scales between 30 and
360 days, but persist down to 1 day, where ET explains

around 10 % of the variability in Pd at short timescales and

approaches 40 % at seasonal scales (Fig. 8). Longer-term
correlations are not significant, but this may partly be the

result of insufficient length of time series and the strict degree

of freedom constraint. A similar level correlation is seen for
WUE, but not at annual time scales. This correlation partly

stems from self-correlation since GPP, which goes into the

WUE calculation, and Pd are both derived from NEE.
Temperature is a well-known factor influencing leaf-

level photosynthesis. Even though solar forcing leads to a

strong correlation between temperature and NEE or GPP at
diurnal and seasonal scales, when the ensemble average is

removed and the variables compared as standardized

anomalies, the relationship is much weaker, though it

remains significant from 1 day out to 30 day, with r around

0.15. None of the temperature factors (average, maximum,
minimum, mean, range, or land surface temperature) are

particularly better than others at explaining variation in Pd,

though stronger correlations exist for maximum daily
temperature especially at longer timescales, including a

particular strong correlation at the 1,440 day scale. It

should be noted that LST is provided at 8-day intervals, so 1
and 3 days average correlations are not included. For the

purpose of the lag analysis, given similar relationships,
only Tmean is further analyzed.

For direct correlation, the results are weaker for soil

moisture than for temperature, but do provide some evidence
to the importance of seasonal moisture budgets on net carbon

assimilation, even in mesic forest/wetland systems. This

result is partly consistent with an earlier model calibration
study that showed interannual variability in NEE at WLEF

was best explained by soil moisture (Ricciuto et al. 2008), but

when lags are taken into account, the results change, as
shown below. Though not shown, results with atmospheric

humidity variables were similar to those of Qsoil. Precipita-

tion anomalies only weakly Pd at 3-day averages. This result
may be caused by the intermittent nature of precipitation, the

greater error in short-term precipitation, and the importance

of soil percolation processes prior to plant water uptake.
Finally, EVI anomalies are found to have no correlation to Pd

anomalies at any timescale.

Lagged analysis

Lagged analysis (Figs. 9, 10) further supports results
shown in Fig. 8, but also reveals subtleties regarding

moisture. The non-moisture-specific variables support both

a strong autocorrelation of Pd as previously shown in Fig. 6
and lack of correlation at many timescales for EVI anom-

alies. Lagged EVI (Fig. 9b) does have some weak, but

significant negative correlation to Pd for monthly averaging
timescales and 3 month lag, and this correlation exceeds

the autocorrelation. This signal represents both the impact

of summer vegetation stress (low EVI) on autumn photo-
synthesis (reduced) (Wu et al. 2013) and the impact of

phenology (late spring = low EVI) on net carbon uptake

(reduced). Spring flush is typically a 2-week process and
the growing season is around 3 months.

The autocorrelation of Pd (Fig. 9a) is persistent at AR-1

and AR-2 out to 30 days. For any given lag, some amount of
autocorrelation exists for all averaging times up to the lag,

increasing as the lag approaches the averaging timescale

(i.e., AR-1). Some out of phase (180 day) negative corre-
lation exists as it also does at the very long timescale

(1,440 day), the latter of which is difficult to explain. At one

level, ecosystem models incorporate this autocorrelation
through the ‘‘memory effect’’ of labile carbon pools, but

Fig. 8 Direct correlation coefficients of standardized anomalies of
climate variables to net photosynthetic drawdown (Pd) anomalies at
daily to multi-year filter scales. Temperature variables explain a small
fraction of weekly to monthly anomalies in Pd, while moisture
variability explains a greater fraction of long-term seasonal variability
in anomalies of Pd. Interestingly, remotely sensed vegetation index
anomalies do not significantly explain Pd anomalies at any timescale
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these are probably not responsible for the observed longer
timescale correlations, possibly tied to other non-structural

carbohydrate pools (e.g., Carbone et al. 2007) or signals of

community reorganization, ecosystem dynamics, or climate
oscillations. However, the lack of long autocorrelations in

Pd do not provide much evidence here for strong long-term

internal control through non-structural carbohydrates, shifts
in plant allocation, or community reorganization.

