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Abstract Lakes emit globally significant amounts of carbon dioxide (CO2) to the atmosphere, but
quantifying these rates for individual lakes is extremely challenging. The exchange of CO2 across the
air‐water interface is driven by physical, chemical, and biological processes in both the lake and the
atmosphere that vary at multiple spatial and temporal scales. None of the methods we use to estimate CO2

flux fully capture this heterogeneous gas exchange. Here, we compared concurrent CO2 flux estimates
from a single lake based on commonly used methods. These include floating chambers (FCs), eddy
covariance (EC), and two concentration gradient‐based methods labeled fixed (F‐pCO₂) and spatial
(S‐pCO₂). At the end of summer, cumulative carbon fluxes were similar between EC, F‐pCO₂, and S‐pCO₂
methods (−4, −4, and −9.5 gC m−2), while methods diverged in directionality of fluxes during the fall
turnover period (−50, 43, and 38 gC m−2). Collectively, these results highlight the discrepancies among
methods and the need to acknowledge the uncertainty when using any of them to approximate this
heterogeneous flux.

Plain Language Summary Lakes comprise a small percentage of the landscape, but they are
active and complex areas of carbon cycling. Lakes receive mixed carbon inputs from upstream sources,
process this carbon internally, store it in sediments and biomass, and export it downstream. In addition,
some fraction of the carbon in lakes exchanges into and out of the atmosphere, linking lakes with the global
atmosphere. The exchange of carbon dioxide across lake surfaces has globally significant implications,
but quantifying these rates has yet to be fully resolved. Here, we compared four methods of estimating
diffusive carbon dioxide exchange between the atmosphere and the lake surface. Flux rates generally agreed
during the summer, but estimates diverged in the fall, a critical time period with elevated carbon
cycling rates. These discrepancies among methods may arise because of the high degree of spatial and
temporal variability in gas exchange and our limited ability to portray and scale these processes
accurately. In the future, we need to improve both the resolution of observations and how we process those
observations to better measure carbon gas exchange between lakes and the atmosphere.

1. Introduction

Lakes are a major component of the Earth's carbon cycle, and an increasing focus has been placed on
carbon dynamics within inland waters (Biddanda, 2017; Tranvik et al., 2009; Williamson et al., 2009). A
substantial fraction of the organic carbon that is delivered to or fixed within lakes is outgassed to the atmo-
sphere as carbon dioxide (CO2) (Cole et al., 2007; Cory et al., 2014). While there is consensus that collec-
tively lakes and other inland waters emit meaningful amounts of CO2 to the atmosphere, it remains
extremely difficult to calculate spatially and temporally resolved emission rates for individual lakes. This
difficulty is because the exchange of CO2 across the air‐water interface is driven by multiple physical,
chemical, and biological processes in both the lake and the atmosphere that vary at multiple spatial and
temporal scales. The scientific community lacks methods to fully capture the spatial and temporal hetero-
geneity in gas exchange between lakes and the atmosphere. Thus, every estimate of global CO2 emissions
from lakes has uncertainty.
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The reason that lake‐atmosphere fluxes are difficult to quantify in part is because they vary in magnitude
(Raymond et al., 2013), in time (Reed et al., 2018), and across space (Natchimuthu et al., 2016). In many tem-
perate dimictic lakes, seasonal phenologies in ice cover and stratification govern the direction and magni-
tude of CO2 flux. Large off‐gassing events occur during periods of vertical mixing such as ice‐off and fall
turnover (Denfeld et al., 2016). Lakes with higher productivity show pronounced temporal variation in
CO2 flux (Maberly et al., 2012), characterized by influx during the summer periods coinciding with higher
rates of primary production (Reed et al., 2018). Thus, for even a single lake, flux estimation needs to be con-
tinuous and year‐round in order to capture the temporal heterogeneity in gas exchange. Spatially, heteroge-
neity in metabolic processes, hydrology, and turbulence can have pronounced impacts on CO2 flux from the
lake surface. Rivers flowing into lakes typically differ in a number of physical, chemical, and biological prop-
erties that can create contrasts in pCO2 in habitats where they enter a lake (Chmiel et al., 2019). Further,
spatial heterogeneity varies temporally (Loken, Stanley, et al., 2019; Natchimuthu et al., 2016) due to
changes in river flow, lake mixing, and biological processes. Thus, to accurately measure CO2 flux from a
single lake, we need to incorporate both spatial and temporal variation.

Any calculations of lake‐atmosphere CO2 flux are limited in either spatial or temporal extent. Perhaps the
simplest and most cost‐effective method for measuring gas efflux from lakes is using floating chambers
(FCs) (Bastviken et al., 2015). Chambers are placed atop the lake surface, and the flux is derived from the
gas accumulation rate within the chamber. However, flux chambers characterize only a small area of the
lake for what is typically a short deployment. Further, the chamber itself can alter turbulence, thus biasing
gas exchange within the chamber environment (Vachon et al., 2010). Historically, FCs for CO2 required
manual gas sampling followed by laboratory determination of gas concentrations, while newer FCs integrate
continuous CO2 sensors and automatic purging mechanisms that allow for longer deployments (Bastviken
et al., 2015; Jonsson et al., 2008; Martinsen et al., 2018). While a single measurement is small in its spatial
scale, multiple chambers have been used to quantify the spatial variability of gas emissions within and
among lake habitats (Natchimuthu et al., 2016; Tangen et al., 2016). Similarly, measuring temporal variabil-
ity of fluxes using FCs is common but in both cases, characterizing spatial and/or temporal variability with
this approach is time intensive. New automated chambers show promise in increasing the duration of con-
tinuous observation (Duc et al., 2012).

