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Eddy-covariance  measurements  are  widely  used  to  develop  and  test  parameterizations  of land-
atmosphere  interactions  in  earth  system  models.  However,  a fundamental  challenge  for  model-data
comparisons  lies  in  the scale  mismatch  between  the  eddy-covariance  observations  with  small
(10−1–101 km2) and  temporally  varying  flux footprint,  and  the  continuous  regional-scale  (102–104 km2)
gridded  predictions  made  in  simulations.  Here,  a new  approach  was developed  to  project  turbulent  flux
maps at  regional  scale  and  hourly  temporal  resolution  using  environmental  response  functions  (ERFs).
This is  based  on  an  approach  employed  in airborne  flux  observations,  and  relates  turbulent  flux  observa-
tions  to  meteorological  forcings  and surface  properties  across  the flux  footprint.  In  this  study,  the  fluxes
of sensible  heat,  latent  heat and  CO2 integrated  over  a 20 ×  20 km2 target  domain  differed  substantially
from  the  tower  observations  in  their  expected  value  (+27%,  −9%, and  −17%)  and  spatio-temporal  varia-
tion  (−22%,  −21%, and  −3%, repsectively)  ERF  systematic  uncertainties  are  bound  within  −11%,  −1.5%  and

+16%,  respectively,  indicating  that tower  location  bias  might  be even  more  pronounced  for  heat  and  CO2

fluxes  than  currently  detectable.  The  ERF-projected  fluxes  showed  general  agreement  with  independent
observations  at a nearby  tower  location.  Lastly,  advantages  and limitations  of  ERF  compared  to other
scaling  approaches  are  discussed,  and  pathways  for  improving  model-data  synthesis  utilizing  the  ERF
scaling  method  are  pointed  out.

©  2016  Elsevier  B.V.  All  rights  reserved.
. Introduction

Earth system models (ESMs) have been developed and are
idely used to understand impacts of global climate change (Le
uéré et al., 2013a,b, 2014; Dufresne et al., 2013; Collins et al.,
011). However, uncertainty in the Earth’s surface energy budget
nd terrestrial carbon cycle are found to be a dominant constraint
or robust climate projections. For example, the uncertainty in ter-
estrial CO2 fluxes can lead to variations of a few hundred ppm in
tmospheric CO2 concentration and several degrees in projected
urface temperature (Arora et al., 2013). ESMs benefit from evalu-
tion against direct continuous ecosystem observations of sensible

eat, latent heat, water vapor and CO2 exchange (Schwalm et al.,
010; Xiao et al., 2012; Williams et al., 2009). However, compar-

ng observations to models requires careful consideration of the

∗ Corresponding author at: Department of Atmospheric and Oceanic Sciences,
W-Madison, 1225W Dayton St, Madison, WI  53706, United States.

E-mail address: kxu35@wisc.edu (K. Xu).

ttp://dx.doi.org/10.1016/j.agrformet.2016.07.019
168-1923/© 2016 Elsevier B.V. All rights reserved.
observation uncertainty and representativeness of observations for
the model grid scale. Here, we test a specific approach for improv-
ing representativeness and estimating corresponding uncertainty
of eddy-covariance (EC) flux tower observations of carbon, water,
and heat fluxes.

Eddy-covariance observations of these fluxes have been increas-
ingly used to constrain model uncertainty, because they, in theory,
provide reliable spatially distributed and temporally continuous
observations of surface-atmosphere exchanges (Bonan et al., 2011;
Baldocchi et al., 2001). Parameter sensitivities in photosynthetic
rates, respiration allocation, and temperature sensitivity of decom-
position in models can, in principle, be constrained by flux tower
observations (Dietze et al., 2014), especially when autocorrelation
of time series are taken into account (Desai et al., 2010; Desai,
2014). Recently, large model-to-tower syntheses, as part of the
North American Carbon Program, have found limitations in mod-

eled spring phenology (Richardson et al., 2012), light use efficiency
(Schaefer et al., 2012), and drought sensitivity (Schwalm et al.,
2010).

dx.doi.org/10.1016/j.agrformet.2016.07.019
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2016.07.019&domain=pdf
mailto:kxu35@wisc.edu
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A fundamental challenge for this kind of model-data comparison
s the scale mismatch between a small-scale, spatially non-uniform
C flux footprint and the typically larger-scale gridded, continuous
redictions made in simulations. The flux measurement footprint
ypically represents a small fraction (e.g., <10%) of the model grid
ell in most ESMs, and the location of this fraction changes with
ime. Any transient bias that occurs from changes in sampled char-
cteristics with time can bias model-data comparison. For example,
espiration flux chambers demonstrate considerable spatial vari-
bility (Jacinthe and Lal, 2006). Recent analysis has shown that
onsideration of footprint for scaling chamber emissions can sig-
ificantly improve comparison of EC to chamber-scaled fluxes
Budishchev et al., 2014). For EC fluxes, many sites have differing
referred wind magnitude and directions at daytime versus night-
ime, making flux observations at daily scale a mix  of diurnal cycle
nd change of flux footprint. Methods to account for this transient
ootprint bias could aid in removing a potentially large source of
ystematic uncertainty for EC flux towers.

Two main scaling approaches, process-based and data-driven
pproaches, have been utilized for scaling tower-observed surface-
tmosphere exchange in space and time, each subject to specific
imitations. Purely process-based scaling (Wang et al., 2006; Desai
t al., 2008, 2010; Xiao et al., 2011) relies on prescribed mechanistic
elationships, oftentimes based on laboratory calibrations and far-
eaching assumptions, such as functional steady-state and closure
f energy or water balances. Purely data-driven scaling (Xiao et al.,
014; Hutjes et al., 2010) minimizes the number of assumptions
mployed by inferring relationships among observations directly
rom the available data, but are limited in model robustness and
redictive performance, in particular for discrete predictions with
ubstantial intra-class variability (Prueger et al., 2012; Wang et al.,
006). Among many data-driven methods, machine-learning tech-
iques, such as artificial neutral network (Sulkava et al., 2011;
apale and Valentini, 2003) and model tree ensemble (Jung et al.,
010), have been used to regress atmospheric fluxes against sur-
ace properties. However, due to a lack of sample size, the temporal
esolution of these approaches is typically aggregated to daily to

onthly timescales, and cannot provide information on the diur-
al cycle. Further consideration of transient footprint bias is usually
eglected in either case.

