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Abstract

Eddy-covariance fluxes serve as an essential benchmark for Earth system models and remote
sensing data. However, two challenges prevent model-data intercomparisons from fully uti-
lizing eddy-covariance fluxes. The first challenge stems from the differing and variable
spatial representativeness of the eddy-covariance measurements, or footprint bias and tran-
sience. The second originates from the phenomenon of a non-closed energy balance using
eddy-covariance measurements, hypothesized to result from unaccounted mesoscale flows or
under-sampling of hot spots by flux towers, among others. Previous studies have suggested
that these two problems can be mitigated by either building multiple towers or by apply-
ing space—time rectification approaches, such as the environmental response function (ERF)
approach. Here we ask: (1) How many eddy-flux towers do we need to sufficiently rectify
location bias, close the energy budget, and sample the regional domain? (2) Can an advanced
space—time rectification approach reduce the tower density, while still adequately sam-
pling the regional flux domain? Furthermore, (3) How accurately can the ERF approach
retrieve the surface-flux variation? To answer these questions, we used data from a large-
eddy simulation of atmospheric flows above a heterogeneous surface as captured by an
ensemble of virtual tower measurements. We calculated eddy-covariance fluxes by spatial
and spatio-temporal methods. The spatial eddy-covariance method captured 89% of the pre-
scribed total surface energy flux with about one tower per 15 km?, while the spatio-temporal
method required only one tower per 40 km? to capture 95% of surface energy. To capture
97% of energy, applying the ERF approach further reduced the required tower density to
one tower per 200 km?, as a result of space—time rectification and incorporating mesoscale
flows. This approach also enabled retrieving the surface spatial variation of the sensible heat
flux. The results provide a reference for informing and designing future observation systems
based on flux tower clusters, and scale-aware data products.
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1 Introduction

The eddy-covariance method, in theory, provides reliable, direct, spatially-distributed, and
temporally continuous observations for surface—atmosphere exchange of carbon, water, and
energy across contrasting eco-climate regions (Baldocchi et al. 2001). Now eddy-covariance
observations, such as those collected by Fluxnet, AmeriFlux, Integrated Carbon Observation
System (ICOS), OzFlux, and the National Ecological Observatory Network (NEON), and
others, have become available at unprecedented temporal duration and over distributed spa-
tial extents (Novick et al. 2018). Near continuous (30-min, 60-min) data on the exchanges
of carbon, water, heat, and momentum are collected at eddy-covariance towers across the
globe, where the longest running towers are now approaching three decades of observations
(Baldocchi 2008). This makes eddy covariance to be one of the most important datasets for
benchmarking Earth system models (ESMs) (Running et al. 1999; Bonan 2008). For example,
extensive land-surface model intercomparisons diagnosed limitations in the models, includ-
ing spring phenology (Richardson et al. 2012), light-use efficiency (Schaefer et al. 2012),
and drought sensitivity (Schwalm et al. 2010). Wavelet coherence spectral analyses sug-
gest that models have consistent biases at the diurnal and interannual time scales, for which
eddy-covariance tower observations are well-suited to validate and improve land-surface
parametrizations (Dietze et al. 2011; Stoy et al. 2013).

Two challenges continue to limit how well eddy covariance can reliably inform model-
data comparison. The first one stems from its spatial representativeness, or footprint bias.
The sampling footprint of eddy-covariance towers varies rapidly in time. In addition, the
footprint spatial scale (0.1-10 km?) is typically mismatched with the resolution of most Earth
system models (10'=10* km?). The spatio-temporal mismatch complicates the interpretation
of model evaluation against eddy-covariance observations. Previous studies demonstrated
that towers tend to under-sample strong convective areas and over-sample cold subsidence
areas, which can be another source of location bias (Wyngaard and Brost 1984; Moeng and
Wyngaard 1984; Foken 2008; Kenny et al. 2017). The second longstanding challenge of
eddy covariance is energy balance non-closure, whereby the observed sum of the turbulent
sensible and latent heat fluxes is 10-30% less than the sum of the available energy, when
it is expected to follow conservation of energy at sufficient averaging time or length scales
(Foken et al. 2011). One leading hypothesis is that low-frequency mesoscale contributions
are hidden in the advection term, and inherently not captured by the eddy-covariance method
using traditional calculation methods (e.g. Finnigan et al. 2003; Kanda et al. 2004; Foken
2008; Eder et al. 2015). Atmospheric structures, i.e., organized turbulent structures (Finnigan
et al. 2003; Kanda et al. 2004) and/or mesoscale flows associated with surface heterogeneity
(Schlegeletal. 2014; Eder et al. 2015; De Roo and Mauder 2018), may produce low-frequency
contributions.

Previous studies found that two approaches better represent the mesoscale flows in
eddy-covariance measurements that help close the energy budget: calculation of the eddy-
covariance flux with multiple towers (Steinfeld et al. 2007; Mauder et al. 2008) or applying
advanced upscaling approaches to single or clusters of towers (Metzger et al. 2013; Xu et al.
2017a, b). Thus far, these proposed approaches have not been systematically evaluated with
respect to their spatial mismatch and energy imbalance.