A common alternative to FCs is modeling exchange rates using the concentration gradient or boundary layer
method (F‐pCO₂) (Cole & Caraco, 1998; MacIntyre et al., 2010; Read et al., 2012). The flux of any gas across
the air‐water interface is controlled at the molecular level (Kitaigorodskii & Donelan, 1984), and fluxes are
estimated using differences between pCO₂ on opposing sides of the air‐water boundary and an estimate of
water turbulence or gas transfer velocity (k). Spatial scales of pCO₂measurements within the water column
are on the order of cubic centimeters and typically fixed in space. Estimation of k is typically based on
empirically derived models using wind speed, lake size, and/or water density gradients (Crusius &
Wanninkhof, 2003; MacIntyre et al., 2010; Read et al., 2012). The difficulty in modeling k stems from the fact
that k changes in response to weather events and varies within lakes due to lake and environmental condi-
tions (Natchimuthu et al., 2016; Vachon et al., 2013). Moreover, estimation of k can vary by multiple orders
of magnitude simply due to model choice (Dugan et al., 2016). Recent pCO₂ studies have shown that scaling
k from point measurements to the lake scale strongly underestimates emissions (Mammarella et al., 2015;
Schubert et al., 2012). New methods have been developed to quickly quantify spatial variation in pCO₂
(Bastviken et al., 2015; Crawford et al., 2015) and have revealed substantial spatial variations in pCO₂ and
fluxes within individual lakes and reservoirs (Loken, Crawford, et al., 2019; Natchimuthu et al., 2016;
Paranaiba et al., 2018). Despite their flaws, boundary layer methods have provided the most frequent and
comprehensive understanding of CO2 exchange between lakes and the atmosphere (Balmer &
Downing, 2011; Duarte et al., 2008; Raymond et al., 2013), yet most assume spatial homogeneity and are reli-
ant on physical lake models that have large uncertainty.

A third approach for quantifying lake CO2 fluxes is eddy covariance (EC) (Morin et al., 2018; Reed
et al., 2018). In contrast to the water‐based approaches, EC uses measurements of concentrations of gas in
the atmosphere along with high‐frequency measurements of wind speeds in three dimensions. While this
top‐down flux method seems like the silver bullet for quantifying CO₂ flux, EC has several assumptions built
into estimation and is spatially limited. It relies on measurement during periods with air movement
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sufficient to generate turbulent airflow with eddies and includes uncertainty of footprint models that esti-
mate the area over which fluxes are being measured (i.e., the footprint), with a single flux estimate integrat-
ing over ~1 km2. Turbulence and footprint issues can lead to upward of 80% of EC data being excluded (Reed
et al., 2018). EC estimates represent the average flux from a portion of the lake surface, which bias observa-
tions toward nearshore areas (Morin et al., 2018) where most towers are located. Despite these limitations,
EC offers a promising method for assessing carbon fluxes from lakes (Vesala et al., 2012).

Because each technique for measuring carbon flux has its limitations, efforts have been made to compare
these methods. However, these investigations have been limited to relatively short time periods (Erkkila
et al., 2018; Podgrajsek et al., 2016; Schubert et al., 2012). These authors found discrepancies amongmethods
for quantifying CO₂ flux in both space and time. While estimates of carbon fluxes are critical for understand-
ing the global carbon cycle, how best to measure lake‐atmosphere fluxes remains challenging and is an open
question for the scientific community.

In order to compare methods of quantifying lake‐atmosphere fluxes of CO2, we leveraged multiple concur-
rent data sets from a single north temperate lake (Lake Mendota, Wisconsin, USA). This lake has been sub-
ject to prior CO2 flux investigations (Loken, Crawford, et al., 2019; Reed et al., 2018). Here, we combined flux
records based on measurements of pCO₂ at a moored buoy, measurements distributed across the entire lake
surface, EC from a tower located at the end of a narrow peninsula, and FC. The overarching question of this
work is: Are lake‐atmosphere CO2 flux estimates consistent among pCO₂, FC, and ECmethods? Due to mul-
tiple temporal and spatial scales which the independent observations are taken over, we seek to answer the
question using (1) analysis of flux distribution over multiple seasons, (2) quantifying cumulative sums of car-
bon flux, (3) direct comparison of methods, and (4) spectral time series analysis of fluxes.