The environmental response function (ERF) approach is a
caling algorithm that combines data-driven and process-based
pproaches to the sub-hourly timescale, and provides temporally
nd spatially resolved flux grids (Metzger et al., 2013). The principle
nderlying ERF is to extract the relationship between observed bio-
hysical drivers and ecological responses using machine learning,
ith explicit consideration of sub-hourly flux footprint variation.

rovided sufficiently good calibration, the resulting ERF in conjunc-
ion with spatio-temporally explicit grids of biophysical surface
roperties can be used for upscaling the surface-atmosphere
xchange into larger target areas. Thus far, the ERF approach has
een developed with and utilized for aircraft-based EC measure-
ents in the spatial domain (Metzger et al., 2013).

The present study develops and tests an ERF approach for tower-
ased flux observations, based on the measurements from the
meriFlux Park Falls WLEF very tall tower in North Wisconsin, USA
uring July and August 2011. We  ask:

(i) Is it possible to map, based on turbulent fluxes from a very tall
tower, spatio-temporally explicit flux fields covering a 20 ×
20 km2 regional domain with acceptable uncertainty (<20%,

corresponding to a frequently observed energy imbalance
(Foken 2008; Stoy et al., 2013))?

(ii) How do ERF-scaled fluxes compare to alternative approaches,
e.g. process-based and data-driven upscaling methods, and
eteorology 232 (2017) 10–22 11

what are the prospects of using ERF-scaled fluxes for improving
ESMs?

(iii) What are the limitations and where is potential for improve-
ment of the current ERF algorithm?

In this paper, we  first introduce the climate, biophysical prop-
erties in the study area and footprint composition of WLEF (Section
2.1). The methodology of ERF scaling approach and associated
uncertainty algorithm are described in Section 2.2 and Section 2.3.
We present the extracted ERFs, scaled flux grids and the associ-
ated uncertainty budget in Sections 3.1, 3.2 and 3.3, separately.
A comparison of ERF scaling approach and its outcomes with in-
situ measurements and other scaling approaches is performed in
Section 3.4. In Section 3.5, we give a prospect for model-data com-
parison improvement with ERF scaling approach. Lastly, the current
limitations of ERF scaling approach and potential improvements are
discussed in Section 3.6, and conclusions in Section 4.

2. Materials and methods

2.1. Study area and data acquisition

The 447-m tall WLEF television tower (45.9◦N, 90.3◦W)  is
located in the Mississippi River Basin in the Park Falls Ranger Dis-
trict of the Chequamegon-Nicolet National Forest, Wisconsin, USA
(Fig. 1). Small elevation changes, on the order of 20 m,  create a
mixed landscape of wetlands and upland forests. Previous studies
(Desai et al., 2008, 2015) have indicated that the footprint cli-
matology samples a landscape that is representative of much of
the Upper Midwest U.S. forested region, and the proportions of
wetland and forest sampled are representative of the average wet-
land/forest coverage in the entire National Forest. The surrounding
forest canopy has approximately 70% deciduous and 30% conifer-
ous trees, and a mean canopy height of 20 m.  The whole region was
heavily logged around the beginning of the 20th century, similar to
many forests in the north central United States. Soils are sandy loam
and are mostly glacial outwash deposits. The site has an interior
continental climate with cold winters and warm summers.

Observations used in this study include tower-measured meteo-
rological state variables and turbulent exchanges, as well as surface
properties from satellite remote sensing. Tower-based 10 Hz obser-
vations were chosen from 27th July to 20th August 2011 for WLEF
at 30 m and 122 m levels. For turbulent sensible heat flux (H), this
study utilized 30 m and 122 m EC measurements, but for latent heat
(LE) and CO2 flux only the 122 m data were used due to poor qual-
ity of measurements at the lower level. The flux footprint fetch
was 0.1–0.8 km and 2–5 km for 30 and 122 m height measurement
at 90% cumulative level (Fig. 2a), respectively. During the study
period, the dominant land cover types within the flux footprint of
122 m measurement level were woody wetlands (44%), deciduous
forest (25%), and mixed forest (9%). Other land cover types (e.g.
grassland, cropland) contributed less than 5%.

Dry mole fraction of CO2 and water vapor were measured by
a closed-path infrared gas analyzer (LI-COR, Inc. Lincoln, USA, LI-
6262). Fast response wind speed and air temperature were derived
from a collocated sonic anemometer (Applied Technogies., Inc.
Seattle, USA, ATI Type K). Reference air temperature and rela-
tive humidity were also measured (Vaisala, Inc. Louisville, USA,
HMP45C). Additional measurements at the surface included the
barometric air pressure (Vaisala, Inc. Louisville, USA, PT101B) and
the incoming photosynthetic active radiation (PAR) (LI-COR, Inc.

Lincoln, USA, LI-190 Quantum Sensor).

Land surface temperature (LST) and enhanced vegetation index
(EVI) were chosen as the biophysical surface drivers to approxi-
mate the spatial variation in the target domain following Metzger
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Fig. 1. Land cover map  (National Land Cover Database 2011) of Park Fall tower and Willow Creek tower sites ( ) and 20 × 20 km2 target domain (within red dashed line).
The  land cover data were obtained from National Land Cover Database 2011 (NLCD 2011) at spatial resolution of 30 m. NLCD 2011 is based primarily on a decision-tree
classification of Landsat satellite data (Homer et al., 2015). Map of Upper Midwest (USA) is in the up left panel. (For interpretation of the references to colour in this figure
legend,  the reader is referred to the web version of this article.)
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ig. 2. Footprint climatology (30%, 60% and 90%, white contour lines) for 122 m le
0  × 20 km2 target domain surrounding the tower, which is indicated with the c
ighttime (17:00–9:00 CST).
t al. (2013). These spatially explicit environmental drivers were
cquired from Moderate Resolution Imaging Spectroradiometer
MODIS) data products. 250 m 16-day interval MOD13Q1 (V005)
VI and 1000 m 8-day daytime MYD11A2 (V005) daytime LST were
easurements superimposed over MODIS enhanced vegetation index (EVI) within
l crosshairs. (a) entire study time period; (b) daytime (9:00–17:00 CST), and (c)
used. Atmospheric boundary layer (ABL) height, zi, was  obtained
by linear interpolation into one-minute interval from the North
American Regional Reanalysis (NARR) 3-hourly data produced by
National Oceanic and Atmospheric Administration (NOAA).
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An independent validation was established using EC observa-
ions over the same study period from a nearby Ameriflux tower
ite, Willow Creek (WCr) at the 30 m level. Willow Creek is located
1 km southeast to WLEF-TV site in the upland mature decidu-
us forests of the Chequamegon-Nicolet National Forest (Fig. 1).
he surrounding stand is relatively homogeneous within 0.6 km of
he tower. Common geomorphological features of the upland areas
nclude southwest-trending drumlins, slightly elevated ground