In this study, we performed a “virtual-flux-tower” investigation to evaluate the inferred
fluxes against prescribed surface fluxes. We used large-eddy simulation (LES) over a
parametrized heterogeneous surface and performed an ensemble of virtual tower mea-
surements under controlled surface and meteorological conditions. This way, the projected
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surface-flux maps can be directly evaluated against the prescribed surface fluxes in the LES.
Domain surface fluxes were calculated by both spatial eddy-covariance and spatio-temporal
eddy-covariance approaches (Steinfeld et al. 2007; Mauder et al. 2008), as well as with the
environmental response function (ERF, Metzger et al. 2013; Xu et al. 2017a, b; Metzger
2017).

The ERF approach is a technique that has been previously shown to address location
bias and energy imbalance underlying traditional implementations of the eddy-covariance
method (Metzger et al. 2013; Xu et al. 2017a, b; Metzger 2017). The ERF approach relies
on frequency-based decomposition of eddy fluxes, flux-footprint modeling, and machine-
learning based upscaling. Previous studies have assessed its performance in retrieving the
domain mean sensible heat flux under different situations over a heterogeneous surface (Xu
et al. 2017a). But its ability to retrieve spatial variation in an idealized heterogeneous surface
scheme and evaluation of its performance against previous upscaling methods has not been
investigated, and are tested herein.

Here we ask:

e How many eddy-flux towers are needed to sufficiently rectify location bias, close the
energy budget, and sample the “true” regional mean surface energy fluxes when applying
the assorted spatial and spatio-temporal upscaling approaches?

e Can an advanced scaling approach reduce this observational requirement, while still ade-
quately sampling the regional flux domain?

e How accurately can advanced upscaling approaches retrieve the spatial pattern of surface
fluxes?

The paper is organized as follows: Sect. 2 describes the LES model, the simulation set-
up and virtual tower measurements, as well as the applied analysis techniques. Results and
discussion are presented in Sect. 3, while Sect. 4 gives a summary and conclusions.

2 Methodology
2.1 Large-Eddy Simulation Set-Up and Virtual Tower Measurements

Previous LES studies have had difficulty detecting and distinguishing the source of systematic
errors in tower measurements without prescribed surface boundary conditions (e.g. Sakai et al.
2001). Our study aims to reveal the source of different systematic errors and their magnitude
to improve measurement strategies using a LES model with a heterogeneous surface forcing
set-up.

For the numerical simulations the LES model PALM (Raasch and Schroter 2001; Maronga
etal. 2015) is used. The surface forcing was set to be stripe-wise alternating patches of higher
sensible heat flux H (and corresponding lower latent heat flux LE) and lower H (with higher
LE flux) along the x-axis with patch width L = 750 m, hereafter referred to as warm—dry and
cold—wet patches, respectively. As illustrated in Fig. 1, along the y-axis, the model surface was
homogeneous; the domain-averaged surface heat fluxes were constant in time with a value
of H =100 W m~2 and LE = 200 W m~2. The stripe-wise pattern of surface patches has H
alternating between 150 and 50 W m~2, with LE alternating between 150 and 250 W m~2
over the warm—dry and cold-wet patch, respectively. The LES model set-up was identical to
that described in Siihring et al. (2019). The horizontal flow along the surface pattern stripes
causes mesoscale flows to develop with the ascending flows over the warm—dry patches, and
the subsiding flows over the cold—wet patches, as indicated in Fig. lc.

@ Springer



K. Xu et al.

250 W m'?
150 W m™?

Surface latent heat flux in LES

(a) Surface sensible heat flux in LES I 150 W m2 (b)

. B R T SR w
P e e e R T T e 50 W m? -
e R o T T T
P Tt ST
R R o S S
R R R e B e
e R R o T T T
O R e T e o T e
R R o o S SRR AR
B R R
R R e AR e R
T r T = T e
R E e Tt T o T T ey
B o
PR R R R R
B o T o o o O o S S e
2 4 6 8 10 12

x [km] x [km]
(ms']
(C) w at tower height m 0.5

BT F BN ' , B .05
)“ 1) :”I'v ‘.’,}\
A NUOH

y [km]
y [km]

15

10

y [km]
ki

X [km]

Fig. 1 Horizontal cross-sections of the heterogeneous surface fluxes of a sensible heat and b latent heat. Further,
¢ shows the vertical velocity at virtual tower height of 49 m averaged over the analysis time. White crosses in
a indicate virtual towers. White contour lines in b show the 90% and 30% cumulative flux footprint extent at
different virtual tower positions above the center of the cold patch (upper-left sensor), at the transition between
cold and warm patch (lower-central sensor), and above the center of the warm patch (upper-right sensor), all
atz=49m

The PALM model was set up over adomain of 12 km x 16 km x 3.5 km at an isotropic grid
spacing of 7-m and at a constant timestep of 0.3 s. The simulations ran for 5 h of simulation
time, while data analysis started after the end of the second hour, with cyclic boundary
conditions applied at the lateral boundaries. The detailed LES set-up and boundary-layer
structure can be found in Siihring et al. (2019). A total of 384 virtual towers were placed
500 m apart on the x-axis and 1 km apart on the y-axis (see Fig. 1). Vertical wind speed,
w, water vapour mixing ratio, ¢, and potential temperature, 6, were sampled at a height of
49 m above the model surface, i.e., the model’s seventh vertical level at which the subgrid
contribution to the total flux is less than 1%.