Lagged temperature is predictive for Pd anomalies at
short lags and averaging times out to a few weeks (Fig. 9c,

d), with a positive correlation (warm anomalies lead to

increased Pd 1–2 weeks out), but these are much weaker
than the autocorrelation. An interesting weak, but stronger

than autocorrelation, relationship exists with 90-day prior

daily mean temperature and current Pd, hinting at possible
long-lag effects, where a short early season warm spell

(e.g., false spring), can enhance growth. There is also a

weak but significant negative relationship of seasonal
average temperature from 4 years past, once again difficult

to explain.

Moisture anomalies (ET, WUE, Precip, and Qsoil) also have
some predicative ability for Pd anomalies and most all posi-

tive—increased ET or precipitation enhances carbon assimi-

lation. Correlations of lagged ET to Pd (Fig. 9a) exist at short
timescales and the first two lags for each timescale, but they

are surprisingly weak compared to the strong direct correla-

tion (Fig. 8). Similar to temperature, a 4-year lag negative
correlation of ET on Pd is found for seasonal averaging.

Relationships also exist in weekly to seasonal average
precipitation and soil moisture at the 2–3 month lag.

Positive anomalies in soil moisture are more predictive for

future weekly to seasonal Pd than Pd itself, suggesting a
long-term moisture control. For example, early season

weekly to seasonal moisture deficits inhibit end of season

carbon assimilation. This effect is of slightly greater
magnitude and correlation as the effect of direct moisture

deficits on Pd. Unlike the direct correlation, these results

more strongly support both the work of Ricciuto et al.
(2008) and the second hypothesis of long-term moisture

control on Pd.

Fig. 9 Analysis of lagged
standardized anomalies of a Pd,
b EVI, c Tmean, and d LST to Pd

at a range of averaging times
and lag times. Only significant
correlations are displayed, after
correction of autocorrelated
degrees of freedom. Red
squares indicate significant
correlations that exceed Pd

autocorrelation at that averaging
and lag scale. Strong AR-1
correlation persist in Pd at lags
up to 1 month and averaging
periods to 1 month, while small
negative correlations show
predictive ability for
temperature at lags exceeding
1 year and EVI at the 2-month
lag
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Causality analysis

The findings of the Granger causality analysis (Table 2)

are consistent with the lag analyses for most except the
moisture variables. Daily to weekly temperature and ET

both Granger cause Pd, with additional longer-term con-

trol by seasonal EVI and annual ET. Interestingly, Qsoil

does not Granger cause Pd at any timescale. Only ET

anomalies have predictive ability at long-time scales and

highlights the difficulty of dissecting the causes of sea-
sonal to interannual variability even with 15 years of flux

tower data.

Discussion

Role of lagged forcing in photosynthesis

Internal control (carbon assimilation rates related to prior
carbon assimilation rates) is a strong predictor on canopy

carbon assimilation at timescales up to a week, while the

key direct climatic modifier of this are temperature and

available moisture, but primarily on longer timescales and

longer lag times. Clearly, this differs from the primarily

direct relationships one finds for leaf photosynthesis con-
trols and highlights the complexity of modeling canopy

photosynthesis and the value of long-term data.

The analysis here is unable to directly identify mecha-
nisms. I assumed that a strong autocorrelation at long-time

scales implies carbohydrate storage or other mechanisms of

buffering that limits ecosystem response to climate
extremes. However, the evidence that such occurs here is

weak and instead long-lead short-term moisture stress and
prior season temperature anomalies appear to have the

strongest effects, suggesting that moisture control is

stronger than expected. A number of biotic interactions are
likely in response to climate anomalies, in addition to

changes in internal storage of sugars and starches, there are

possible shifts in allocation in response to extremes or
aging or community reorganization from shifts in com-

petitive pressure. There was very limited management in

the region over the study period and no evidence for a shift
in age structure or dominance of certain ecosystems (Gel-

lesch et al. 2013; Scheffer et al. 2001), which allowed this

Fig. 10 Same as Fig. 9 but for
moisture variables of a ET,
b WUE, c Precip, and d Qsoil.
While ET and WUE have
significant direct correlations as
shown in Fig. 5, lagged
correlations are small. Stronger
positive correlations exist for
precipitation and soil moisture
at the weekly to seasonal
timescale for seasonal scale lags
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analysis to assume stationary conditions. In addition, it is

unclear from the analysis if any state shifts from multiple or
repeating stress, dubbed ‘‘ecological stress memory’’

(Walter et al. 2013), was observed here. Instead, the analysis

suggests that modeling and experimental studies should look
and evaluate carbon cycle shifts over long-time scales (sea-

sons to years) in response to relatively short-term drought

manipulation or prior season temperature anomalies. Fur-
ther, multi-year anomalies that may be related to patterns and

oscillations in biology or climate warrant more investigation.
For example, the negative autocorrelation of Pd at interan-

nual timescales for annual and longer averages suggests

potential biological oscillations, cycles of herbivory,
or species successional processes.