oraines and poorly drained depressions. These secondary stands
re conversions from the old-growth hemlock-hardwood forests
o sugar maple-aspen-yellow birch forests. Data and associated
ncertainty were calculated using the methodology in Cook et al.,
2004). The uncertainty of WCr  observations was  calculated as the
tandard deviation of the measured fluxes measured for a sliding
indow of +/−  5 days and +/−  1 h of the current timestamp, when

he meteorological conditions must also be sufficiently similar. In
rder to detect the systematic difference between WCr-measured
nd ERF-projected fluxes, Deming regression was  used (Ripley and
hompson, 1987), to account for random uncertainty of both obser-
ations and projections by assigning a weight to each data inversely
roportional to its error variance.

.2. Environmental response functions (ERF) approach

We  adapted the ERF scaling procedure for tower EC measure-
ents based on the airborne ERF scaling approach described in
etzger et al. (2013). The underlying principle of ERF is to utilize

igh-frequency (minute to minute) footprint variation to extract
he relationship between high-frequency flux response and appro-
riate spatial or temporal drivers, e.g. meteorological forcings and
urface ecological properties, and then utilize the extracted rela-
ionship for spatio-temporal mapping to the whole domain, where
ossible. Consider the metaphor of the Blind Man  and the Elephant:
he tower (“the blind man”) can describe only one part of “the ele-
hant” of ecosystem fluxes at a time, namely those fluxes that arise

rom the flux footprint influence area. If the “elephant” were sta-
ionary, then over time, the time-varying footprint would allow the
ower to map  fluxes without any scaling approach needed. How-
ver, in our case the “elephant” moves and changes its behavior,
.g. with the diurnal cycle. Thus, ERF is a data-assimilation approach
hat attempts to recover the whole picture of “the moving elephant”
sing snapshots of varying parts of “the elephant” over space and
ime.

Key processing steps in ERF included: i) quantifying wavelet-
ecomposed turbulent flux response and footprint-weighted
nvironmental drivers of each flux observation (Sections 2.2.2,
.2.3, Fig. 4); ii) extracting ERFs between flux responses and drivers
sing machine learning (Section 2.2.4, Figs. 5 and 6); iii) projecting
urbulent exchange grids over the target area based on extracted
RFs and key drivers in each grid cell (Section 2.2.4, Fig. 7). Our rou-
ines were developed in GNU R version 3.1 (R Development Core
eam, 2012). Algorithm code and examples are being developed for

 public repository.
Initially, we determined appropriate time and space-scales for

ggregation (Section 2.2.1). Next, high-rate (one-minute) turbulent
xchange was  calculated using wavelet discretization for tower-
ased measurements permitting inclusion of transporting scale up
o 40 min  (Section 2.2.2). The corresponding environmental drivers
ncluded two types: temporally explicit meteorological variables
nd spatially resolved land surface properties (Section 2.2.3). Lastly,
RFs was extracted and used for projection in Section 2.2.4.
.2.1. Scale considerations
We determined a suitable averaging window for meteorologi-

al variables and fluxes as a trade-off between random error and
emporal resolution. On the one hand, the random error of a flux
eteorology 232 (2017) 10–22 13

is inversely proportional to the square root of the averaging time
period (e.g. Lenschow and Stankov, 1986). On the other hand, a
high temporal resolution ensures that the spatio-temporal variabil-
ity of drivers and responses is captured as complete as possible
in the ERF training dataset (Fig. 3 ). For this purpose we esti-
mated vertical and horizontal transit times: Based on convective
velocity, the transit times for a surface emission to reach a mea-
surement level are 8.5 ± 7.5 s and 83 ± 74 s for the 30-m and 122-m
measurement levels, respectively. Next, based on column-average
horizontal velocity, it took 187 ± 40 s for an emission from a patch
the size of one characteristic surface length scale (411 ± 88m, e.g.
Strunin and Hiyama, 2004) to flow through the tower. With a much
longer averaging window, the tendency increases for an observed
flux to be a blended signal from different surface patches. On this
basis, an averaging window of five minutes was  found to be a
feasible compromise between random error (Table 1) and spatio-
temporal resolution.

2.2.2. Wavelet discretized turbulent exchange
Before wavelet discretization and meteorological state variable

calculation, several preprocessing steps were performed building
on Metzger et al. (2013): (i) Thresholding for physically unfeasi-
ble values and de-spiking after Brock (1986) and Starkenburg et al.
(2015); (ii) Planar fit rotation (Wilczak et al., 2001) of the 10 Hz
wind data; (iii) Time delay correction using maximum correlation;
(iv) Point-by-point conversion of sonic temperature to air temper-
ature based on Schotanus et al. (1983).

With consideration of transporting scales up to 40 min, EC data
were processed to obtain fluxes at a one-minute interval follow-
ing the approach of Metzger et al. (2013) which used a continuous
wavelet transform (Torrence and Compo, 1998). In the turbulent
flux calculation, flux contributions beyond the cone of influence
was considered, because only by this, the difference between stan-
dard EC method and wavelet cross-scalogram was within a few
percent and avoided biasing the results. Thereafter, a correction
for high-frequency spectral loss following Ammann et al. (2006)
was directly applied to the wavelet cross-scalograms, respectively.
In praxis, according to Section 2.2.1, time series of flux observa-
tions were integrated over the cross-scalograms over a five-minute
window and the window was  moved one-minute forward in time
for each observation. The instrument detection limit for fluxes
is estimated after Billesbach (2011) in wavelet cross-scalogram,
and random and systematic statistical errors of turbulent sampling
were calculated after Lenschow and Stankov (1986) and Lenschow
et al. (1994).