Footprints for the virtual towers were calculated following Kljun et al. (2004) and Metzger
etal. (2013), where the footprint 90% upwind fetch can be as large as 2-3 km (Fig. 1). Several
virtual towers see the local patch (e.g., the middle white footprint contour in Fig. 1b), while
other towers see the mixture of multiple patches (e.g., the left and the right white footprint
contour in Fig. 1b).

Storage fluxes were calculated using 1-h averaged x—z cross-sections of potential tem-
perature and humidity. Averaging over the homogeneous y-axis was applied because storing
potential temperature and humidity at each x—y—z point at 7-m spatial and 0.3-s temporal res-
olutions for the control volume creates data storage issues for the LES model. Homogeneity
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along the y axis is a fair assumption in this LES set-up. We calculated the storage flux as
follows: (1) Calculate the time rate-of-change at each (x, z) location using the 1-h averaged
scalar at hour 5 minus the average at hour 3; and (2) Integrate the vertically-resolved time
rate-of-change over the z-axis between the surface and the tower height at z = 49 m.

2.2 Analysis

We used three different techniques to determine domain-averaged and patch fluxes from
the virtual tower measurements during the analysis time, i.e. from hour 3 to hour 5: spatial
eddy-covariance method (Sect. 2.2.1), spatio-temporal eddy-covariance method (SO7 and
MOS8, i.e., Sect. 2.2.2), and a space—time rectification method, the ERF method (Sect. 2.2.3),
respectively.

2.2.1 Spatial Eddy Covariance

For a single tower measurement, traditional eddy-covariance fluxes are calculated in a tem-
poral framework, where turbulent fluctuations are defined as deviations from the temporal
mean state. With multiple towers, however, the mean state used for eddy-covariance rep-
resentative fluxes can also be determined in a spatial framework, which we refer to as the
spatial eddy-covariance approach throughout, viz.

Fypatial EC = [W; X Ym» 21, 1) s Yo 21, 1) ], (1)

where
WXy Yms 215 1) = WX, Y 21, 1) — [w], 2)
Co Qo Yms 215 1) = €, Y 21, 1) = [c]. 3)

Here, ¢ represents a scalar, either potential temperature, 6, or water vapour mixing ratio,
g, while ¢’ indicates the deviation from the reference state. Squared brackets denote the
horizontal average of selected towers over the horizontal domain. In contrast the overbar, e.g.
¢ in Eq. 5 denotes the temporal average of a quantity over 3 h; e.g.,

ij c(Xps Yms 21, 1)

[c] = =2 p , 4
t=5h
_ =2} ¢(Xmy Ym» 21, 1)
€= — ’ ®)
0.3s

where x,,, y,; indicates the tower location at domain, horizontal dimension, z; is the virtual
tower height at z = 49 m, n = {1...14} is the number of towers used for a given analysis,
and ¢ is time; 0.3 s is the temporal resolution, and 3 h is the analysis time, from the end of
second hour to the fifth hour.

For each number of towers n = {1...14} we evaluated an ensemble of 50,000 runs, each
using a randomly-chosen subset of n towers from evenly and unevenly distributed virtual
towers to obtain a stable ensemble flux. Here, “evenly distributed” means, that of the 320
towers, 50% were located in warm—dry patches, and 50% in cold—wet patches. On the other
hand, “unevenly distributed” or “stratified” means that only 40% of the towers were chosen
from the warm—dry patches, and 60% from the cold—wet patches.
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2.2.2 Spatio-Temporal Eddy Covariance

Different from the spatial eddy-covariance method subtracting the spatial average of w and
¢, the spatio-temporal eddy-covariance method calculated fluxes by subtracting the spatio-
temporal average of w and ¢ (Eq. 6). Note that the subtraction term is the spatio-temporal
average over each 30-min, as typical eddy covariance computes 30-min fluxes. We then
averaged the six 30-min fluxes over the 3-h analysis time to obtain the representative flux
over the whole analysis period,

Fspatio—temporal EC = I:w_/y[(xm’ Ym» 21, 1) - C;z (Xms Ym» 21, [)], (6)
where
w;;(xm,ym,zl,f)=w(xm,ym721,t)—[ﬁ], @)
and,
’ —
cst(-xnla )’m,let):c(xm’ yi’l’hzlst)_ [C], (8)
and where
=i .5h
m=n Z:=:8+05 WX, Yms21,)
- Zm:l %
[»] = : ©)
n

Note that the double overbar, e.g. w, denotes the temporal average over each 30 min, while
the single overbar denotes the temporal average over the entire 3-h analysis time. [ﬁ] is thus
the spatio-temporal average over each 30-min. #( is the start time of the 30-min window, i.e.
tp can be hour 2, 2.5, 3, 3.5, 4, or 4.5. When using Reynolds decomposition for Eq. 6,

Fspatio—temporal EC = |:(w(xm» Ym, Z1, 1) — [ﬁ]) : (C(xmv Ym, 21, 1) — [C]):| (10)
After expanding,

Fupsi-cmpot e = | we — [w]e — w[e] + ][ |
~ (77 - | [le| - [« |+ |76 an

In each run, [ﬁ] is w spatially averaged over the same virtual towers and temporally

averaged over the same half an hour, therefore [ﬁ] is a constant in each run. This makes
W = [ﬁ][f] Similarly, [ﬁ] is a constant in each run, therefore |:w [a] = [ﬁ][f]

Equation 10 then becomes

Fispatio - temporal EC = |:w¢ ‘ - w[i] + [i] [ai|

(5] - | [le| - [T |+ | I
~ (7] - (I - o + [P

= [we] - [@][e]- (12)