Further evidence on the lack of a strong negative feedback

or ‘‘internal control’’ is the surprising lack of correlation
between relative anomalies of Pd to EVI. Anomalies of Pd do

not appear to relate to anomalies of EVI at any timescale,

calling into question how well remote sensing can be used to
evaluate how climate anomalies drive productivity anoma-

lies. Many applications have been developed around the

ability to apply differences in infrared and visible reflectance
of canopies to estimate global photosynthesis from space,

ever since early work showed the strong link of absorbed

radiation to plant carbon assimilation (e.g., Kumar and
Monteith 1981). For example, remarkably strong monthly to

seasonal correlations exist between NASA MODIS-derived

monthly GPP against flux tower estimated GPP (Heinsch
et al. 2006). However, many of these papers find that while

satellites can sense large-scale latitudinal variation, signifi-

cant unexplained variability exists across smaller regions
and across longer timescales.

It appears that EVI and similar metrics of remotely

sensed vegetation greenness or absorbed radiation capture
processes like phenology, leaf area, or canopy develop-

ment, though they likely do not readily capture the

anomalies or extremes as formulated in this analysis.
Though anomalies do not correlate, EVI does explain

approximately 75 % of the biweekly variation of Pd. EVI

has also been argued as a good proxy for carbon uptake
phenology, but at this site, dates of start and end of carbon

uptake period (period when mean daily smoother Pd is

positive) do not correlate strongly to dates of start and end
of the ‘‘greenness’’ period as identified in EVI. However, I

did find that growing season length as defined by its carbon

uptake period has a strong correlation with average grow-
ing season EVI (r = -0.88), though with a negative rela-

tionship and a small effect size, suggesting that short- and

long-term EVI have opposing effects and may partially
explain the lack of correlation of anomalies. The strongest

relationship with mean growing season EVI is with cor-

relation of the end date of this uptake period (r = -0.92),
consistent with some recent work that many temperate

forest systems have interannual variability in NEE driven

by end of season signals (Wu et al. 2013). The analysis
here does suggest caution is warranted when analyzing

anomalies in broadband satellite vegetation indices.

Finally, it is apparent that both at the direct timescale,
through the high correlation of ET to Pd and at the lagged

timescale, through the positive association of seasonal soil

moisture to Pd and the long lag relationships of temperature
to Pd, all imply a variety of moisture retention and moisture

use processes influence photosynthesis at a number of
timescales. Some of these maybe related to summer

droughts influence late season photosynthesis and others

may be related the dynamics of the snowpack on soil
moisture. The existence of moisture control on plant bio-

geochemistry in a mesic temperate forest and wetland

landscape in and of itself is surprising and opens up a
number of new avenues for analysis.

Toward a canopy photosynthesis-modeling framework

Compared to lab experiments, both uncontrolled and con-

trolled field observations require greater explicit consider-
ation of time and spatial scale, and the extent to which

variability expressed in one dimension truly reflects the

signal one seeks to estimate. This paper, like others (e.g.,
Stoy et al. 2009), demonstrate that frequency dependent

analysis is essential for identifying processes over long-

time periods or large regions. Otherwise, conclusions can
be drawn from short-term or small-scale data that have

very limited application to how photosynthesis actually

responds to the environment.
Statistical analyses for large environmental data sets are

still in development. Modern computational speeds, open

source libraries for advanced programming languages, and
new models of graduate student training have led to con-

tinued improvement in these (Zobitz et al. 2011). Of

course, whether the methods presented here are useful
ultimately depend on the interpretation of results.

