

Flux towers see the trees for the forest...

Earth system models see green slime

Desai et al., 2015, AFM

Heterogeneous sites have worse energy balance closure (EBC)

Greenness spatial variance

Stoy et al., 2013, AFM

Landscape variance potentially drives stationary eddies

Fig. 1 Schematic showing how quasi-stationary eddies cause an underestimation of the total sensible heat flux H when using the temporal EC method to calculate H_t . The single-point sonic measurement in the centre is not able to resolve quasi-stationary eddies

What to Do?

- 1) Assume what tower sees is representative of whole, maybe screen for poor energy balance
- 2) Build more towers and fuse them someway
- 3) Make a taller tower
- 4) Use a scaling function based on differences of sample area and region of interest: sampling tower like model or model like tower

What to Do?

- 1) Assume what tower sees is representative of whole, maybe screen for poor energy balance
- 2) Build more towers and fuse them someway

QUESTIONS

- How homogenous is homogenous enough?
 - How well does a single eddy flux tower represent a typical earth system model domain (10x10 km) mean surface energy fluxes and how does mean flux and energy balance closure vary with surface flux heterogeneity?
- How many flux towers are towers enough?
 - If you had multiple towers, how many would you need before sufficiently sampling domain mean flux?
 Are there smarter ways to compute the mean flux when you have multiple towers?

How Long Is Long Enough When Measuring Fluxes and Other Turbulence Statistics?

D. H. LENSCHOW, J. MANN,* AND L. KRISTENSEN*

National Center for Atmospheric Research,† Boulder, Colorado

(Manuscript received 2 November 1992, in final form 16 August 1993)

814 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 14

How Close is Close Enough When Measuring Scalar Fluxes with Displaced Sensors?

L. Kristensen and J. Mann

Risø National Laboratory, Roskilde, Denmark

S. P. ONCLEY

National Center for Atmospheric Research,* Boulder, Colorado

J. C. WYNGAARD

The Pennsylvania State University, University Park, Pennsylvania (Manuscript received 19 September 1996, in final form 4 December 1996)

15 FEBRUARY 2004 DE ROODE ET AL. 403

Large-Eddy Simulation: How Large is Large Enough?

STEPHAN R. DE ROODE AND PETER G. DUYNKERKE*

Institute for Marine and Atmospheric Research Utrecht, University of Utrecht, Utrecht, Netherlands

HARM J. J. JONKER

Thermofluids Section, Department of Applied Physics, Delft University of Technology, Delft, Netherlands

Meet SAM

- SAM: System for Atmospheric Modeling LES
 - Khairoutdinov and Randall (2003)
 - 256x256x128 grid points, 0.4 s temporal
 - 10x10 km domain intended to represent Park Falls, WI US-PFa Very Tall Tower in Northern Wisconsin
 - 40x40m horizontal, ~10m in vertical near surface
 - Periodic horizontal boundary conditions, mid-summer initial profile
 - 1.5 order sub-grid closure
 - Analysis of single 30 minute period after spin up with flux tower based surface energy forcing (1-D variation only)
 - Flux towers (w,q,t,p) sampled at 75m vertical level

Forcing from tower-based observational scaling

LES cases have to be simplified

Sample LES like a flux tower

Where would you put your tower?

Sampling LES fluxes like a tower (RED) leads to greater biases in heterogeneous simulation when compared to space-time average (BLACK)

In both cases, a single random tower could vary by ~60% of mean domain flux, and heterogeneous simulation more consistently low biased

Interestingly,
convergence on
domain mean flux
(<10% error) with
multiple towers in LES
happens around ~10
towers, about sample
as number of towers
needed to sample
land cover variance in
actual domain

Could we take advantage of multiple towers in a better way?

ORIGINAL PAPER

Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study

Gerald Steinfeld · Marcus Oliver Letzel ·

Siegfried Raasch · Manabu Kanda · Atsushi Inagaki

$$\left[\overline{F}\right] = \overline{\left[w\left\langle\Theta\right\rangle\right]} + \overline{\left[w\Theta'_{\text{filter}}\right]} + \left[\overline{w\Theta_b}\right]$$

RESEARCH ARTICLE

Exploring Eddy-Covariance Measurements Using a Spatial Approach: The Eddy Matrix

Christian Engelmann^{1,2} · Christian Bernhofer¹

$$B_{\text{comb}} = \overline{\langle w''\theta'' \rangle} + \overline{\langle w \rangle' \langle \theta \rangle'}$$
 (3a)

$$= \overline{B_a} + \left(\frac{1}{M-1}\right) \sum_{i=1}^{M} \left(\left(\langle w \rangle_i - \overline{\langle w \rangle} \right) \left(\langle \theta \rangle_i - \overline{\langle \theta \rangle} \right) \right), \tag{3b}$$

ORIGINAL PAPER

Measurement of the Sensible Eddy Heat Flux Based on Spatial Averaging of Continuous Ground-Based Observations

M. Mauder · R. L. Desjardins · E. Pattey · Z. Gao · R. van Haarlem

NOTE: In this scenario, only one of the towers is high-frequency, rest are T/Q only

$$H = \overline{u_3} \left(\overline{T} - T_0 \right) + \overline{u_3' T'} \approx \overline{u_3} \left(\overline{T} - [T] \right) + \overline{u_3' T'} = \overline{u_3} \left(\overline{T} - [T] \right) + H_t$$

Spatial covariance approaches do improve the flux relative to domain mean, but in different ways

Our results on S07 method consistent with their paper and suggests energy balance may be addressed with density of ~10-20 towers per 100 square kilometers

So we only need 70 million towers?

WED 6.1 8:00 am Arches

Surface-atmosphere exchange in a box: Making it a suitable representation for in-situ observations

flux observations

environmental response function virtual control volume

Stefan Metzger^{1,2}

¹National Ecological Observatory Network, Boulder, Colorado, USA ²University of Colorado, Boulder, Colorado, USA

WED 6.2 8:15 am Arches

Surface-atmosphere exchange in a box II: A practical realization with single tower eddy covariance observations

Ke Xu¹, Stefan Metzger^{2,3}, Ankur R. Desai¹

Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD)

NSF: U Wisc Madison-U Wisc Milwaukee-NASA GSFC-NCAR-U Wyoming-KIT IFU-Montana State

Experimental Design

- Distribute 20+ eddy covariance flux towers (red dots) within 10x10 km box (black box, right) around WLEF tall tower (blue cross). Run continuously July-Oct, top of canopy fluxes + micromet profiles
 - Ecology and phenology bi-weekly sampling at all towers
- Place in-situ and remote profiling instruments in 100 m clearing.
- 3 IOPs in late Jul, late Aug, late Sep with airborne legs in 2 km spacing at 500 and 1000 ft AGL (purple lines).
 - Upward pointing LiDAR to map PBL dept.
 Raman LiDAR for profiles of temperature and water vapor, if possible
 - Single hyperspectral visible-IR and canopy LiDAR mapping mission from NASA G-LiHT, potentially integrated with UWKA
- LES simulations for each IOP and select cases across study period

Thank you

- How many flux towers do you need?
 - Depends on how you use them and your site spatial heterogeneity!

- DOE LBL Ameriflux Network Management
 Project subaward to ChEAS Core Site Cluster
- NEON, Inc.