%H

§H

§H
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This is the same equation introduced by Steinfeld et al. (2007), and from Eq. 23 in Steinfeld
et al. (2007), the representative flux is calculated as

Fso7 = [w(le] = [€])] + [w(c — [cD]

= [wlel] - [@[7]] + [@¢] - [wel]
= [we] — [w][c]. (13)

As Fso7 and the Fypario—temporalEC are identical, we call the SO7 approach “spatio-temporal
eddy covariance”. This equation has been applied in several studies, e.g. Bohrer et al. (2009)
and Mauder et al. (2008). Mauder et al. (2008) built on SO7, but only one tower had high-rate
samples for eddy-covariance-derived fluxes, while the remainder of the towers measured
mean atmospheric state quantities only (wind velocity, temperature, moisture, etc.). There-
fore, here we call the SO7 and MO8 approaches by a joint name “spatio-temporal eddy
covariance”. Note that when only one tower is used, SO7 is identical to the traditional eddy-
covariance approach. The averaging time period is 30 min for SO7 and MOS8, as typical
eddy-covariance computes 30-min fluxes. We averaged the six 30-min fluxes over the 3-h
analysis time. The calculation was repeated 50,000 times by randomly choosing different
subsets of towers each time from evenly- and unevenly-placed virtual towers to obtain a
stable ensemble representative flux.

2.2.3 Environmental Response Function

One purpose of our study is to test how accurately the ERF approach can retrieve the mean
and spatial pattern of surface fluxes. Here, we describe the key principles and steps of the
ERF approach and refer to Metzger et al. (2013) and Xu et al. (2017a, b) for more detailed
descriptions. The underlying principle of the ERF approach is to relate responses to drivers,
e.g. to relate sensible heat fluxes to potential temperature and land-surface temperature. The
essential steps are: (1) identifying and measuring flux responses alongside key environmental
drivers including meteorological forcings and surface ecological properties; (2) inferring pro-
cess relationships between environmental responses and drivers using artificial intelligence
bound by first principles; and (3) projecting flux responses in space and time.

Flux responses are calculated from wavelet-decomposed eddy covariance. The traditional
eddy-covariance method requires averaging turbulent fluctuations over a 30-min or 60-min
window for tall towers, making it susceptible to changing turbulent conditions and foot-
print variations that occur on shorter time scales. By using a wavelet-based spectral average
instead, the flux measurement period can be reduced substantially (5-min window size at
I-min resolution), permitting clear spatial attribution without neglecting long-wavelength
flux contributions (Metzger et al. 2013; Xu et al. 2017a). The drivers in the ERF approach are
tower-measured air temperature and moisture, and footprint-weighted surface temperature
and moisture. Footprint modelling (Kljun et al. 2004; Metzger et al. 2013) outputs reflect
that towers located within warm—dry and cold-wet patches as well as at their boundaries,
at various times measure both the warm—dry and the cold—wet patches in their flux foot-
prints, therefore capturing the surface variability (Fig. 1c). Machine learning is then applied
to extract the environmental response functions between flux responses and environmental
drivers (Elith et al. 2008). The extracted relationships in conjunction with surface tempera-
ture and moisture maps are then utilized for spatio-temporal projection of the fluxes to the
whole domain.
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We calculated fluxes using the global wavelet covariance over the whole LES analysis time
between hour 2 and hour 5. This includes energy contributions from the whole 3-h period.
Instead of using a rectangular wavelet cut-off, which can exclude the artifacts due to edge
effects (Misztal et al. 2014; Vaughan et al. 2016), we chose global wavelet covariance in order
to conserve the covariance as calculated from time-domain covariance. Wolfe et al. (2018)
found that for short time periods, neglecting cospectral power within the edge effect could
create systematic errors due to the exclusion of larger-scale flux contributions. This was also
observed in our analysis with the 3-h dataset whereby the rectangular cut-off underestimated
fluxes by about 10-20% compared to time-domain eddy covariance, while global wavelet
covariance was only biased by 6% and 5% for H and LE, respectively. This probably will not
be a problem in ‘real-world’ continuous tower measurements, since real towers can ingest
longer time series (e.g. five hours or longer) and thus allow targeting the diurnal or synoptic
spectral gap when considering the appropriate analysis time period.

The sub-hourly wavelet-decomposed flux had a larger sample size and higher signal-to-
noise ratio compared to standard eddy covariance, which enables machine learning to extract
relationships between these atmospheric flux ‘responses’, and land-surface and meteoro-
logical ‘drivers’ as the footprint varies from minute to minute. Wavelet decomposition can
produce 180 fluxes at 1-min resolution within a 3-h analysis time for each virtual tower. With
n virtual tower(s), where n ranges from 1 to 14, the total training dataset for machine learning
is 180n.