A list of criteria were implemented to select reliable flux obser-
vations for subsequent steps: i) Stationarity and integral turbulence
characteristic tests helped avoid observations that do not fulfill fun-
damental assumptions on EC (Foken and Nappo, 2008, Table 4.2,
usability for long-term measurements when test result within 250%
of model); ii) To omit potential decoupling and periods of large
below-sensor storage fluxes, u∗ > 0.2ms−1 was  used to select H at
30 m and 122 m levels, H > −20 W m−2 at 30 m was used to select
fluxes at 122 m,  and w∗ > 0.8ms−1 was  used to select LE and CO2
flux to avoid bias from gas exchange with large storage fluxes, since
w* has a negative relationship with storage flux in this study. In
result, qualifying sensible heat flux observations spanned the entire
diurnal cycle, mainly because data from both, 30-m and 122-m level
were available. For LE and CO2, only daytime data remained.

2.2.3. Land surface and meteorological state variables
Meteorological variables measured by towers provided high
temporal resolution, but are of limited spatial representativeness.
On the other hand, remote sensing data products could provide spa-
tially resolved land surface properties, but are of limited temporal
resolution. Here, we combined these two  complementing types of
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Fig. 3. Flux footprint (30%, 60% and 90%, contour lines) for 122 m level measurements over MODIS-land surface temperature (LST) on July 27th, 2011, (a) 18:01–18:06, (b)
18:39–18:44, (c) 18:54–18:59 CST.

Fig. 4. Time series of turbulent sensible heat (H), latent heat (LE), and CO2 fluxes on July 27th, 2011, 18:00–19:00 CST. Colors and grey bars indicate the footprint-weighted
EVI  and 1 sigma random uncertainty of each flux observation, respectively. Black horizontal lines show the hourly-average fluxes calculated from traditional eddy-covariance
method. Positive CO2 fluxes imply carbon exchange from the surface to the atmosphere (and vice versa) in this paper.

Table 1
Median systematic and random uncertainty terms (in parenthesis) of a single flux observation (for (i) and (ii)) or of a single projected cell (for (iii), (iv), (v) and (vi)).

Source H LE CO2 flux

(i) Instrumentation and hardware 0.9 (1.2) W m−2 1.4 (1.8) W m−2 0.2 (0.3) umol m−2 s−1

(ii) Turbulent sampling 1% (45%) 1% (78%) 0.4% (52%)
(iii)  ERF state variables 1% (49%) 0.2% (57%) 0.1% (52%)

d
o

o
t
q
(

i

(iv)  Spatio-temporal analysis 0.2% (46%) 

(v)  ERF training 0.06% (4%) 

(vi)  ERF projection −11% (130%) 

rivers, and used them to explain the temporal and spatial variation
f turbulent exchange response.

After preprocessing steps mentioned in Section 2.2.2, mete-
rological variables were calculated by averaging a centered
ime-frequency window of five minutes in time. For each subse-
uent observation, the window moves one minute forward in time

i.e. four minutes overlap with the preceding observation).

All remote sensing data were mosaicked, reprojected and cut
nto the 20 km × 20 km predefined target area centered around the
−0.4% (58%) −4% (71%)
0.2% (2%) 0.1% (2%)
−1.5% (72%) 16% (51%)

tower. EVI and LST at 100 m target resolution were obtained by
bilinear interpolation. EVI and LST were temporally downscaled
to one-hour interval by linear interpolation. Surface properties are
more responsible for spatial variability of the response surface in
the machine learning algorithm, while meteorological drivers, e.g.
solar azimuth, are more responsible for the diurnal cycle and tem-

poral variability of the response. Also considering the long temporal
repeat interval (8/16 day) of remotely-sensed surface properties,
we chose to use linear interpolation so as to avoid adding artifi-
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ial diurnal cycle of surface properties. The uncertainty generated
rom the unaccounted spatial and temporal variation within the
easured spatial and temporal resolution (e.g. 1 km and 8 day) was
ddressed in the uncertainty budget (Section 2.3, Table 1(iii)).

For each flux observation, the corresponding land surface
rivers were quantified by convolving the spatially-explicit driver

ig. 5. Equidistant response plots are shown for sensible heat (H, panel a) and CO2 flux (p
ux  signal (partial R2 in braces). The black lines are the fitted integrated response over t
locally  weighted polynomial regression) are shown in red bold lines. The equidistant res
f  training data shown as inward tickmarks on the lower x-axis. Training data percenti
ubplot  and (N), (S) under cos(azi) subplot indicate western, eastern, northern and south
ubplot of zm/zi in (a) show the partial response of H against zm/zi integrated separately o
nterpretation of the references to colour in this figure legend, the reader is referred to th
eteorology 232 (2017) 10–22 15

(e.g. LST) with a footprint weight matrix. For this purpose we  used
the footprint parameterization of Kljun et al. (2004) in combina-

tion with a crosswind distribution (Metzger et al., 2012). The inputs
of the resulting parameterization included standard deviation (sd)
of the cross-wind �v, sd of the vertical wind �w , u∗, roughness
length z0, measurement height zm, of which, �v �w , u∗ were directly

anel b). The drivers are presented in decreasing order of explained variation in the
he range of one individual driver. Smoothed representations of the fitted function
ponse plots are generated using uniformly distributed percentiles within the range
les are shown as inward tickmarks on the upper abscissa. (W), (E) under sin(azi)
ern direction of the solar azimuth, respectively. The green and blue curves in the
ver daytime (9:00–17:00 CST) and nighttime (17:00–09:00 CST), respectively. (For
e web version of this article.)
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btained from the tower. z0 was calculated after Businger et al.
1971) in the form of Högström (1988) with displacement height
et as 13 m,  which is 2/3 of the mean tree height around the site.