Moorcroft (2006) asked if we have reached a predictive

ability for the biosphere. Progress has been made, espe-
cially with advanced coupled dynamic vegetation and

carbon cycling models (e.g., Medvigy et al. 2009), but the

community may have reached a standstill until we seri-
ously reconsider how we confront models with data. Dietze

et al. (2011) found among more than a dozen ecosystem

models, very little confidence is present in our ability to
simulate both the diurnal cycle and interannual variability,

with the latter finding confirmed by Keenan et al. (2012a,

b). New research further finds ever short-term environ-
mental variability can strongly affect long-term carbon

cycling (Medvigy et al. 2010).

The analysis here suggests that models need to be
evaluated on the temporal memory of moisture and carbon
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storage mechanisms. Advances have been made in apply-

ing data assimilation or Bayesian inference methods to sift
through data and models (Williams et al. 2009). Large

model-data syntheses as mentioned in the introduction

have contributed to our ability to diagnose consistent
model errors. Data uncertainty, machine readability, and

archival have also gotten greater attention. Uncertainty, in

particular, is essential to collect with all these data, given
how sensitive model-data comparisons can be to them

(Raupach et al. 2005). Finally, recent progress has been
made on making modeling and model-data comparisons a

routine exercise, or at least, more user-friendly and across a

wider range of data sources (LeBauer et al. 2013).
Multiple lag and time filtering should be applied to

climate extreme experiments conducted with ecosystem

models in the soil moisture and carbon storage domains.
Various model structures and parameters (e.g., root exu-

dates, labile carbohydrate storage, community shifts, or soil

moisture storage rates) can be investigated not for merely
how well they simulate NEE or even Pd, but rather how

well they simulate the observed relationships among vari-

ables across time. Some of these responses span over
multiple years. Further, comparisons should be made in

anomaly space if we really want to test how climate

extremes influence photosynthesis.

Conclusion

I found that neither the carbon storage control or moisture

control hypotheses could be falsified with long-term data,
once seasonal cycle was removed. The extent to which the

hypotheses could be falsified was strongly dependent on

the scale of the averaging filter and the lags analyzed.
Using Hilbert spectra to identify relevant lags, I found a

short-term carbon storage link on the order of weeks and a

longer-term seasonal positive soil moisture influence on
photosynthesis anomalies. Daily to weekly lagged positive

anomalies of photosynthesis positively influence current

photosynthesis, inhibiting photosynthetic response to direct
climate extremes, primarily anomalies on evapotranspira-

tion and maximum temperature. Moisture stress or surplus

in the prior season did inhibit or promote photosynthesis,
respectively, but mechanisms are difficult to assess.

These results support prior suppositions that spring

moisture anomalies and autumn carbon uptake anomalies
influence future carbon assimilation rates, not just length

of growing season or phenology. Further, the results

highlight the difficulty that some commonly used indi-
cators of plant growth such as remotely sensed vegetation

indices, can reliably detecting anomalies in net carbon

uptake. Finally, multi-year lagged negative relationships
of temperature and evapotranspiration anomalies on

current photosynthesis are intriguing and suggest new

avenues of exploration for the role of long-lead ecosystem
responses to extremes.

These findings are not necessarily detectable with

shorter-term data or leaf-level analysis, as they involve
subtle relationships and canopy- and soil-level processes.

The results are similar to, for example, recent work by Niu

et al. (2012) who argued that thermal acclimation of NEE
(a flux made up of many interacting processes) can occur

on interannual timescales in canopies. Also interesting was
the lack of relationship between spectral indices and Pd,

once converted to anomaly space, similar to some of the

results of Heinsch et al. (2006) that remotely sensed GPP is
adequate for large spatial scale variation but poor for single

pixel interannual variability.

The results here demonstrate the importance of long-term
environmental observation of canopy photosynthesis but

caution has to be taken regarding the high temporal auto-

correlation that exists in flux and climate data. Strong
covariance of these signals to seasonal orbital forcing

requires careful evaluation of spurious correlation. A dis-

concerting finding was the lack of strong statistical power at
detecting many correlations at long timescales, beyond

interannual, even with[15 years of data. Methods that seek

complementary use of short-term field manipulations, lab
observations, and long-term datasets like Fluxnet and the

evolving NEON observatory will require continued evolu-

tion of model-data comparison tools. Other papers in this
special issue point to a number of intriguing new ways to

look at photosynthesis in models (Dietze et al., this issue;

Rogers et al., this issue; Sitch et al., this issue; Tholen et al.,
this issue). Here, I have shown that a spectral anomaly

framework and long-term flux observation network con-

tribute to their evaluation and improvement.
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