For physics-guided machine learning we selected drivers in line with flux-gradient the-
ory: to express observed sensible and latent heat fluxes, the learning algorithm was presented
with driver pairs representing the temperature and moisture gradients between the surface
and atmosphere, alongside information on vertical flux divergence. Specifically, potential
temperature and water vapour mixing ratio measured by virtual towers were used as mete-
orological drivers. As surface drivers, near-land surface temperature and near-land surface
humidity were used. They were calculated from the y-axis averaged potential temperature
and mixing ratio at the lowest vertical grid level at 3.5 m. Near surface quantities were used
as an alternative for the surface properties, since these were not defined in our LES set-up.
This is a because we have not applied a land-surface model, which would have complicated
the surface-flux pattern (Patton et al. 2005) and thus would have further complicated the
analysis of systematic errors. Lastly, the learning algorithm was provided with the relative
measurement height within the boundary layer (z,/z;) to express vertical flux divergence.
Here, z; is the boundary-layer height, calculated as the height of the minimum heat flux in
the capping inversion layer.

For each number of towers (n = {1...14}) 1000 ERF runs were made, each using a
randomly-chosen subset of n towers from evenly- and unevenly-placed virtual towers to
obtain a stable ensemble representative flux. The 1000 iterations were chosen for the ERF
approach instead of 50,000 iterations as with other methods because of the longer ERF
processing time and relatively stable ensemble representative flux obtained after 1000 times.

3 Results and Discussion

3.1 How Many Flux Towers are Needed to Sufficiently Sample the Flux Domain
Mean?

Figure 2 shows how different approaches represent the domain-scale energy fluxes as a func-
tion of the number of towers. When using the spatial eddy-covariance approach, adding each
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Fig. 2 Ensemble-averaged heat fluxes at 49 m using different numbers of 1-14 randomly chosen evenly-
sampled virtual towers, for different upscaling approaches: spatial eddy covariance, spatio-temporal eddy
covariance (SO7 and MO08), and environmental response function (ERF) for a sensible heat flux (H), and
b latent heat flux (LE). Note that the fluxes shown here are the ensemble domain-averaged fluxes relative to
the respective LES surface flux minus storage flux

tower helps the ensemble-averaged sensible heat flux (H) to approach the representative flux.
However, a relatively high number of towers is needed to sufficiently retrieve the representa-
tive flux. When 14 towers are used per 12 km x 16 km, (one tower per 14 km?), the resulting
flux only reaches 89% of the representative flux, calculated as the prescribed surface flux
minus a storage flux of 5 W m~2. This indicates that the spatial eddy-covariance approach
is still unable to capture and explain the remaining 11% of the total flux H + LE regardless
of additional towers.

In comparison, the spatio-temporal eddy-covariance approach (S07 and M08 in Fig. 2)
shows improved performance: H starts from 91.3% even with one single-tower ensemble
average. This is probably a result of capturing more energy transport by mesoscale flows:
these permeate not only the space domain, but also propagate in time, e.g. throughout each
30-min averaging period. In contrast, spatial eddy covariance only includes the coherence of
energy transport across space for each instantaneous sampling time.

The spatio-temporal eddy-covariance representative flux increases with additional towers,
reaching 94.8% of energy with fewer (five) towers (1 tower per 40 km?), leaving only 5.2%
of the sensible heat flux unexplained. The increased 3.5% ensemble domain mean H with
multiple towers compared with one single tower indicates that the spatio-temporal eddy-
covariance approach can account for a fraction of the mesoscale flow contributions (at long
spatial scale but only up to 30-min temporal scale) in H. We also proved the MO8 approach
(Mauder et al. 2008) generates almost identical results with SO7, while only requiring a single
high-frequency tower and remaining towers measuring only averaged quantities, thereby
reducing observational expense.

Similar results are seen in LE in Fig. 2b. The spatio-temporal eddy-covariance approach
performs better than spatial eddy covariance for single- and multiple-tower estimates in terms
of representing the domain-averaged latent heat flux. Ensemble-averaged LE derived from
the spatio-temporal eddy-covariance approach increases from 94 to 96% of the prescribed
surface flux as one goes from one to five towers.

Taking the storage flux into account, 5 W m~2 and 7 W m~2 for H and LE, respectively,
the spatio-temporal eddy-covariance approach is able to reduce the missing flux contribution
from 9 to 5% for H and from 6 to 4% for LE, with only five towers compared to traditional
turbulent flux calculation (spatio-temporal eddy covariance with one tower).
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Table 1 The energy contribution of turbulent flux by using traditional eddy-covariance turbulent flux, the
mesoscale flows (calculated as the difference between SO7 and ERF domain-mean flux derived with one
tower), and atmospheric skewing (calculated as the difference between ERF domain mean derived with one
tower and with 14 towers) relative to LES surface forcing minus storage flux of sensible heat flux (H), latent
heat flux (LE), and H+LE

Turbulent flux (%)  Energy at long transporting Atmospheric skewing (%)  Sum (%)
scales (%)
H 91.3 4.9 6.5 102.7
LE 93.8 3.8 - 1.7 95.3
H+LE 927 42 1 97.8
(a) (b)
4]
200 - 200
150
—_ — 150
2 g
> - 100 >
100
50

x [km]

Fig. 3 24 x 16 virtual towers (one tower for each cell in Fig. 1) sensible heat and latent heat fluxes at 49 m
calculated using standard eddy covariance during the analysis time, with one virtual tower shown as one cell.
Note that each plot has a corresponding legend on the right side. Sensible heat flux map reflects distinct warm
and cold patches, while the latent heat flux map is more mixed and homogenized without a strong wet—dry
contrast

3.2 How Does the ERF Upscaling Method Help Flux Towers to Sample the Regional
Domain?

Figure 2 shows how the environmental response function represents the regional domain
with one and multiple towers. The ERF-projected H and LE values in Fig. 2a indicates that
with only one tower, ERF represents 96% and 97% of the regional domain flux, separately,
which is approximately what SO7 and M07 reach with 14 towers. This is achieved by includ-
ing the longer flux transporting scales (3-h) through wavelet-based flux computation in the
environmental response function. Upscaling and wavelet-based flux computation improve
the performance of energy flux measurements, even with a single tower.