.2.4. Environmental response function extraction and projection
ERFs were generated by machine learning with observed tur-

ulent exchange (response) and footprint-weighted biophysical
urface properties and meteorological states (drivers). Building on
etzger et al. (2013), we used boosted regression trees as machine

earning technique, which is based on categorization and regres-
ion. It produces a composite model through combining many local
odels that are regressed at dividing points of the categoriza-

ion (Zhou, 2012). The extracted ERFs were then summarized in
quidistant response-sensitivity plots (Cacuci, 2003), which show
he driver-response relationships stored in the ERF (Fig. 5). In each
lot, the ERF was evaluated with random combinations of drivers
rawn from uniform distributions, and the response was aggre-
ated for each driver individually. The contribution of each driver
o explained variance was determined from the reduction of R2

hen removing one driver at a time.
In terms of driver selection, solar azimuth angle, relative mea-

urement height within boundary layer, temperature and water
apor gradients between surface and atmosphere were impor-
ant environmental effects controlling the observed fluxes. To
xplain the diurnal cycle and solar radiation, we included cos(azi)
nd sin(azi), where azi denotes the solar azimuth angle. cos(azi)
escribes how high the sun is when it is up. Besides, during night-
ime, cos(azi) changes its magnitude to indicate midnight or near
unset/sunrise, while solar zenith angle always remains 0. sin(azi)
an distinguish mornings (<180◦) and afternoons (>180◦), when
olar zenith angle cannot. The combination of zenith angle and
zimuth angle would be useful to express seasonal dynamics over
onger periods. Here, the study period is too short to consider
uch seasonal dynamics, and the zenith angle is not included as a
river. Therefore, for our purposes, solar azimuth angle, �, can bet-
er explain diurnal variability than solar zenith angle, and hence
elp de-convolve the flux temporal variation from flux spatial vari-
tion better. Considering the relative measurement height in the
BL, zm/zi, not only combines EC measurements from different
eights zm, but also to explicitly account for vertical flux divergence
uring ERF projection. Lastly, the vertical gradients of temperature
nd water vapor permit the ERF to explain corresponding surface-
tmosphere exchanges as flux-gradient relationships. Here, air
otential temperature (� in K) and mole fraction of water vapor

n dry air (q in mmolmol−1) were used as meteorological drivers, as
ell as LST and EVI as corresponding land surface drivers. While

VI represents the green vegetation fraction, in the absence of
 suitable surface moisture product it was chosen as proxy for
urface-available moisture in a transpiration-dominated environ-
ent.

The resulting ERF acted as a transfer function and was  applied
o project turbulent exchange to each 100 m grid cell across the
0 × 20 km2 target domain at minutely interval. The projection was
t 30 m height for H and 122 m for LE and CO2 flux so as to be com-
ared with 30 m H observations at both WLEF, WCr  tower sites and
22 m WLEF LE and CO2 observations. During projection, we used
he median value during the time interval for the meteorological
rivers, assuming that the atmospheric state above the target area
as spatially homogeneous. The uncertainty resulting from this

ssumption was quantified in the uncertainty budget (Section 2.3,
able 1(iii)). The spatio-temporally resolved grids were used for LST
nd EVI.
When summarized over the study period, because of the uneven
istribution of qualified observations and projections (more obser-
ations and projections during daytime than nighttime), the
onthly averaged observations and projections were calculated as
eteorology 232 (2017) 10–22

mean of monthly-mean diurnal cycle, in the cases of latent heat and
CO2 flux excluding nighttime data.

2.3. Uncertainty budget

Throughout the study we  use median and median absolute
deviation (MAD) for quantifying systematic and random uncer-
tainty, respectively (Croux and Rousseeuw, 1992; Rousseeuw and
Verboven, 2002).

To evaluate the significance of the presented approach, we esti-
mated the uncertainty budget throughout the procedure, including
the uncertainty from: (i) instrument detection limit, (ii) system-
atic and random uncertainty for turbulent sampling, (iii) ERF state
variable uncertainty, (iv) spatio-temporal analysis, (v) ERF training
uncertainty, and (vi) ERF projection uncertainty. Of those, (i) and
(ii) have been introduced in Section 2.2.2. To calculate (iii)–(v) we
used the routine of Metzger et al. (2013), in short: (iii) quantified
the uncertainty generating from unaccounted spatial and tempo-
ral variation of state variables, as we  assumed tower-observed
� and q were spatially homogeneous, and the spatially resolved
drivers were temporally linear continuous in flux map projection.
(iv) quantified the uncertainty in the ERF scaling approach resulting
from footprint modeling and implicit assumption of linear mix-
ing in machine learning. (v) used random cross-validation (CV) to
assess how well ERF projection performed when projecting within
the tower footprint originally used in model training. (vi) consisted
of an updated approach using stratified CV, in order to evaluate
how well ERF performs when projecting to areas the tower foot-
print had never covered during the training period. This term was
essentially important, as the ultimate purpose of the ERF approach
was to project to a consistent target area that the tower footprint
cannot sample at all times. We divided the target area into a north-
eastern, southeastern, southwestern and northwestern quadrant.
On this basis, four incomplete training datasets were created, each
of which omitting all data from one quadrant by wind direction. For
each incomplete training dataset, (i) the ERF was trained with data
from three quadrants; (ii) the resulting ERFs along with the state
variables from the omitted quadrant were used for projection; (iii)
The resulting projection was  compared to the reference projection
not subject to omissions.

3. Results and discussion

In Section 3.1, we first discuss the ERF outcome, the extracted
response functions for H and CO2 flux, based on the high-frequency
flux computation of the ERF approach. In Section 3.2, the projection
results from ERFs and summarized probability density functions
(PDFs) are shown and discussed. Sections 3.3–3.6 present and dis-
cuss the uncertainty, comparison with other upscaling approaches,
as well as prospect and limitation of ERF scaling, respectively.

3.1. Extracted environmental response functions

This section presents the extracted case study environmental
response functions. Flux footprints from tower EC measurements
can vary rapidly, e.g. with wind direction and wind speed. In the
case of Fig. 3, the footprint changed from southwest narrow strip
(Fig. 3a) over small closed area (Fig. 3b) to south larger area (Fig. 3c)
within the hour. In consequence, the EC measurement sourced
surface areas with potentially very different emission character-
istics in rapid succession, or even a blend thereof. Only EC fluxes

at high temporal resolution (i.e., one-minute in this study) distin-
guishes such source area variations through de-convolving what
would otherwise be an hourly blend. This provides the founda-
tion for separating spatial (surface characteristics) and temporal
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ecosystem activity) attributes when relating a varying flux signal
o environmental drivers.