2. Methods
2.1. Site Description

Lake Mendota is a well‐studied lake located in Southern Wisconsin, USA (43.1°N, 89.4°W) and is part of the
North Temperate Lakes Long‐Term Ecological Research (NTL‐LTER) program. It is dimictic and eutrophic,
with a surface area of 39.9 km2 and a maximum depth of 25.3 m (mean 12.7 m). The majority of the lake's
watershed is composed of agricultural and urban land uses, resulting in elevated nutrient concentrations
and high productivity (Carpenter et al., 2007). Thermal stratification typically occurs between May and
October and ice cover from late December throughMarch.We defined seasons using water column tempera-
ture gradients with spring and fall as periods in which the water column was isothermal, while in summer
the lake was thermally stratified.

2.2. Flux Estimates
2.2.1. Fixed Point Concentration Gradient Method (F‐pCO₂)
Since 2006, NTL‐LTER has managed a monitoring buoy on Lake Mendota that is moored above the lake's
deepest point (43.0995°N, 89.4045°W). The buoy is equipped with meteorological and limnological sensors
and is deployed seasonally (approximately April through October), capturing the majority of the ice‐free sea-
son. In 2015, a Turner Designs C‐sense pCO₂ sensor (Turner Designs, San Jose, USA; 0‐ to 4,000‐ppm range,
3% accuracy, ±120 ppm) was added to the buoy and installed at 0.5‐m depth. For this study, we used wind
speed, surface water temperature, and surface pCO₂ (Magnuson et al., 2019). Wind speed was measured
at a height of 2.7 m above the lake surface using an anemometer (R. M. Young Marine Wind Monitor).
Water temperature and pCO₂ were measured at a depth of 0.5 m using a RBR concerto thermistor string
and a Turner C‐Sense CO₂ sonde, respectively. Wind speed and water temperature were measured every
30 min, while pCO₂ was measured every 15 min. pCO2 in air was measured from an in situ spectroscopy
gas analyzer (Picarro, inc. G2401 Gas Concentration Analyzer) located at a nearby building.

Using data collected at the buoy, we calculated the diffusive efflux of CO₂ from the lake surface to the atmo-
sphere according to:

Flux ¼ kgas x kh x pCO₂water − pCO₂airð Þ (1)

This fixed‐point boundary layer method (F‐pCO₂) is based on the partial pressure gradient between the
water (pCO₂water) and the atmosphere (pCO₂air). Multiplying this difference by Henry's law constant

10.1029/2019JG005623Journal of Geophysical Research: Biogeosciences

BALDOCCHI ET AL. 3 of 15



(kh) converts to molar units and by the gas transfer velocity (kgas) to generate diffusive flux estimates. We
estimated kgas using concurrent wind speed and water temperature recorded at the buoy following
Weyhenmeyer et al. (2012), applying the k600 lake area model and Schmidt model coefficients provided
as Model B in Raymond et al. (2013). Henry's law constant (kh) was calculated using atmospheric pressure
and temperature dependence models provided in Plummer and Busenberg (1982). pCO₂ flux estimates
were computed at 30‐min intervals. To temporally match observations between methods, a subset of
F‐pCO₂ was used from 8 a.m. to 12:00 p.m., the time period that overlapped with the majority (>90%)
of the spatially explicit pCO₂ sampling times (described below).
2.2.2. Spatial Concentration Gradient Method (S‐pCO₂)
In addition to the F‐pCO₂‐based flux estimation at the buoy, we also compared flux estimates using pCO₂
measurements from the entire lake surface (S‐pCO₂). For the entire ice‐free period of 2016, Loken,
Crawford, et al. (2019) generated CO₂ efflux estimates at 988 points distributed in a gridded pattern across
the lake surface. Efflux estimates were based on measurements of pCO2 collected using a boat‐mounted
water sampling system. Loken, Stanley, et al. (2019) configured a motorboat with water pumps, tubing, a
gas equilibrator, a GPS, and water sensors (including a Los Gatos Research Ultraportable Greenhouse Gas
Analyzer) to continuously measure (1 Hz) the water surface as the boat traveled across the lake. Bubble free
water is extracted from below and in front of any prop created turbulence, with little disturbance to either
concentration or flux measurement. S‐pCO₂ measurements had an accuracy of ±0.3 ppm.

On 26 sampling days spanning the entire ice‐free period, ~10,000 pCO₂ measurements were collected over
an ~3‐hr window in themorning. They used the point measurements to interpolate pCO2 across the lake sur-
face and, similar to the F‐pCO₂ method, calculated efflux using the difference in pCO₂ between the water
and the air. To match the spatial pCO2 data set, Loken, Crawford, et al. (2019) used a spatially explicit k
model (Vachon et al., 2013), which takes into account wind speed and direction and allows k to vary across
the lake surface. Daily pCO2 at each of the 988 points were estimated by temporal interpolation, which they
combined with daily spatially explicit k estimates to calculate daily efflux. Two subsets of S‐pCO₂ data were
used to quantify spatial variability, 10 stratified random points from the entire lake and S‐pCO₂ measure-
ment locations from within the EC footprint.