Taking the difference between the resulting fluxes from the ERF approach with one tower
and the resulting fluxes from spatio-temporal eddy covariance with one tower as a measure of
the mesoscale flow contribution to the fluxes, we surmise that the mesoscale flow contributes
to 5% and 4% of domain mean flux for H and LE, respectively (Table 1). Although 4% of
energy in LE is potentially from longer transporting scales, the LE maps at virtual tower sites
(Fig. 3b) and the humidity cross-section at the tower measurement height (Fig. 9b) do not
show the pattern of LE mesoscale flows, as shown in the H field. The lack of any pattern
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Fig. 4 Schematic illustration for convection-skewed atmospheric condition. In the updraft branch (orange lines)
of the mesoscale flow, convective eddies gather more energy to overcome gravity, and become stronger and
spatially-smaller as they ascend. The weaker downward flow (blue lines) occupies a larger horizontal area
compared to the stronger upward flow so both compensate each other according to mass conservation. Because
eddy-covariance towers (black crosses) are operating in this skewed atmospheric field, their measurements
have a tendency to capture more of the weaker downward flow as opposed to the stronger upward flow

may indicate that the transport of LE is due to H-generated mesoscale flows, and would be
consistent with previous studies (Charuchittipan et al. 2014; Eder et al. 2015).

With more towers the ERF-projected H increases and even slightly exceeds the refer-
ence flux, while the ERF-projected LE decreases (red line in Fig. 2b). This, we attribute to
undersampling (oversampling) of warm—dry (cold—wet) patches by the virtual towers, which
is described more below. Figure 5 shows probability density functions (p.d.f.) of the ERF-
retrieved fluxes with different numbers of unevenly-distributed virtual towers (yellow to red
lines in Fig. 5) and the p.d.f. of 320 evenly-distributed virtual tower measurements (green line
in Fig. 5). It is striking that H projections demonstrate a bi-modal distribution, with a primary
peak representing the cold—wet patch and a secondary peak representing the warm—dry partch.
This unequal distribution of projected fluxes between the cold—wet and warm—dry patch indi-
cates an undersampling (oversampling) of warm—dry (cold-wet) patches. As illustrated in
Fig. 4, convective eddies gather more energy in the updraft branches, and become stronger
and narrower as they ascend. Attributed to continuity, downdrafts are weaker and distributed
over a larger area than the updrafts. The corresponding spatial distribution of atmospheric
fields is skewed towards weaker, cooler subsidence areas (as opposed to stronger, warmer
convective areas), even if cold—-wet and warm—dry surface forcing is uniformly distributed
in space (Fig. 4). Since the eddy-covariance tower is operating in this atmospheric field in a
stationary frame of reference, its measurement is inherently “biased” to capture more of the
weaker downward flow areas as opposed to the stronger upward flow areas (Fig. 4). The area
bias is obviously seen in the p.d.f. of even-sampling virtual tower measurements (green line
for H in Fig. 5), but the magnitude of upward flow is not obviously stronger than the surface
forcing. This might be caused by stronger divergence in the upward branch, and overall is
consistent with previous studies reflecting real world eddy-covariance towers that tend to
undersample warm—dry spots (Wyngaard and Brost 1984; Foken 2008). With an increasing
number of towers, the secondary peak of ERF-projected H values (yellow-red lines in Fig. 5a)
shifts upward because, with multiple towers, the probability of fluxes originating from warm
patches increases. This phenomenon allowed the environmental response function to rectify
location bias from skewed atmospheric sampling by increasing the detection of warm—dry
patches.

In contrast to H, ERF-retrieved LE values show a Gaussian-shaped distribution, even
though surface fluxes were prescribed by a distinct bi-modal distribution. This indicates that
the spatial pattern of LE at the 49-m measurement height is strongly blended and only weakly
correlated to its surface pattern. Assuming that fluxes are fully sampled with 14 towers, and
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Fig. 5 Probability density functions of ensemble ERF-projected flux maps aggregated from 1000-fold ensemble
foraH,and b LE. Yellow tored lines represent ERF-projected maps with 1-14 virtual towers, respectively. Blue
lines are the LES surface forcing minus storage flux reference (5.3% and 3.4% for H and LE, respectively).
Green lines are the 320 evenly-distributed virtual tower measured fluxes using standard eddy-covariance
method

taking the difference in ERF-projected fluxes between one and 14 towers as a measure of the
location bias incurred by skewed atmospheric sampling, we estimate the effect of location
bias to be approximately 7% and — 2% for H and LE, respectively.

ERF-projected H and LE values with 14 towers approximately conserve the energy budget
(101%) after adding the projected H and LE (98%) with the mean convection term (3%),
which is calculated as [W][©] (2.7%) and [W][q] (0.04%).