These wavelet computed fluxes were comparable to traditional
ourly non-wavelet based approaches. We  found the bias of our
omputed fluxes, compared to the fluxes calculated from tradi-
ional EC method over the whole dataset, were within −3.6% ± 4%,
8.7% ± 4% and +7.5% ± 3% for H, LE and CO2 flux respectively,
here tolerance represents one standard error. Visual inspection of
avelet computed fluxes against footprint weight drivers showed

he value of high-resolution flux processing. For example, in Fig. 4,
etween minutes 30 and 40, an oasis effect was observed consis-
ent with land surface wetting and warming in the surface flux
ootprint. The sensible heat flux became negative as heat was dom-
nantly released by a wet surface through latent heat. This was
lso indicated by mirrored amount of latent heat flux increase. The
dvantage to resolve and attribute effects of flux footprint changes
n the minute-scale stands out when compared to fluxes calculated
rom traditional hourly EC method (black lines in Fig. 4). The lat-
er remains constant for the entire duration, and is unable to reflect
patio-temporal variations at finer resolution. The advantage of uti-
izing wavelet cross-scalogram fluxes was also explicitly confirmed
n the earlier publication (Metzger et al., 2013).

Fig. 5 shows non-linear, cross-correlated, multi-dimensional
RFs extracted from BRT. It is noted that the absolute values shown
n the y-axis of Fig. 5 do not imply the actual projected flux, as the
esponses were not projected with the actual driver combination,
ut random combinations of uniformly distributed samples within
he range of the drivers (Section 2.2.4). However, these equidistant
lots are most useful for revealing the relationships among driver
nd response stored in the ERF.

Strong relationships between H and cos(azi), �, sin(azi), zm/zi,
ST and EVI have been found in this study as shown in Fig. 5 a,
hile we did not find significant relationship between H and q. As

hown in cos(azi) subplot, large (small) amount of sensible heat
as released from surface during daytime (nighttime) with neg-

tive (positive) cos(azi). The variability of cos(azi) could roughly
apture 1/3 of H variation. It is interesting to note a strong pos-
tive relationship between H and �. This is consistent with our
eneral understanding that the air is warmed by the surface mainly
hrough sensible heat, latent heat and long wave radiation. Another
ossible explanation could be that� acts as a proxy for the actual
adiative forcing due to the presence of clouds, but further study
s required to test alternative hypotheses. In sin(azi) subplot, the
ulse at sin(azi) around 7–9 a.m. is the sign of buoyancy overcom-

ng nighttime stable stratification at the beginning of the convective
oundary layer (CBL) development. In the subplot of zm/zi in Fig. 6a,
he green and blue curves indicate that during daytime, H declined
ith zm/zi, and in nighttime, H was positively related with zm/zi.

his pattern is also reflected in the cross-relationship between
m/zi, cos(azi) and H (Fig. 6a). Next, the ERF of H with q had a small
egative slope, following general expectation of higher H during
rier periods. Lastly, H was generally positively related to LST and
egatively related to EVI, indicating that warmer and less vege-
ated areas tended to develop larger heat flux. The cross-correlation
etween EVI, cos(azi) and H displays that during daytime H is larger
ver areas with lower EVI, whereas it is smaller at lower EVI dur-

ng nighttime (Fig. 6c). This indicated that drier areas with lower
VI were heating and cooling rapidly, and wetter areas with higher
VI could store more heat during daytime and release it during
ighttime.

For CO2 turbulent flux, �, sin(azi) and zm/zi were the most
mportant drivers. As expected, turbulent CO2 flux was negatively

nd positively related with � and zm/zi, respectively. In the sin(azi)
ubplot, the flush of nocturnal accumulated storage flux in the early
orning is captured. The magnitude of CO2 flux was larger during

oontime than morning and afternoon as indicated in the cos(azi)
eteorology 232 (2017) 10–22 17

subplot. Areas with higher LST and EVI took up more CO2, consis-
tent with general understanding. The ERF between q and CO2 flux
was quite non-linear. As expected, the plants could uptake more
CO2 during wetter times. Plants were also shown to uptake more
CO2 at dry end. This is supported by the argument that mild drought
could enhance CO2 uptake as it suppresses respiration but has less
impact on gross primary productivity (Grant et al., 2006). These rea-
sonable non-linear, cross-correlated, multi-dimensional ERFs were
able to be extracted from BRT and then used to project turbulent
exchange maps between surface and atmosphere.

3.2. Spatial-temporally resolved flux maps

Fig. 7 shows an example of the domain scaled H, LE and CO2 flux
over the predefined 20 km ×20 km target area. The white cells in the
figure are areas with state-space combinations of drivers for which
no extracted response relationship exists. In this particular time
slice, the ERF projection covered 73%, 54%, 62% of the target area.
Over the whole experiment, the coverage was extended from the
original <10% (average footprint area relative to 20 km × 20 km)  to
56%±13%, 51% ± 6%, and 51% ± 13% for 20×20 km2 target domain
for H, LE and CO2 flux respectively, where the tolerance here is
one standard deviation. The spatial coverage of the prediction area
during the experiment time period was not constant (Fig. 8) and
increased with smaller target domain area. Spatial coverage infor-
mation can be used to identify the representativeness of tower
observations in future study.

In this study, when summarized over the whole experiment,
the projected H, LE and CO2 flux differed from the tower obser-
vations in their expected value (+27%, −9%, and −17%) and
spatio-temporal variation (−22%, −21%, and −3%). The mean of total
domain projected H, LE and CO2 flux over a 20 km × 20 km target
domain were 50.1 W m−2, 44.8 W m−2 and −94.4 gC month−1 m−2,
compared to the flux observations, 39.6 W m−2, 49.2 W m−2, and
−80.4 gC month−1 m−2. One standard deviation of spatio-temporal
variation of projected H, LE, and CO2 flux was 101 W m−2,
73 W m−2, and 322 gC month−1 m−2, smaller than observations,
124 W m−2, 92 W m−2, 332 gC month−1 m−2, respectively. Smaller
carbon uptake measured by WLEF was consistent with Desai et al.
(2008), stating that WLEF under-estimated carbon sinks compared
to aggregation of nearby flux towers. CO2 flux difference is likely
owing to a higher LST and EVI across the domain compared to the
footprint, in particular during daytime (Fig. 2). Similar in H and LE:
Larger H over target area is due to the positive relationship between
LST and H in extracted ERFs, although EVI has a small opposite effect
due to large EVI in target area; Domain-scaled LE is slightly smaller
than observed, likely owing to its slight negative relationship with
LST within the study range of 291 K–295 K (not shown because
of limited space). Flux differences reflect the effect of transient
footprint bias and differences in mean surface properties in the
target area compared to the flux footprint. In addition, the greater
domain-scale heat turbulent exchange may  potentially point to a
source of non-closure of energy balance (Stoy et al., 2013; Foken,
2008). Smaller spatio-temporal variation of projections compared
to observations was likely the result of the smaller spatio-temporal
variation of surface properties over the fixed target area than the
temporally spatially varying footprint area.