Both F‐pCO₂ and S‐pCO₂ methods depend on wind speed for accurate k estimates. Wind data for this work
have an accuracy of 0.3 m s−1. k accuracy varies in time and space but is approximated to be 0.6 cm hr−1.
With both methods using the same wind speed for their k estimates, there is a small degree of dependence
between the methods.
2.2.3. Flux Chamber Diffusion Method (FC)
We conducted four FC campaigns between 6 July 2017 and 24 April 2018. CO2 sensors (Sensair K30,
±30 ppm) were installed inside floating plastic chambers with a foam collar of diameter 0.3 m and a height
of 0.12 m. Flux rates were calculated using the chamber dimensions (surface area and volume) and contin-
uous pCO2 measurements within the enclosed headspace. Each 24‐hr sampling campaign consisted of seven
sampling trips spaced every 4 hr with the goal of measuring flux rates over a complete diel cycle. For each
measurement, we placed two chambers on the lake surface in the middle of the lake (same location as the
buoy) and let them drift for 5 min. We repeated the FC procedure three times per chamber and calculated
the average of the six flux measurements. CO2 flux was calculated as follows:

Flux ¼ ΔpCO2

Δt
×

V
SA

(2)

where V is the chamber volume (0.03114 m3), SA is the chamber bottom area (0.071 m2), and t is time
(s). Prior to the first campaign, we calibrated all sensors using N2 gas and the “zero calibration” method
per Bastviken et al. (2015). For all subsequent campaigns we re‐confirmed the zero CO2 readings using
N2 gas.
2.2.4. EC Method
EC flux observations (Ameriflux site: US‐PnP, doi: 10.17190/AMF/1433376) were collected from a tower at
the end of an ~50‐m‐wide peninsula on the shore of LakeMendota (Figure 1) starting on 20 June 2016. These
flux observations were made with a sonic anemometer (CSAT3, Campbell Scientific, Logan UT, USA) and
open‐path infrared gas analyzer for CO2 and water vapor gas concentration (LI‐7500A, Li‐Cor, Lincoln,
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NE, USA, ±5 ppm) at a height of 12.4 m above the lake on a 0.95‐m boom, along with measurements of air
temperature and humidity (Vaisala, Inc. HMP45C). Measurements of incoming solar radiation and
atmospheric pressure were collected from a nearby meteorological tower located on the roof of the
Atmospheric, Oceanic, and Space Sciences building at the University of Wisconsin.

Eddy fluxes were calculated based on the covariance of vertical wind velocity and scalar concentrations fol-
lowing the approach of Mauder and Foken (2015), with quality control flags for stationarity, integral turbu-
lence, and propagate estimates of random error. Typical corrections were applied, including planar fit
rotation, and Webb‐Pearson‐Leuning density corrections, except for u* filtering. A change point detection
method is not possible, given the dependence of flux on u* and instead we use a fix value for cutoff
(0.1 m s−1). Gap filling was performed using the Marginal Disturibtion Smapling (MDS) method with
REddyProc (Reichstein et al., 2005), with uncertainty estimated using both random uncertainty methods
for turbulent flux sampling (Salesky et al., 2012) and gap filling (Moffat et al., 2007). Using an eddy flux sur-
face flux footprint model (Kljun et al., 2015), we identified and removed non‐lake data at 30‐min timescales,
primarily when winds were from the forested portion of the peninsula. After footprint screening and quality
control, 26% of data were retained. Lacking a concentration gradient profile, below‐sensor storage fluxes
were not measured and are assumed to average to zero at the daily scale (Xu et al., 2019), which is common
at most sites.

2.3. Comparison of Methods

Flux estimates varied in temporal and spatial coverage (Table 1). EC‐based fluxes were collected
continuously since 2016. Buoy‐based F‐pCO2 estimates are also continuous since this time, with the
exception of winter months. We only have S‐pCO2 rates for the ice‐free period of 2016, which were
collected approximately weekly and daily rates that were modeled by interpolating pCO2 through time

Figure 1. (a) Lake Mendota. Buoy (yellow) is deployed in the deepest part of the lake and is the location for the F‐pCO₂
and FC flux estimates. The red circles are a stratified selection of data points from the S‐pCO₂ method used in
Figure 5. Grid section (orange with a center circle) of EC tower location and 1‐km2 footprint. (b) 2016 average daily air
(blue) and surface water (black) temperatures. Spatial gradient concentration measurements were taken on the 2016
days of year indicated by the (25 orange) vertical lines. Dashed line (gray) at 20°C used to symbolize phenology. Summer
stratification is generally when surface waters were above 20°C, while spring and fall mixing occurred below this
water temperature.

10.1029/2019JG005623Journal of Geophysical Research: Biogeosciences

BALDOCCHI ET AL. 5 of 15



(see Loken, Crawford, et al., 2019 for details). Thus, these three data sources (S‐pCO2, F‐pCO2, and EC)
overlapped from June to December 2016. We collected FC flux rates seasonally starting in summer 2017
(28–29 July 2017, 28–29 October 2017, and 23–24 April 2018). In addition to temporal overlap, we must
also consider spatial coverage as sampling sites varied among methods. Both the FC‐ and F‐pCO2‐based
rates were determined at the center of the lake. The EC rates reflect the area surrounding the tower along
the lake's southern shoreline, and S‐pCO2 covered the entire lake surface (Figure 1).