Figure 6 shows the domain-averaged H and LE values for different number of towers,
where the number of towers was randomly chosen from even as well as from uneven sampling.
Here, even sampling implies that 1-14 towers were randomly chosen from 320 towers located
in warm—dry and cold—wet patches evenly, while uneven sampling implies that 40% (60%) of
the towers were located in warm—dry (cold-wet) areas. This shows how different upscaling
approaches can reproduce the domain mean energy fluxes from even sampling (solid lines)
and uneven (biased) sampling (dashed lines). This test was performed by comparing different
sampling scenarios in order to estimate the sensitivity of the different approaches (spatio-
temporal eddy covariance and the ERF method) on the location bias. For the ERF method, with
an uneven sampling strategy the resulting H values deviate significantly from the reference
flux for one tower, while an even sampling strategy is much closer to the reference flux,
indicating that a location bias can have a large impact on the upscaled flux. For increasing
number of towers the impact of location bias decreases by about 80% when 14 towers are
used.

For SO7 and MO8, the even sampling strategies lead to significant improvements in the
sampled H compared to the uneven sampling strategy, even for the large number of towers
used. With respect to H, this suggests that SO7 and M08 are much more sensitive to the chosen
sampling strategy compared to ERF. For LE, however, the situation becomes different. Here,
with an uneven sampling strategy ERF, SO7 and M08 approaches give fluxes that are slightly
closer to the reference flux compared to even sampling. At ‘real-world’ measurement sites
with complex surface heterogeneity the locations of the updraft and downdraft branches of
the mesoscale flows are hardly predictable and depend on wind speed and wind direction
(Maronga and Raasch 2013), time of day, soil conditions, indicating a likely unable location
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Fig. 6 Ensemble-averaged domain mean energy fluxes from randomly chosen 1-14 virtual towers from even
sampling (solid lines) and uneven sampling (dashed lines) at 49 m. Even sampling indicates that 1-14 towers
were randomly chosen from 320 towers so that each 50% of the towers were located in warm—dry and cold—wet
patches, respectively. Uneven sampling indicates that 40% of the towers were located in warm—dry patches,
while 60% of towers were chosen from cold—wet patches

bias, even with an elaborate tower set-up. Our findings show that any location bias in the
tower set-up can introduce significant sampling errors if spatial and spatio-temporal eddy-
covariance methods are used; whereas, the ERF approach is able to overcome most of the
location bias.

3.3 How Accurately Can ERF Retrieve the Surface-Flux Variation?

After the previous ERF study comparing projected H against nearby tower observations
(Xu et al. 2017a), we go one step further to assess the ability of ERF to retrieve the spatial
pattern. Figure 7a shows the ERF-retrieved H with 14 towers projected onto the surface.
The projected flux correlates well with the prescribed fluxes, revealing the ability of the ERF
method to dis-aggregate measured fluxes into component fluxes appropriately. We found that
with 14 towers ERF is able to reproduce the prescribed sensible-heat-flux pattern (Fig. 7a).
Further, Fig. 7b shows the relative spatial coverage of the ERF-projected flux for different
number of towers used. The ERF method can successfully rectify location bias by improving
flux coverage from<19% with one tower, to 33% with two towers, and to 74% with 14
towers (Fig. 7). Applying ERF over several months of “real-world” flux-tower data would
build an ensemble of different atmospheric conditions resulting in a footprint climatology,
which provides a similar improvement to the spatial representativeness, e.g. larger than 60%
representativeness over a 10 x 10 km? area when conducted in a real-world test with a single
tall tower (Xu et al. 2017a).

Figure 8 shows scatterplots of the ERF-projected fluxes versus the prescribed surface
fluxes. For the sensible heat flux the fitted relationship (dashed line in Fig. 8) between ERF-
projected H and the known LES surface fluxes is close to 1:1 line: the slope is 1.05, and
offsetis — 5 W m~2 with R? = 0.9.

In contrast to H, the fitted relationship for LE deviates significantly from the 1:1 line,
meaning that ERF is less successful in retrieving the two types of surface patches. ERF-
projected LE maps were less successful in retrieving the two types of surface patches (Figs. 5b,
8b) compared to H. This is in contrast to previous studies that demonstrated successful
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Fig. 8 Scatterplot of ensemble ERF-projected against the known LES surface reference fluxes minus the storage
flux for a sensible heat flux and b latent heat flux, using 14 virtual tower observations. Solid black line is 1:1
line, and dashed black line is the least-squares regression

application of the ERF method on LE (Metzger et al. 2013; Xu et al. 2017a, b). We speculate
that the “extreme” surface stripes result in different LE and H transport and circulations,
which make it difficult for offline footprint model to accurately or sufficiently relate the
turbulent-based LE back to the surface. This might relate to the fact that heterogeneity-
induced mesoscale flows, which are dominated by sensible heat fluxes, mix the passive water
vapour (Figs. 3b, 9b), making the atmospheric LE field more homogenized compared to H
(compare Fig. 9a, b). While the potential temperature field is organized in rolls broadened
along the vertical direction (Fig. 9a), the mostly passive water vapour is more horizontally
mixed, and the rolls of water vapour are broadened horizontally. Thus, water vapour spreads
laterally relative to the stripes of forcing (Fig. 9b). Although more investigations are needed,
e.g. on comparing the relative importance of the horizontal mixing for ¢ and 6, this argument
is consistent with Bertoldi et al. (2012), who found, based on observations and LES, that
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Fig. 9 x—z cross-section of a potential temperature and b water vapour in the study time period. The rolls of
water vapour are broadened and more blended along the horizontal direction at elevations above 30 m, relative
to potential temperature

the water vapour field is mostly controlled by horizontal advection. To further substantiate
this hypothesis in follow-up research, we suggest applying Lagrangian particle footprint
approaches, in order to improve understanding of how water vapour is mixed.