3.3. Uncertainty budget

The median systematic and random uncertainty terms (median
absolute deviation, in parenthesis) are shown for each uncertainty

source in Table 1. The first two rows are uncertainty for a single
observation, whereas rows 3–6 are uncertainty per projection.

The uncertainty from instrumentation and hardware was  esti-
mated as detection limit, below which the instrument could not
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Fig. 6. The response surface of sensible heat as function of (a) cos(azi) and zm/zi, and (b) cos(azi) and EVI.
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ig. 7. Averaged minutely projected flux grids of sensible heat (top left panel), laten
ST  for tower-centered 20 × 20 km2 target region. White areas are gaps that cannot b
ataset.

istinguish signal from noise. For a single observation, the detection
imit was 0.9 ± 1.2 W m−2 for H, 1.4 ± 1.8 W m−2 for LE and 0.2 ± 0.3

 mol  m−2 s−1 for CO2 flux. For H, LE and CO2 flux, the systematic
ampling errors were 1%, 1% and 0% for the Wavelet transforms

f 1-hourly datasets, and the random errors were 45%, 78% and
2% for the five-minute averaging window over the Wavelet cross-
calograms, respectively.
 (top right panel) and CO2 (bottom left panel) over August 19th, 2011, 13:00–14:00
oduced by ERF because their biophysical properties exceed the range of the training

For each single projection, the uncertainty from the unac-
counted spatio-temporal variability in the state variables was  1%
biased for H and unbiased for LE and CO2 flux. The uncertainty from
spatio-temporal analysis was  unbiased for H and LE, and biased for

CO2 flux by −4%. The systematic uncertainty from ERF training was
0% and precise to 4% for H, 2% for LE and 2% for CO2 flux. Finally, ERF
projection uncertainty was used to assess how well the procedure
performed if the footprints did not cover the predefined domain.
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ig. 8. Time-varying spatial coverage of the sensible heat flux projection over 5 × 5
eferences to colour in this figure legend, the reader is referred to the web  version o

ere, we saw the ERF approach underestimated H by 11%, LE by
.5% and overestimated CO2 flux by 16%.

The ERF projection uncertainty was found to be the dominant
ource of systematic error for the tower ERF procedure. On this
asis, an overall accuracy of <20% for H and CO2 fluxes and <5% for
E can be assigned. Ensemble random uncertainty �ens, with �ens =

�ran√
N

, dropped rapidly when aggregating multiple observations and
rojection cells/periods N. Even by adding random uncertainty of all
erms in quadrature, the ensemble random uncertainty for hourly
rojection over the whole projection domain will be confined to
ithin 1% for all three fluxes.

.4. Comparison with measurements and other studies

The averaged ERF-projection over 3 km × 3 km region centered
y WCr  explained 76% and 80% of the variation of H observed at
Cr when using WCr  and WLEF meteorological drivers for projec-

ion, respectively (Fig. 9). ERF-projection underestimated (slope)
bservations by 17% and 9% with residual standard deviation at
.49 W m−2 and 0.99 W m−2. It is worth noting that the under-
stimation is in the same order as the systematic ERF projection
rror (11% in Table 1), thus corroborating the usefulness and valid-
ty of ERF-extraction and uncertainty budget of the algorithm. The
ifference between Fig. 9a and Fig. 9b reflects the impact of the
ssumption of homogeneity in meteorological drivers and it indi-
ates that this assumption is acceptable in this study. The residual
nd offset could be attributed to the significant distance of the tall
ower from the target tower (21 km), inability to extrapolate for
ll grid cells within the target WC-centered area. However, overall
his independent evaluation shows agreement between the ERF-
rojected fluxes and the US-WCr observations.

When compared to other upscaling approaches (Table 2), our
stimate, −94 ± 31 gC m−2 month−1 is consistent with a footprint-
ebiased estimate −86 ± 18 gC m−2 month−1 and a multi-tower
ynthesis aggregation −97 ± 30 gC m−2 month−1 by Desai et al.
2008) over 40×40 km2 around WLEF in June–Aug in 2002 and
003; and also agrees with −11–−107 gCm−2month−1 regional
ux estimates (Wang et al., 2006) focusing on May-Sep in 2003,
lthough over different time period and space. The uncertainty
ere and for those reported below represent one sd of spatial
ariation. However, our estimate suggests a larger carbon seques-
ration than Xiao et al. (2014) estimate (−73 ± 28gCm−2month−1)
ver the same area during the same period. When lowering our
omain-scaled projection by 17.4% for location bias and 33.4% for
ombined location bias and systematic ERF projection uncertainty,
e obtain 80 gC m−2 month−1 and 62 gC m−2 month−1, respec-
ively. Xiao et al. (2014) estimate falls well into this range of the
O2 location bias, indicating how current upscaling procedures
ight be directly impacted by the effects of scale discrepancy,

uch as through the neglect of changing flux footprints: Xiao et al.
(red), 10 × 10 km2 (black) and 20 km × 20 km area (blue). (For interpretation of the
 article.)

(2014) trained the model with tower-surrounded 3 × 3 km2 domain
drivers, and the extracted relationships could be distorted due to
neglecting of footprint in drivers. Therefore, one advantage of ERF
method is that ERF-scaled flux grids are reliable and uncertainty
directly estimated because the extracted ERFs are trained with
fluxes and footprint-weighted drivers at high temporal and spatial
resolution.

Among other upscaling approaches, the other advantage of ERF
method is that it produces continuous hourly flux maps by involv-
ing temporally resolved (i.e. sub-hourly) meteorological variables.
Direct variation of H, LE and CO2 flux can be captured at the hourly
interval and the spatiotemporal variability of projected maps can
be quite different than projection at coarse temporal resolution
from continental upscaling (Xiao et al., 2014, Table 2). This could
exert large influence on model-data comparison as most ESMs are
run at fine time resolutions and model formulations for surface
fluxes were derived for this timescale of response, e.g. light use
efficiency model. Further, only at hourly or finer temporal resolu-
tion can the problem of removing the footprint diurnal cycle from
the true regional flux diurnal cycle of surface be accomplished.