Because of varying temporal resolution among data sets, we converted all data sets to daily averages, repre-
senting the coarsest temporal scale. Using the S‐pCO2 flux estimates, we generated two additional spatial
data sets. First, we randomly selected 10 stratified points from the entire lake to visualize spatial variability
across the lake (S‐pCO2 Stratified Points). Second, we subset the S‐pCO2 data set by only including flux esti-
mates from within the EC footprint (S‐pCO2 Tower Footprint) for a comparison between these two methods
that was not confounded by differences in sampling areas. Cumulative fluxes from 2016 were calculated
from F‐pCO2, S‐pCO2, and EC observations. For the entire study period, the S‐pCO2 data had 17% of data
functionally usable (26 sampling days over the growing season), F‐pCO2 had 86% data retained, and as pre-
viously mentioned, 26% of EC data were retained.

In addition to comparing similarity in seasonal pattern and magnitude, we also wanted to determine if the
different methods exhibited similar temporal variance. To do so, we calculated a fast Fourier power spec-
trum for EC, S‐pCO2, and F‐pCO2 gap‐filled daily net ecosystem exchange. Buoy winter fluxes were assumed
to be zero for the purpose of this analysis. Data analysis was done in Matlab R2019a and IDL 8.6.0.

3. Results
3.1. Patterns Among Methods

Footprint modeling revealed that the EC footprint originated primarily from open water, with very little
apparent input from the terrestrial peninsula (Figure 2a), with the distance of maximum contribution of
fluxes on average being 40 m, while the distance containing 80% of flux contribution was 410 m. Friction
velocity (u*) values were high due to winds crossing the peninsula, showing increased turbulence due to
the tree canopy (Figure 2b). While winds originated from all directions, wind speeds were lower over the
peninsula as well (Figure 2c). These factors combined to limit the footprint along the narrow range of wind
directions over the peninsula.

In all years, F‐pCO2 flux estimates followed a similar pattern of near zero or slightly negative fluxes denoting
CO2 movement from the atmosphere to the lake during spring and summer months before becoming
strongly positive (net CO2 efflux from the lake to the atmosphere) in the fall (Figures 3 and 4).
Daily‐averaged fluxes varied from −1.2 to 4.1 μm m−2 s−1 across all dates with a SD of 0.62. This same pat-
tern was also demonstrated by the S‐pCO₂method (Figures 3 and 4), and flux estimates were similar in mag-
nitude and direction as the F‐pCO2 results in 2016 (−0.39 to 1.6 μm m−2 s−1, SD of 0.36). The limited set of
FC deployments also followed the same general pattern of CO2 influx to the lake in spring, a weaker influx
during summer, and efflux in the fall (Figures 3b–3d). However, the range of FC flux values was wider than
for the two pCO2‐based methods (−22.5 to 18.1 μm m−2 s−1, CV of 2.51).

Table 1
Temporal Duration, Water/Gas Sampling Frequency, and Spatial Extent and Resolution for the Four Methods Used to Estimate CO2 Fluxes in Lake Mendota
Between 2016 and 2018, Along With Data Availability Information

Method Measurement period Sampling frequency Spatial extent Spatial resolution Citation

Fixed point concentration
gradient (F‐pCO2)

Open water seasons
(approx. April–October) 2016–2018

15 min Single point 10 cm3 Magnuson et al. (2019)

Spatial concentration
gradient (S‐pCO2)

March–December 2016 14 days Whole lake 200 m2 Loken, Stanley, et al. (2019)

Flux chamber
diffusion (FC)

Four measurement campaigns,
July 2017 to April 2018

5‐min sampling,
every 4 hr for 24 hr

Single point 0.28 m2 A. R. Desai (2019)

Eddy covariance (EC) June 2016 to August 2018 30 min 1 km2 1 km2 A. Desai (2018)
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Fluxes derived from the EC method were characterized by higher variation, often shifting from negative to
positive fluxes within a period of 1–3 days. Daily‐averaged fluxes varied from −22.5 to 18 μm m−2 s−1, and
the coefficient of variation was 3.13. There were no clear seasonal patterns in terms of magnitude, direction,
or variance although large CO2 uptakes were recorded prior to ice‐on in both 2016 and 2017, and negative
and smaller positive fluxes were more common during ice‐covered winter days.

3.2. Comparisons Among Methods

Differences among methods were clearly illustrated when flux data were expressed as cumulative flux
(Figure 5). All methods indicated that the lake was a slight CO2 sink over the summer; however, estimates
diverged substantially during fall. Both the S‐pCO2 and F‐pCO2methods consistently indicated CO2 flux into

Figure 2. Map of picnic point EC tower and contributing footprint showing the distance of maximum flux and distance
of 80% of the footprint (a). Average friction velocity (u*, b) and wind speed (c) measured from the eddy covariance
tower, shown in 10° bins.
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the lake all summer and substantial CO2 flux out of the lake during fall. At the end of the year, the
cumulative flux based on F‐pCO2 was 15% higher (43.4 vs. 37.7 gC m−2) than flux based on S‐pCO2, but
both followed similar temporal trends. In contrast, the EC method suggested that the lake fluctuated
between CO2 source and sink behavior with a high degree of variability on the weekly timescale. At the
end of summer (day ~268), the EC‐based cumulative flux was comparable to the boundary layer‐based
rates. However, during fall, once mixing begins, the EC cumulative flux became progressively more
negative, suggesting that the lake became a more substantial CO2 sink.