Another possible root cause for the less successfully ERF-projected LE values is that
the offline footprint model used here have trouble relating the passive LE measured below
the blending height back to the surface. The offline footprint models, such as used here, do
not consider these scalar-specific properties in relation to the actual wind field, thus have
insufficient spatial attribution of the passive (neutral density; LE) flux fields (Fig. 3b) to
surface spatial patterning as opposed to active (self-buoyant; H) fluxes.

More analysis is needed to assess the ERF method’s performance in other cases besides
the idealized LES setting in this study, for example when the wind direction is perpendicular
to the stripe pattern of the surface forcing as opposed to the paralleling of wind speed and
stripe pattern in this LES setting. Here, the ERF method might perform better as the surface
coverage and the variations in the footprint becomes better because of the larger footprint
variation over heterogeneous surface, or worse because of more blending and mixing in the
flux signal.

4 Summary and Conclusions

We used an ensemble of virtual towers in a large-eddy simulation (LES) over a prescribed
striped surface forcing to investigate whether and how multiple towers with upscaling meth-
ods can sufficiently sample the mean and spatial variation of the regional energy fluxes in
an unbiased manner. Our study demonstrates that the spatial eddy-covariance and the spatio-
temporal eddy-covariance methods require one tower per 15 km? and one tower per 40 km?
to capture 95% of the surface energy, while the environmental response function (ERF)
upscaling approach is able to reduce the required tower density up to one order of magni-
tude to one tower per 200 km?. ERF achieves this result by using Wavelet decomposition to
incorporate low-frequency flux contributions (here: up to 3 hours) that are neglected by tra-
ditional eddy-covariance methods. In our striped-patched LES simulation, mesoscale flows
contribute an average of 4% to the energy among virtual flux towers.

The ERF approach enables detecting and rectifying the location bias introduced by both
location bias and atmospheric skewing, something which the spatial eddy-covariance and the
spatio-temporal eddy-covariance approaches cannot. We showed that the sensible heat flux
(H) resulting from spatial and spatio-temporal eddy-covariance methods is stronger affected
by atmospheric skewness as well as location bias, meaning that the hot spots with strong but
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narrow updrafts (which significantly contribute to the vertical transport) are underrepresented
by the tower measurements. In contrast, the ERF method is able to rectify the location
bias, making ERF-processed flux measurements less prone to skewed/location-biased tower
setups.

In addition, the theoretical soundness and statistical significance of the ERF approach for
H are supported by the good agreement of mean and spatial variation among ERF-projection
and the known LES surface reference. Environmental response function enables rectifying
location bias by improving flux coverage over the regional domain from < 1% tower footprint
area, to 19%, 33%, and 74%, respectively, with one, two, and 14 virtual towers, respectively.
Previous studies (Metzger et al. 2013; Xu et al. 2017a, b; Metzger 2017) have assessed ERF
requirements as follows: (1) significant flux footprint variation due to varying wind speed
and direction above the surface, (2) the accuracy of flux footprint modelling for different
stability regimes and at different measurement heights, (3) physics-guided machine learning
to represent important environmental processes in adherence to first principles, (4) the spatial
and temporal resolution of drivers, and (5) the degree of the surface heterogeneity within the
tower footprints. Together with previous studies, the results in this study support the suitability
of the ERF approach for H under differing turbulent conditions and surface heterogeneity.

A possible root cause for the less successfully ERF-projected LE is confounded by differ-
ing atmospheric blending mechanisms for passive (neutral density; LE) scalars as opposed to
active (self-buoyant; H) scalars. Simple footprint parametrizations, such as used here, do not
consider these scalar-specific properties in relation to the actual wind field. As a result, spatial
attribution of LE to surface properties is insufficient to enable the machine learning algorithm
to distinguish areas of different surface forcings. In particular, two future research directions
could help overcome this issue: (1) considering scalar-specific blending height to estimate a
scalar-specific measurement height most suitable for existing algorithmic solutions, and (2)
utilization of Lagrangian and scalar-specific footprint models for those measurement heights
where existing algorithmic solutions are shown to be insufficient.

Based on this work, the National Science Foundation (NSF) supports the CHEESEHEAD
(Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density
Extensive Array of Detectors) intensive field campaign which evaluates these approaches
in a large flux-tower cluster (20 towers) over a 10 x 10 km? heterogeneous surface. The
CHEESEHEAD experiment will comprehensively explore the performance of ERF, and
work towards mitigating the constraints in the current LES-based study and previous single
tower analyses.

We have demonstrated through a LES-based study that advanced scaling techniques can
capture the effect of the mesoscale flows, map fluxes across a regional scale, and order-of-
magnitude reduce the tower density required for capturing both the mean and the spatial
variation of a heterogeneous surface. These improvements promise to decrease experimental
expense, while providing eddy-covariance data products that are more suitable for model
evaluation. This is an important validation step towards scaling the ERF approach to multiple
towers and tower networks, and towards informing and designing future observation systems
using simulations. Among other scientific advances our study underlines the potential of ERF
for improving the quality assessment and uncertainty quantification of eddy-covariance flux
data products, alongside model benchmarking and and data assimilation.
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