3.5. Prospect for model-data fusion

ERF method can improve mechanistic models in two  poten-
tial ways: providing model process-structures reference and by
directly evaluating model fluxes against ERF-rectified flux maps
at the same space and time of model grids. ERF itself essentially
acts as a transfer function that can be used for parameterizing for-
mulations or testing competing model processes. For example, a
parameterization can be fitted to the response surface between
H, cos(azi) and EVI and compared with empirical models. Also, if
extracted ERFs are non-linear, it could be used as an indicator to
suggest models should operate at higher spatial or temporal resolu-
tion: In this study, one-month integrated H over target domain was
45% greater than projected H from one-month integrated drivers.

The ERF method can also improve model evaluation by pro-
viding hourly PDFs and descriptive statistics from domain-scaled
fluxes as reference: Over the study period the domain-scaled fluxes
of H, LE and CO2 were 27% larger, 9% smaller and 17% smaller
than the tower observations. Here in Fig. 10, we  also show that at
hourly scale, PDFs of projected flux grids behaved differently from
observations due to the transient footprint bias. In this case, some-
times the tower sourced areas with near-identical flux (Fig. 10a,
c), displaying smaller variation than the region of a model cell. At
other times, the tower might see areas exhibiting different source

strength, making measurements exhibit larger variation (Fig. 10b).
Therefore, ERF-rectified flux grids mitigate the pitfall of limited
and varying spatial representativeness when using observations to
inform a model during execution.
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Fig. 9. Scatterplot for Willow Creek (WCr) sensible heat flux measurements and ERF projections over 3 km × 3 km centered around WCr. Each point represents a one hour
averaging period, and corresponding aggregation is applied to the minutely ERF projection with meteorological drivers measured at WCr  (panel a) and WLEF (panel b),
respectively. Uncertainties are one standard deviation of random uncertainty and shown as error bars in x and y direction.

Table 2
ERF-projected CO2 net ecosystem exchange [gC m−2 month−1] for major land covers in the 20 km × 20 km target domain compared to other scaling approaches applied around
WLEF.  Where available, either the range of values or one standard deviation of spatial variation is provided.

ERF-projection Xiao et al., 2014 Desai et al., 2008
(footprint
decomposition)

Wang et al., 2006 Desai et al., 2008
(Multi-tower
synthesis
aggregation)

Target domain −94 ± 31 −73 ± 28 −86 ± 19 −11 to −107 −97 ± 30
Woody wetland −91 ± 31 −71 ± 21 −66 −46 –
Deciduous forest −98 ± 31 −72 ± 22 −132 – –
Mixed forest −96 ± 35 −70 ± 23 – −49 –

F anel b
a :00 C
r

3

E
f

ig. 10. Probability density functions of sensible heat (H, panel a), latent heat (LE, p
nd  minutely ERF flux maps over 20 × 20 km2 (blue) for August 19th, 2011, 13:00 14
eferred  to the web  version of this article.)
.6. Current limitations and future directions

Some factors or assumptions limit and degrade current tower
RF performance, which can be further researched in future studies
ocusing on improving the ERF approach.
) and CO2 (panel c) turbulent fluxes. Shown are minutely tower observations (red)
ST. (For interpretation of the references to colour in this figure legend, the reader is
First, at sub-hourly time scales, surface-atmosphere exchange
is rarely resolved completely by the turbulent flux alone. Specif-
ically in the case of taller towers, storage beneath the turbulent
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ux measurement height can comprise a substantial amount of
he actual surface-atmosphere exchange. Through combining stor-
ge and turbulent flux, an improved performance in mapping net
cosystem exchange is expected, which bears the potential to
ddress surface-heterogeneity-related components of a frequently
bserved non-closed energy balance.

Second, an inappropriate assumption in ERF projection is
he homogeneity of the meteorological drivers across the target
omain. Further study is undergoing focusing on the impact of spa-
ial heterogeneity of meteorological states on the performance of
RF approach using gridded reanalysis meteorology with observa-
ions. Even with spatially resolved drivers, the spatial resolution
an have a large influence on ERF’s power to detect the surface
patial variability. The resulting uncertainty is influenced by how
any pixels are sampled by towers, especially for short towers.

otential high-resolution (both spatial and temporal) remote sens-
ng products provide an opportunity to improve the representation
f small-scale spatiotemporal heterogeneity in ERFs.

Third, the projection spatial coverage could not reach 100%, as
his method chooses to only project to surfaces with properties that
ave been experienced by machine learning through training data.
lternate machine learning approaches or interpolation methods
ay  need to be implemented if the ultimate goal is a full resolved

rojected grid.
It is also worthy to note that when applying BRT at hourly or finer

esolution, drivers should include one with strong diurnal cycle, e.g.
zimuth angle. This resolved issues of the diurnal cycle in footprint
ariation resulting in biophysically implausible response attribu-
ion across drivers. In addition, here we tested ERF on a site with
nown heterogeneity and suspected footprint biases arising from it.
hether more homogeneous sites can also benefit from the appli-

ation of ERF is an area of more work. However, in many cases even
stensibly homogenous sites can exhibit large spatial variation in
uxes, especially for trace gases like methane. Here, ERF could help
isentangle processes and patterns, provided suitable land surface
rivers are available.

. Conclusions

Our study demonstrated applicability of the environmental
esponse function (ERF) approach to map  heat and CO2 fluxes from
n eddy-covariance tower to the scale of an earth system model
rid cell. In comparison to other upscaling methodologies, the two
ain advantages of the ERF approach are the explicit consideration

f varying flux footprints during training, and the ability to produce
egional, high-resolution flux grids at hourly timescales.

ERF-projected flux grids not only assess, but also rectify the spa-
ial representativeness of tower eddy-covariance measurements.
his is achieved through decomposing and spatio-temporally
ttributing heterogeneous surface contribution. It thus provides a
romising tool for studying heterogeneity-induced non-closure of
he surface energy balance, and for interpreting flux observations
n model-data fusion approaches. For example, mechanistic mod-
ls can be improved through ERF-extracted process-structures, and
an be constrained using ERF-projected hourly flux and uncertainty
aps.

Applying the ERF procedure to longer time periods and across
ultiple tower sites can help decomposing the interplay of sea-

onal, inter-annual and spatial variability on regional scales. The

ain limitations of ERF approach in this study were the omission

f storage flux, the assumption of spatially homogeneous mete-
rological drivers during projection, and state-space gaps in the
rojected grids, which are areas of ongoing and future research.
eteorology 232 (2017) 10–22 21
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