CO2 fluxes based on FC (flux chamber) agreed in magnitude and direction with the F‐pCO2 during spring,
summer, and fall (Figures 3b–3d). Comparing FC with EC, the two methods disagreed in flux magnitude
during summer and direction during fall.

The discrepancy betweenmethods could be caused by the temporal or spatial resolution of observations. The
daytime EC data more closely aligned with the F‐pCO₂ and S‐pCO₂ result during the summer. These meth-
ods agreed that the daytime flux of CO2 during the summer was consistently into the lake. During the fall,
the daytime EC fluxes remained negative, suggesting a consistent flux of CO2 into the lake. Spatially, the
S‐pCO₂ results within the EC footprint were consistent with the majority of the S‐pCO₂ data. This suggests
the lake was relatively homogeneous in regard to flux rates, with subset S‐pCO₂ locations showing ~20%
variability in accumulated fluxes at the end of the year. Temporal subsets of EC data show differences during
the summer with the full day EC data but ultimately small differences in accumulated fluxes at the end of the
year. Average EC error was 38.9%, with larger accumulated errors during the fall.

Directly comparing estimates using linear regression models further demonstrates the dissimilarity among
methods. The two concentration gradient methods, F‐pCO2 and S‐pCO2, agreed in magnitude and direction
(R2 = 0.58, p value < 0.001; Figure 6a). When flux estimates were categorized by season, data from the sum-
mer were tightly clustered, while data from the fall were more scattered. Comparing EC to S‐pCO2

(Figure 6b), there was poor agreement (R2 = 0.07; p = 0.03), and the regression model had a negative slope.
Thus, daily flux rates using EC disagreed in direction with the concentration‐based methods.

Figure 3. (a) Multi‐year time series of mean daily CO2 flux. F‐pCO₂, fixed gradient concentration method, recorded
from a stationary buoy (purple), S‐pCO₂, spatial gradient concentration method, recorded by a moving boat (orange), and
eddy covariance (green). Dates of flux chamber measurements shown as brown dotted vertical line. (b–d) Hourly
3‐day subsets from spring, summer, and fall, centered on when FC data were collected. F‐pCO₂ (purple) and EC (green)
being 30‐min data and FC (brown) are every 4 hr for a diel cycle.
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Fourier power spectral decomposition (Figure 7) of daily flux from EC,
F‐pCO2, and S‐pCO2 data all had similar patterns over the quantifiable
frequencies, with highest spectral power seen in EC time series, S‐pCO2,
and finally F‐pCO2. Seasonal and synoptic (3–10 days) variability domi-
nate all three, though the EC tower also shows a sub‐monthly (~20 day)
mode of variability not seen in the other two.

4. Discussion

Few studies have used multiple measurements of multi‐year lake‐atmo-
sphere fluxes to address systemic biases in methods. Using concurrent
multi‐year records from a single lake, we showed divergent behavior
among flux estimates, particularly during the fall turnover period.
EC‐based calculations had large and opposing sign CO2 flux estimates
compared to FC and concentration gradient‐based methods (F‐pCO2

and S‐pCO2). FC‐based methods agreed in direction and magnitude as
pCO2‐based methods; however, we lack sufficient FC coverage to interro-
gate the validity of this agreement. Together, these results suggest that at
least for this lake and these estimates, EC and concentration gradient
methods for estimating CO2 flux differ dramatically.

The spatial and buoy‐based concentration gradient estimates closely
agreed. Both estimates followed similar seasonal patterns, indicating

Figure 5. Cumulative summation of lake‐atmosphere CO2 fluxes. Flux
estimates using the S‐pCO₂ method (bold orange), from 10 random points
across the lake (orange), and within the tower footprint (orange dashed
line), EC (green), and EC only during day (8 a.m. to 12 p.m., green dashed
line) and the F‐pCO₂, method (purple), and fixed boundary layer
method during the day (8 a.m. to 12 p.m., purple dashed line).

Figure 4. Histograms of seasonal daily CO₂ gas fluxes. Spatial S‐pCO₂ fluxes (orange), fixed F‐pCO₂ fluxes (purple),
and EC fluxes (green) for spring 2016 to spring 2018 and three seasons of FC mean fluxes in 2016 (brown).

10.1029/2019JG005623Journal of Geophysical Research: Biogeosciences

BALDOCCHI ET AL. 9 of 15



that the lake was taking in CO2 from the atmosphere during the summer and emitted a substantial amount
during the fall. The buoy‐based data showed this seasonal phenology in three consecutive years (Reed
et al., 2018), aligning with other studies of productive lakes (Maberly, 1996) and the perception that
productive lakes behave as CO2 sinks during the summer (Balmer & Downing, 2011). The agreement
between the spatial and buoy‐based concentration data suggests low spatial heterogeneity in CO2 fluxes

across the surface of Lake Mendota. On average most of the lake surface
was within a 0.2 μmol m−2 s−1 range in CO2 flux (Loken, Crawford,
et al., 2019). Low spatial heterogeneity in CO2 concentration may reflect
the lake's high buffering capacity, which would dampen variation in
CO2 caused by spatial heterogeneity in metabolic processes (Loken,
Crawford, et al., 2019). Spatial variability in CO2 flux is small compared
to the seasonal variability from all our CO2 flux methods (Figures 3
and 5). However, spatial heterogeneity increased during fall turnover,
making the buoy location less representative of the whole lake during
this period (Loken, Crawford, et al., 2019). During periods of chaotic
water mixing, the representativeness of a single location decreases
(Erkkila et al., 2018). Thus, we suspect that the discrepancies among
methodologies during the summer season are not due to spatial
heterogeneity in gas exchange across the lake surface.

With a limited number of FC observations, FC data approximately
matched F‐pCO2 and S‐pCO2 during the spring and summer.
Comparing FC and F‐pCO2 methods, López Bellido et al. (2009) and
Vachon et al. (2010) found that FCs were systematically higher than
F‐pCO2, due to site‐ and time‐specific gas transfer velocities and chamber
effects on water turbulence. They used daily concentration measurements
and hence were not able to access daily patterns. Podgrajsek et al. (2014)

Figure 7. Fourier power spectral decomposition of daily EC (green),
F‐pCO₂ (purple), and S‐pCO₂ (orange) CO2 flux.

Figure 6. Daily mean S‐pCO fluxes versus F‐pCO₂ (a) and EC (b) and F‐pCO₂ versus EC (c). Summer data are plotted as
open circles, fall data as *. Linear regression line (dashed) and one‐to‐one line (dotted). Statistics (p and R2) for
linear regression included.
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found that FC and EC fluxes generally agreed, except when pCO2 varied within the EC footprint. This is
expanded on to show higher EC‐derived CO2 fluxes at night relative to F‐pCO2 and also that F‐pCO2 meth-
ods need to account for convection within the water column (Podgrajsek et al., 2016). Both of these studies
show that the high degree of spatial and temporal variability of water‐atmosphere fluxes and differences
between methods, in their case, could be explained by difference in measurement footprint areas. Erkkila
et al. (2018) found that F‐pCO2‐based estimates were lower than EC, while those based on FC were higher
than EC estimates. Together, there does not appear to be an emerging trend among results, other than EC
fluxes can be typically higher at night, hinting at possibility of convective gas transfer or some sort of decou-
pling of lake surface to EC measurement height.

k may be responsible for the discrepancy among flux estimates. The k model underlying our concentration
gradient‐based methods may have not adequately portrayed turbulence at the lake surface. Convective mix-
ing within the water column introduces error into F‐pCO2 methods (Podgrajsek et al., 2016). Our models
base k on wind speed, but the effects of individual wind events on lakes are highly variable. For example,
2 days with similar wind speed and direction likely does not have the identical patterns of surface turbulence
and our models lack resolution at fine spatial scales (Loken, Crawford, et al., 2019). While only using short
periods (1–3 days), Eugster et al. (2003) used EC and chambers from Alaska and Switzerland to show the
importance of convective mixing due to lake‐atmosphere fluxes, with significant differences between meth-
ods during periods of stratification and with deep, penetrative convection. Ultimately, concentration
gradient‐based estimates rely on measurements of wind and/or water density collected at a single location
to represent k over the whole lake, adding uncertainty to gas efflux estimates. Here, both concentration gra-
dient fluxes depend on the same wind speed measurement, removing true independence between the two.

Variations in lake mixing depth and potential periods of stratification could explain differences. Here, with a
relatively large and windy lake, this seems unlikely. During periods of higher stratification, methods typi-
cally agree. Only during the fall, when there is full‐lake mixing do we see the large differences between
the EC and gradient methods. So while this could be one source of error, it would appear to be limited in
absolute size.

Another possible source of uncertainty is rapid buffering in the upper layer of the water column. Any poten-
tial buffering would be unlikely to persist over time, and that bias should be predictable based onmixed (e.g.,
wind speed) or alkalinity lake conditions. The S‐pCO2 data are sampled close to the surface, where buffering
would be limited, and with the good agreement between S‐pCO2 and F‐pCO2 methods, the possibility is
unlikely.

Buoyancy‐driven turbulence is more important than wind‐driven turbulence in smaller lakes (Read
et al., 2012) and at night (Podgrajsek et al., 2014). While both wind‐driven and convective turbulence play
roles in gas exchange in Lake Mendota, wind shear is likely a bigger factor in this present study due to
the size of the lake. With a large fetch and relatively steady winds, we do not expect convection to be a major
driver of gas exchange in LakeMendota. Comparing k among lakes, smaller lakes have a bigger contribution
from convective mixing, while for larger lakes Read et al. (2012) argue that wind is more important.
However, the influence of convective mixing may be more important near shore, at night, and during fall
turnover. All three factors may provide some clues why the EC estimate diverges so dramatically from the
other methods. The EC tower is located near two relatively shallow bays, where thermal convection may
cause an increase in k and flux at night. Further, these bays may have irregular currents and breaking waves,
which may elicit further enhancement of flux rates within the tower footprint. How these periods align with
CO2 saturation would determine the actual flux rates in the footprint. Modeling water currents and convec-
tive mixing within the tower footprint is challenging and would require a high‐resolution whole lake
three‐dimensional model. We currently lack data at fine‐scale resolution in lakes to fully model k in lakes,
which remains an open challenge. While the EC data seem like a promising tool to capture this fine‐scale
variation in gas exchange, additional methodology developments are needed.

With an increase in the availability of oxygen data and the derived oxygen flux estimates, potential errors in
carbon fluxmeasurements can be highlighted by dissolved oxygen (DO). Reed et al. (2018) showed DO fluxes
to be more variable than EC CO2 fluxes but largely agreeing over the summer and fall seasons. Using EC
measured CO2 fluxes and DO data, Morin et al. (2018) foundmicrobial activity and DO to bemore connected
to CO2 outgassing, relative to net CO2 exchange. Timescales for these works are often large, and more
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research on connecting DO and EC fluxes in smaller timescales could show additional light on net CO2

exchange.

Another possible explanation is potential biases in EC measurements during periods of low turbulence,
complex turbulence, or advection in the atmosphere. Morin et al. (2018) noted in a model study the role
of tower height and lake‐land circulations in driving eddy transport that would bias traditional flux calcu-
lation based on half‐hourly Reynold's decomposition. As the surface cools, enhanced low‐level atmospheric
stability may suppress turbulence, leading to larger than typical storage or advective contribution to surface
fluxes (Lee et al., 2004). As noted by Xu et al. (2019), below‐sensor storage flux calculation can be critical to
correcting tower‐measured flux to represent surface flux, especially periods around sunrise and sunset.
However, while we lack storage flux observations at this site or models of local circulation and turbulence
on the peninsula, there is no evidence in the data of a preferential circulation during fall or other periods of
stable conditions. Further work on data quality filtering of EC is necessary to build confidence in its use
over lakes.

ECmay have other benefits, even when subject to potential systematic bias. Here, when examining the spec-
tral density of themultiple observations, the EC observations show a 20‐ to 30‐day frequency not observed by
the other methods, including the similarly high‐frequency buoy measurements. Eugster et al. (2003) also
conclude that EC methods should be used in order to collect process‐scale data from the full season.
Similarly, Podgrajsek et al. (2016) suggest that the high temporal resolution of EC is crucial to resolve diel
changes in flux, combined with measurements within the water column with high (30 min) frequency.
Reed et al. (2018) used a different EC observation data set on Lake Mendota, not used here due to a large
amount of gaps from that tower's location during the study period, which showed high degrees of coherence
between CO2 flux and air temperature at a similar sub‐monthly (20–30 days) timescale. An emerging trend
in aquatic flux literature explores this monthly timescale of variation where Liu et al. (2011) and Liu
et al. (2016) connect synoptic weather patterns to mixing, and Shao et al. (2015) and Ouyang et al. (2017)
show monthly correlation between CO₂ flux and chlorophyll and algal blooms.

There are ways to capture this 20‐ to 30‐day timescale without high temporal coverage. Previously,
Natchimuthu et al. (2016) used a multi‐year FC data set and then sub‐sampling the observations following
the methods of Wik et al. (2016). They concluded that only ≥8 measurement days, distributed over multiple
seasons, and high enough spatial coverage (≥8 locations during summer, ≥5 during spring and fall) are key
for representative (± 20%) flux estimates at the annual timescale. However, they note that the flux estimates
would be biased if observations excluded episodic events such as lake circulation patterns, diel or seasonal
variation, or high flux areas from a lake. There is a mismatch between what the EC literature is concluding
about needing high temporal resolution observations and the FC literature about only needing ≥8 days for
CO₂ flux estimates (Natchimuthu et al., 2016). We argue that while it may be possible to estimate annual
fluxes from a small number of sample days, functionally, we think it would be difficult to observe only 8 days
of FC fluxes and have a high degree of confidence that we have captured the temporal processes needed.
Ultimately, we do judge the flux signal found at the 20‐ to 30‐day frequency as important and the best
way to capture appears to be EC methods.

5. Conclusions

While major advances have been made, quantifying lake‐atmosphere fluxes from individual lakes over mul-
tiple spatial and temporal scales remains a challenge. Lakes are an important factor in carbon cycling at both
global and local scales. Accurately accounting for temporally and spatially heterogeneity in the flux of car-
bon across lake surfaces is vital for incorporation and constraining process‐based predictions within lake
models.

Overall, there is a need for increased spatiotemporal resolution in studies of CO2 exchange between lakes
and the atmosphere. Multi‐year temporal data collection is essential to capture, diel, monthly, and seaso-
nal patterns. Spatially, there is still an open question as to which method is capturing flux magnitude cor-
rectly, as each method integrates different processes into the observation. This is done most explicitly
when choosing between multiple k models but is also implicated when screening EC data. There is no
emerging trend in magnitude or direction between methods, and additional work is needed to bridge spa-
tiotemporal scales.
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CO2 concentrations used in the spatial (data set 337, https://doi.org/10.6073/pasta/fe9c5437f67254f521bf5-
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52d0).
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